ON Semiconductor®

ON

LV5068V	Low power consumption and high efficiency
	Step-down switching regulator controller

Introduction

This document presents the information on IC, application, schematic, pattern layout, Bill of Materials and Evaluation Board.

Table	of contents	
1.	Overview	2
2.	Features	2
3.	Typical applications	2
4.	Pin assignment	2
5.	Package dimensions and mounting pad sketch	3
6.	Block diagram	3
7.	Specifications	4
	Absolute maximum ratings	
	Recommended operating conditions	
	Electrical characteristics	
	Characterization curves	
8.	Pin function	7
9.	Operation explanation	11
	9.1 Power-saving feature	
	9.2 Output voltage setting	
	9.3 Switching frequency Setting	
	9.4 Soft start function	
	9.5 Over current protection setting	
	9.6 Hiccup setting	
	9.7 Power good function	
	9.8 External synchronous frequency	
	9.9 Leading edge blanking time	
10.	Evaluation board manual	13
11.	Selection of main parts	19
	11.1 Choke coil	
	11.2 Output capacitor	
	11.3 Input capacitor	
	11.4 External phase compensation components	

1. Overview

LV5068V is 1ch step-down switching regulator. The operation current is about 80uA, and low power consumption is achieved.

2. Features

- 1ch diode rectifying controller
- · Maximum value of light load mode current is 80uA
- Built-in OCP circuit with P-by-P method
- When P-by-P is generated continuously, it shifts to the HICCUP operation.
- If connect C-HICCUP to GND pin, then latch-off when over current.
- The oscillatory frequency can be set by the external pin. The oscillatory frequency is 300kHz to 2.2MHz
- Built-in UVLO, TSD
- · Synchronous operation by external signal

Application Circuit Example

Efficiency

3. Typical applications

- Printers
- Set-Top Boxes, DVD Drives and HDD
- LCD Monitors and TVs

4. Pin assignment

0,5±0,2

5. Package dimensions and mounting pad sketch SSOP16(225mil)

	(Unit:mm)
Reference symbol	SSOP16(225mil)
eE	5.80
е	0.65
b3	0.32
1	1.00

Caution: The package dimension is a reference value, which is not a guaranteed value.

7. Specifications

Absolute maximum ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Input Voltage	V _{IN} max		45	V
	PDR, HDRV, RSNS ILIM, EN, PG		V _{IN}	v
	V _{IN} -PDR		6	V
Allowable Pin Voltage	REF		6	V
	SS, FB, COMP, RT C-HICCUP, SYNC		REF	v
Allowable Power Dissipation	Pd max	Specified substrate *1	0.74	W
Operating Temperature	Topr		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

*1 specified substrate 114.3mm × 76.1mm × 1.6mm glass-epoxy

Recommended operating conditions at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Input Voltage Range	V _{IN}		4.5 to 40	V

Electrical characteristics at Ta=25°C, $V_{\mbox{IN}}$ =15V

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
[Reference Voltage]						
Internal Reference Voltage	Vref		1.241	1.26	1.279	V
Pch Drive Voltage	VPDR	I _{OUT} =0 to -5mA	V _{CC} -	V _{CC} -	V _{CC} -	V
			5.5	5.0	4.5	
[Saw Wave Oscillator]						
Oscillatory Frequency	FOSC	RT=470kΩ	280	330	380	kHz
[ON/OFF Circuit]		1				
IC Startup Voltage	Vcnt_on		1.5		V _{IN}	V
Disable Voltage	Vcnt_off		0		0.3	V
[Soft Start Circuit]	•					
Soft Start Source Current	I _{SS} _SC	EN>1.5V	1.3	2	2.7	μΑ
Soft Start Sink Current	I _{SS} _SK	EN<0.3V	1	1.6	2.2	mA
		SS=4V				
[UVLO Circuit]	1		_			
UVLO unlocking voltage	V _{UVLON}	FB=COMP	3.3	3.7	4.1	V
UVLO Lock Voltage	VUVLOF	FB=COMP	2.5	2.9	3.3	V
[Error Amplifier]	•					
Input Bias Current	I _{EA} IN		-100	-50	100	nA
Error amplifier gain	GEA		100	250	400	μA/V
Output Sink Current	IEA_OSK	FB=1.75V	-40	-20	-10	μΑ
Output Source Current	IES_OSC	FB=0.75V	10	20	40	μΑ
[Over Current Limit Circuit]						
Reference current	ILIM1		48.4	55	61.6	μΑ
Over current detection comparator	V _{LIM_OFS}		-5		+5	mV
offset voltage						
RSNS pin input range	VRSNS		V _{IN} -		VIN	V
			0.175			
HICCUP Timer Startup Cycle	NLCYCLES			15		cycle
HICCUP Comparator Threshold	V _{tHIC}		1.2	1.26	1.32	V
Voltage			_			
HICCUP Timer Charge Current	IHIC		1	2	3	μA
[PWM Comparator]	I					
Maximum On-Duty	D _{MAX}		95			%

