# **LB1909MC**



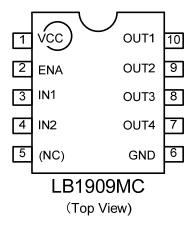
http://onsemi.com

Bi-CMOS integrated circuit

# 12V Low Saturation Voltage Drive Stepper Motor Driver Application Note

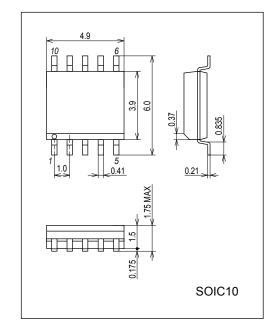
#### Overview

The LB1909MC is a low saturation voltage stepper motor driver IC. It is optimal for motor drive in 12V system products.


#### **Function**

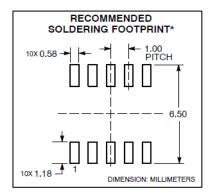
- BIP output transistor adoption (Upper and lower total Vo(sat)=0.5V(typical) at Io=400mA)
- For one power supply (The control system power supply is unnecessary.)
- Our motor driver IC, LV8549M, and compatible pin
- The compact package (SOIC-10 NB) is adopted.
- VCC max = 20v, IO max = 0.8A
- Current consumption 0 when standing by

#### **Typical Applications**


- Refrigerators
- Time Recorder
- Label Printer
- Vacuum cleaner
- Refrigerators
- Time Recorder

#### **Pin Assignment**




#### **Package Dimensions**

unit: mm (typ)



Caution: The package dimension is a reference value, which is not a guaranteed value.

#### **Recommended Soldering Footprint**



#### **Block Diagram**

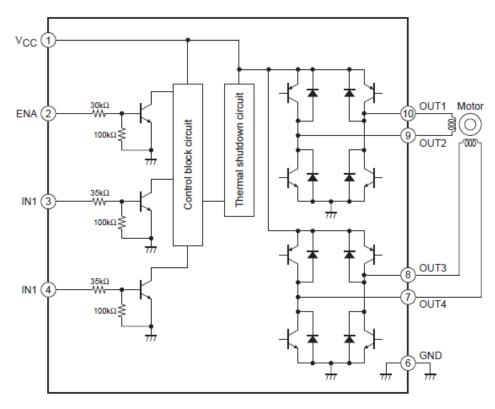



Figure 1 One stepping motor drive

#### **Specifications**

#### Absolute Maximum Ratings at Ta = 25°C

| Parameter                    | Symbol              | Conditions | Ratings     | Unit |
|------------------------------|---------------------|------------|-------------|------|
| Maximum power supply voltage | V <sub>CC</sub> max |            | -0.3 to +20 | V    |
| Applied output voltage       | VOUT max            |            | -0.3 to +20 | V    |
| Applied input voltage        | V <sub>IN</sub> max |            | -0.3 to +18 | V    |
| GND pin outflow current      | IGND                |            | 800         | mA   |
| Allowable power consumption  | Pd max              | *          | 820         | mW   |
| Operating temperature        | Topr                |            | -30 to +85  | °C   |
| Storage temperature          | Tstg                |            | -40 to +150 | °C   |

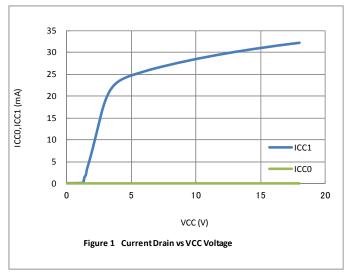
<sup>\*:</sup> When mounted on the specified printed circuit board (114.3mm ×76.1mm × 1.6mm), glass epoxy board

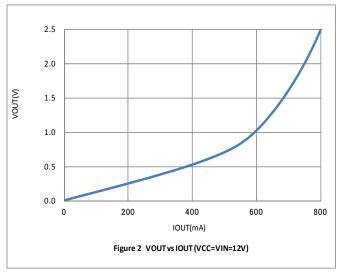
Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