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
[Logic Output]						
Power Good "L" Sink Current	I _{pwrgd_L}	PG=5V	4	5	6	mA
Power Good "H" Leakage Current	I _{pwrgd_H}	PG=5V	0		1	μΑ
Power GoodThreshold Voltage	V _{tPG}		1.0	1.1	1.2	V
Power Good Hysteresis	V _{PG H}		40	50	60	mV
[Output]						
Output On-Resistance (high)	R _{ONH}			3		Ω
Output On-Resistance (low)	R _{ONL}			3		Ω
Output On-current (high)	IONH		500			mA
Output On-current (low)	IONL		500			mA
[The entire device]						
Standby current	ICCS	EN < 0.3V	0		1	μΑ
Light Load Mode Consumption	I _{sleep1}	EN > 1.5V	30	55	80	μΑ
Current	· ·	No Switching				
Thermal Shutdown	TSD	*2	150	170	190	°C

*2: Design certification

Characterization curves VIN=15V, RT=470k Ω

Over current limit

100

Efficiency vs load current Vout=3.3V

8. Pin f	unction		
Pin No.	Pin name	Pin Function	Equivalent circuit
1	PG	Power good pin. Connect to open drain of MOS-FET in ICs inside. Setting output voltage to "L", when FB voltage is about 1.05V or less.	PG § 1kΩ GND
2	EN	ON/OFF pin.	VIN 4.8MΩ EN 4.8MΩ GND
3	ILIM	For current detection. Sink current is about 55uA. The current limiter comparator works when an external resistor is connected between this pin and V_{IN} , and if the voltage of this resistor is less than the voltage of RSNS then PchMOS is turned off. This operation is reset each PWM pulse.	VIN $5k\Omega$ $1k\Omega$ GND
4	VIN	Power pin. Monitored by the UVLO function. When this pin exceeds 3.7V, the UVLO function causes IC to start, entering the soft start mode.	
5	RSNS	Current detection resistor connection pin. Resistor is connected between V_{IN} and this pin, and the current flows to MOSFET is measured.	VIN $5k\Omega$ $5k\Omega$ $5k\Omega$ $5k\Omega$ $5k\Omega$ $5k\Omega$ $5k\Omega$

Pin No.	Pin name	Pin Function	Equivalent circuit
6	HDRV	The external high-side MOSFET gate drive pin.	VIN \$ 130kΩ HDRV PDR
7	PDR	Gate drive voltage of the external PchMOSFET. Meanwhile, the bypass capacitor is connected between V _{IN} and this pin.	$1.3M\Omega \approx$ $1.5M\Omega \approx$ $10k\Omega \approx$ $10k\Omega \approx$ $10k\Omega \approx$ $10K\Omega \approx$ 000 0
8	GND	Ground Pin. Ground pin voltage is reference voltage.	
9	SYNC	Pin used also as the external synchronizing signal input pin. Do not leave the pin floating.	

Pin No.	Pin name	Pin Function	Equivalent circuit
10	RT	Oscillation frequency setting pin. Resistor is connected between this pin and GND.	VIN $ 1k\Omega$ RT $ W$ GND $ -$
11	C-HICCUP	It is capacitor connection pin for setting re-startup cycle in HICCUP mode. If connect it to GND pin, then latch-off when over current.	
12	SS	Capacitor connection pin for soft start. About 2uA current charges the soft start capacitor.	VIN $1k\Omega \neq 10k\Omega$ SS $1k\Omega \neq 10k\Omega$ $1k\Omega \neq 10k\Omega$ $1k\Omega \neq 10k\Omega$
13	NC	NC pin.	
14	COMP	Error Amplifier Output Pin. The phase compensation network is connected between GND pin and COMP pin.Thanks to current-mode control, COMP pin voltage would tell you the output current amplitude. COMP pin is connected internally to an int. comparator which compares with 0.9V reference. If COMP pin voltage is larger than 0.9V, IC operates in "continuous mode". If COMP pin voltage is smaller than 0.9V, IC operates in "discontinuous mode (low consumption mode)".	VIN 70kΩ 70kΩ 1kΩ 1kΩ GND

Pin No.	Pin name	Pin Function	Equivalent circuit
15	FB	Error amplifier reverse input pin. ICs make its voltage keep 1.26V. Output voltage is divided by external resistors, and it across FB.	$\begin{array}{c} VIN \\ \hline 10k\Omega \\ \hline 1k\Omega \\ FB \\ \hline 1k\Omega \\ \hline 1k\Omega \\ \hline 0000 \\ \hline 0000$
16	REF	Reference voltage.	$\frac{10\Omega}{10\Omega}$ REF $\frac{10\Omega}{10\Omega}$ $\frac{10\Omega}{51k\Omega}$ $\frac{1M\Omega}{51k\Omega}$ $\frac{1}{51k\Omega}$

9. Operation explanation

9.1 Power-saving feature

This IC has power-saving feature to enhance efficiency at light load. By shutting down unnecessary circuits, operating current of the IC is minimized and high efficiency is realized.

9.2 Output voltage setting

The output voltage is set by resistor R4 (Between VOUT and FB) and resistor R5 (Between FB and GND). The output voltage is determined by the following expression (1).

$$V_{OUT} = (1 + \frac{R4}{R5}) \times V_{REF} = (1 + \frac{R4}{R5}) \times 1.26$$
 [V] (1)

ex) The resistor that sets the output voltage to 5V are R4=470k and R5=160k.

$$V_{OUT} = (1 + \frac{470 \times 10^3}{160 \times 10^3}) \times 1.26 = 4.96$$
 [V] (2)

9.3 Switching frequency setting

The switching frequency (F_{OSC}) is set by resistor R7 (Between RT and GND).

The relation of resistor R7 with F_{OSC} is shown in Graph 1. And please set F_{OSC} taking the minimum on-time =200ns into consideration. **ex)** Where R7=470k Ω , F_{OSC} is 330kHz.

9.4 Soft start setting

Soft start time (T_{SS}) is set with the capacitor C7 (Between SS and GND). T_{SS} is determined by the following expression (3).

$$T_{SS} = C7 \times \frac{V_{REF}}{I_{SS}} = C7 \times \frac{1.26}{2.0 \times 10^{-6}}$$
 [s] (3)

ex) Where C7=2200pF, T_{SS} is 1.38ms.

$$T_{SS} = 2200 \times 10^{-12} \times \frac{1.26}{2.0 \times 10^{-6}} = 1.386 \text{ [ms] (4)}$$

9.5 Overcurrent protection setting

When the RSNS pin exceeds the overcurrent limit value for 15 cycles of the oscillatory frequency, the overcurrent protection detects the overcurrent state, and stops the IC. Overcurrent detection voltage (VLIM) is determined by the resistor R2 (between VIN and ILIM) and the reference current (ILIM1). The overcurrent detection voltage (VLIM) is determined by the following expression.

VLIM = $R2 \times ILIM1$ [V]

ex) Where R2=2.7k Ω , ILIM1=55uA, VILIM is 0.1485V. VLIM = 2.7 × 10³ × 55 × 10⁻⁶ = 0.1485 [V] (6)

When the current sensing resistor R1 is $30m\Omega$, the value of the overcurrent is 4.95A. You can select R1 from $20m\Omega$ to $100m\Omega$ according to the above-mentioned figure which shows the relationship between RSNS and pulse width.

9.6 Hiccup Setting

The stop time of the overcurrent protection is determined by the capacitor (C8). IC restarts when the C-HICCUP pin exceeds 1.26V.

$$T_{\text{HIC}} = \frac{C8 \times V_{\text{tHIC}}}{I_{\text{HIC}}} = \frac{C8 \times 1.26}{2.0 \times 10^{-6}} \text{ [s]}$$
(7)

ex) Where C8=22000pF, T_{HIC} is 13.86msec.