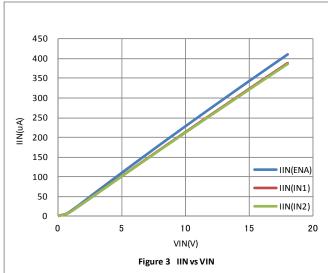
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

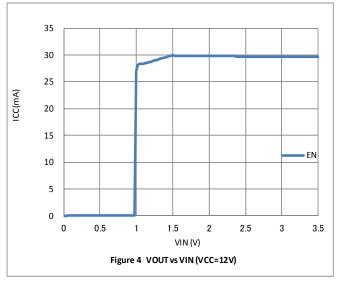
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

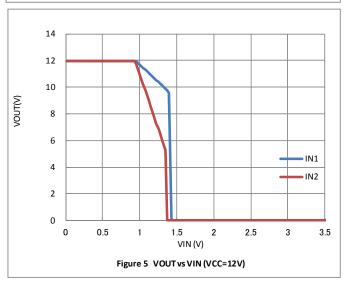
#### Recommended Operating Conditions at Ta = 25°C

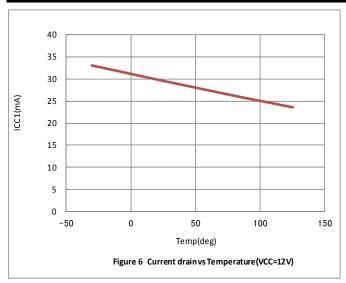

| December                 | 0               | O contillation |      | 11.2 |      |      |
|--------------------------|-----------------|----------------|------|------|------|------|
| Parameter                | Symbol          | Conditions     | min  | typ  | max  | Unit |
| Supply voltage           | V <sub>CC</sub> |                | 2.5  |      | 1.6  | ٧    |
| Input high level voltage | V <sub>IH</sub> |                | 1.8  |      | 10   | ٧    |
| Input low level voltage  | V <sub>IL</sub> |                | -0.3 |      | +0.7 | ٧    |

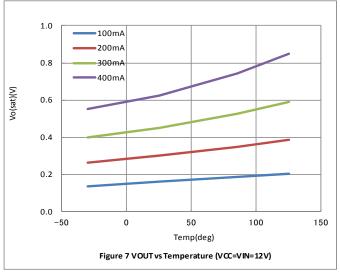

#### **Electrical Characteristics** at Ta = 25°C, $V_{CC} = 12V$


| Danamatan                                                                   | Command and           | Conditions              |     | 11.20 |      |      |  |  |
|-----------------------------------------------------------------------------|-----------------------|-------------------------|-----|-------|------|------|--|--|
| Parameter                                                                   | Symbol                | Conditions              | min | typ   | max  | Unit |  |  |
| Power source current                                                        | I <sub>CC</sub> 0     | ENA=L                   |     | 0.1   | 10   | μА   |  |  |
|                                                                             | I <sub>CC</sub> 1     | ENA=H                   |     | 25    | 35   | mA   |  |  |
| Output saturation voltage                                                   | V <sub>OUT</sub> 1    | I <sub>OUT</sub> =200mA |     | 0.25  | 0.35 | V    |  |  |
|                                                                             | V <sub>OUT</sub> 2    | I <sub>OUT</sub> =400mA |     | 0.50  | 0.75 | V    |  |  |
| Input current                                                               | I <sub>IN</sub>       | V <sub>IN</sub> = 5V    |     | 85    | 110  | μΑ   |  |  |
| Thermal protection block *1                                                 |                       |                         |     |       |      |      |  |  |
| Thermal shutdown operation T <sub>tsd</sub> Design guarantee *2 temperature |                       | Design guarantee *2     |     | 180   |      | °C   |  |  |
| Temperature hysteresis width                                                | ΔT <sub>tsd</sub>     | Design guarantee *2     |     | 60    |      | °C   |  |  |
| Spark Killer Diode                                                          |                       |                         |     |       |      |      |  |  |
| Reverse current                                                             | I <sub>S</sub> (leak) |                         |     |       | 30   | μА   |  |  |
| Forward voltage                                                             | V <sub>SF</sub>       | I <sub>OUT</sub> =400mA |     |       | 1.7  | V    |  |  |


<sup>\*1</sup> The thermal protection function is a feature to prevent the product from smoking and firing under unusual conditions. It is not intended guarantee operation of the product under an ambient temperature exceeding the operating temperature range.