THIC =
$$\frac{22000 \times 10^{-12} \times 1.26}{2.0 \times 10^{-6}}$$
 = 13.86[ms] (8)

9.7 Power good function

The Output voltage is observed with the voltage of the FB pin. The PG pin turns "Low" when the voltage of FB pin is about 1.05V or less. Because the PG pin is open-drain, the PG pin can be Wired-OR.

LV5068V performs the synchronous operation by inputting external signal in continuous current mode. The synchronous frequency= F_{SYNC} inputted to the SYNC pin shall be set higher than F_{OSC} or lower than twice the F_{OSC} . If F_{SYNC} is higher than twice the F_{OSC} , the amplitude of internal slope becomes low and the gain becomes high. So F_{SYNC} is determined by the following expression.

When synchronous operation is not used, make sure to connect the SYNC pin to GND.

Fig. synchronous operation by external signal (SYNC input : 0V⇔3.3V)

9.9 Leading edge blanking time

LV5068V has the leading edge blanking time whose design value is 120ns.

10. Evaluation board manual

Performance summary

Table 1. LV5068V_DemoBoard Performance Summary

Parameter	Conditions		Rating		
			Тур	Max	
Input Supply Voltage			24		V
Output Voltage			5		V
Current Limit Peak		4.36	4.95	5.54	Α
Oscillatory Frequency			330		kHz

Output voltage setting

Table 2. LV5068V_DemoBoard Output Voltage Point Setting

Output Voltage [V]	R4 [kΩ]	R5 [kΩ]
3.3	270	160
5	470	160

Manipulation method

- 1. Connect the load between OUT and GND.
- 2. Connect the input power supply with VIN and GND.
- 3. The output becomes a set voltage.

Layout

4-layer printed circuit board Top layer

Bottom layer

Schematic

Bill of Materials Table 5. LV5068V_DemoBoard Bill of Materials

Designator	Manufacturer Part Number	Value Toleranc		Quantity	Manufacturer
U1	LV5068V	-	-	1	SANYO Semiconductor
L1	1217AS-H-100M	10uH / 4.3A	10%	1	TOKO INC
R1	ERJ8BWFR030V	30mohms	1%	1	Panasonic
R2	RK73B1JTTD272J	2.7kohms	5%	1	KOA
R3	RK73B1JTTD105J	1Mohms	5%	1	KOA
	RK73Z1JTTD	0ohms	-	1	KOA
K4	RK73H1JTTD4703F	470kohms	1%	1	KOA
R5	RK73H1JTTD1603F	160kohms	1%	1	KOA
R6	RK73B1JTTD823J	82kohms	5%	1	KOA
R7	RK73B1JTTD434J	470kohms	5%	1	KOA
R8	RK73Z1JTTD	0ohms	-	1	KOA
R9	RK73B1JTTD104J	100kohms	5%	1	KOA
C1	GRM32ER7YA106K	10uF / 35V	10%	2	Murata
	GRM188B31H104K	0.1uF / 50V	10%	1	Murata
C2	10ME220SWG	220uF / 10V	20%	1	SUN Electronic Industries
C3	GRM188B31E105K	1uF / 25V	10%	1	Murata
C5	GRM188B31E105K	1uF / 25V	10%	1	Murata
C6	GRM188B11H472K	4.7nF / 50V	10%	1	Murata
C7	GRM188B11H222K	2.2nF / 50V	10%	1	Murata
C8	GRM188B11E223K	22nF / 50V	10%	1	Murata
C9	-	-	-	-	-
D1	MBRS540T3	-	-	1	ON Semiconductor
Q1	CPH6354	-	-	1	SANYO Semiconductor

17 / 21

11. Selection of main parts

11.1 Choke coil

When conditions for input voltage, output voltage and ripple current are defined, the following equation (9) gives inductance value.

Make sure to set ripple current (ΔIR) to be lower than 20% of the output current.

$$\begin{cases} L = \frac{VIN-VOUT}{\Delta IR} \times Ton \\ Ton = \frac{1}{\{((VIN - VOUT) \div (VOUT + VF)) + 1\} \times FOSC \\ FOSC : Oscillatory Frequency \\ VF : Forward voltage of Schottky Barrier diode \\ VIN : Input voltage \\ VOUT : Output voltage \\ \end{cases}$$
(9)

Inductor current: Peak value (IRP)

Current peak value (IRP) of the inductor is given by the equation (10).

IRP = lout +
$$\frac{\text{VIN-VOUT}}{2\text{L}} \times \text{Ton}$$

Make sure that rating current value of the inductor is higher than a peak value of ripple current.

(10)

(11)

• Inductor current: ripple current (Δ IR) Ripple current (Δ IR) is given by the equation (11). Δ IR = $\frac{VIN-VOUT}{I} \times Ton$

When load current (lout) is less than 1/2 of the ripple current, inductor current flows discontinuously.

11.2 Output capacitor

Make sure to use a capacitor with high frequency impedance for switching power supply because a large ripple current flows through output capacitor.

Effective value is given by the equation (12) because the ripple current (AC) that flows through output capacitor is sawtooth wave.

 $I_{C}OUT = \frac{1}{2\sqrt{3}} \times \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{L \times F_{OSC} \times V_{IN}}$ [Arms] (12)

11.3 Input capacitor

Ripple current flows through input capacitor which is higher than that of the output capacitors. Therefore, caution is also required for allowable ripple current value.

The effective value of the ripple current which flows through input capacitor is given by the equation (13).

$$I_{C_{IN}} = \sqrt{D(1 - D)} \times I_{OUT} \text{ [Arms]}$$
(13)
$$D = \frac{T_{ON}}{T} = \frac{V_{OUT}}{V_{IN}}$$

In (13), D signifies the ratio between ON/OFF period. When the value is 0.5, the ripple current is at a maximum. Make sure that the input capacitor does not exceed the allowable ripple current value given by (13). With (13), if V_{IN} =24V, V_{OUT} =5V, I_{OUT} =3.0A and F_{OSC} =330 kHz, then I_{C_IN} value is about 1.22Arms.

In the board wiring from input capacitor, V_{IN} to GND, make sure that wiring is wide enough to keep impedance low because of the current fluctuation. Make sure to connect input capacitor near output capacitor to lower voltage bound due to regeneration current. When change of load current is excessive (I_{OUT}: high \Rightarrow low), the power of output electric capacitor is regenerated to input capacitor. If input capacitor is small, input voltage increases. Therefore, you need to implement a large input capacitor. Regeneration power changes according to the change of output voltage, inductance of a coil and load current.

11.4 External phase compensation components

This IC adopts the power saving feature which requires electronic capacitor with low ESR and solid polymer capacitor (e.g. OS capacitor), which are used as output capacitors for phase compensation. The frequency characteristic of this IC consists of the following transfer functions.

(1) Output resistance breeder	: H _R
(2) Voltage gain of error amplifier	: G _{VEA}
Current gain	: G _{MEA}
(3) Impedance of phase compensation external element	: Z _C
(4) Current sense loop gain	: GCS
(5) Output smoothing impedance	: Zo

Fig. LV5068V compensation networks

Closed loop gain is obtained with the following formula (14).

$$G = H_R \cdot G_{MER} \cdot Z_C \cdot G_{CS} \cdot Z_O$$

(14)

The table of compensation values for 330 kHz is provided below electronic capacitor with low ESR.

VIN	Vout	Rsns	L	Rc	Сс	Со	R _{ESR}	Manufacturer	Manufacturer
(V)	(V)	(mohm)	(uH)	(kohm)	(nF)	(uF)	(mohm)	Part	
12 24	5	30	10	82	4.7	220	82	10ME220SWG	SUN electronic Industries
12 24	3.3	30	10	56	4.7	220	82	10ME220SWG	SUN electronic Industries
12 24	5	20	10	56	4.7	220	82	10ME220SWG	SUN electronic Industries
12 24	3.3	20	10	33	4.7	220	82	10ME220SWG	SUN electronic Industries

For this IC, R_{ESR} of output capacitor should be lower than 100m ohm. Where R_{ESR} of output capacitor is high, C_X is required for compensation. C_X can be determined by:

$$C_{X} = \frac{R_{ESR} \times C_{O}}{R_{C}}$$

The zero-cross frequency required in the actual system board, in other word, transient response is adjusted by R_c . Also, if the influence of noise is significant, use of C_c or C_x with higher value is recommended.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized usplication, Buyer shall indemnify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.