<sup>\*2</sup> Design guarantee is not tested in individual units.














#### Pin function

| Pin No. | Pin name | Pin function                                                                                                                                                                                                                                                                                                                                                                                                                                    | Equivalent Circuit     |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1       | VCC      | Power-supply voltage pin.  VCC voltage is impressed. The permissible operation voltage is from 2.5 to 16(V). The capacitor is connected for stabilization for GND pin (6pin).                                                                                                                                                                                                                                                                   |                        |
| 2       | ENA      | Motor drive control input pin. It shifts from the stand-by state to a prescribed output operation corresponding to the state of the input when the ENA pin becomes a standby mode by L, the circuit current can be adjusted to 0, and it makes it to H. It is a digital input, and the range of L level input is 0 to 0.7(V) and the range of H level input are 1.8 to 10(V). Pull-down resistance $80(k\Omega)$ is built into in the terminal. | ENA 30kΩ 30kΩ 30kΩ GND |
| 3       | IN1      | Motor drive control input pin.  Driving control input pin of OUT1 (10pin) and OUT2 (9pin).  With built-in pull-down resistance.                                                                                                                                                                                                                                                                                                                 | vcc<br>**              |
| 4       | IN2      | Motor drive control input pin. Driving control input pin of OUT3 (8pin) and OUT4 (7pin). With built-in pull-down resistance.                                                                                                                                                                                                                                                                                                                    | 10kΩ 10kΩ GND          |
| 5       | NC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| 6       | GND      | Ground pin.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| 7       | OUT4     | Driving output pin. The motor coil is connected between terminal OUT3 (8pin).                                                                                                                                                                                                                                                                                                                                                                   | → vcc                  |
| 8       | OUT3     | Driving output pin. The motor coil is connected between terminal OUT4 (7pin).                                                                                                                                                                                                                                                                                                                                                                   |                        |
| 9       | OUT2     | Driving output pin. The motor coil is connected between terminal OUT1 (10pin).                                                                                                                                                                                                                                                                                                                                                                  |                        |
| 10      | OUT1     | Driving output pin. The motor coil is connected between terminal OUT2 (9pin).                                                                                                                                                                                                                                                                                                                                                                   | GND                    |

#### Operation explanation

#### 1. Truth table

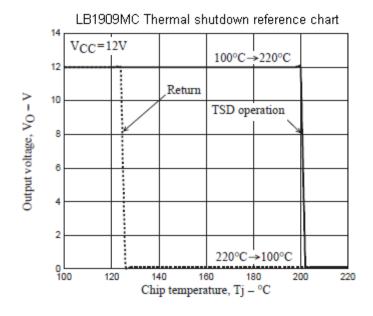
| Input |     |     | Output |      |      |      | Remarks      |         |  |
|-------|-----|-----|--------|------|------|------|--------------|---------|--|
| ENA   | IN1 | IN2 | OUT1   | OUT2 | OUT3 | OUT4 | Remarks      |         |  |
| L     | *   | *   | OFF    | OFF  | OFF  | OFF  | Standby mode |         |  |
|       | L   |     | Н      | L    |      |      | Channal 1    | Forward |  |
|       | Н   |     | L      | Н    |      |      | Channel 1    | Reverse |  |
| Н     |     | L   |        |      | Н    | L    | Channel 2    | Forward |  |
|       |     | Н   |        |      | L    | Н    | Criaillei 2  | Reverse |  |

#### 2. Thermal shutdown function

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds 200°C. As the temperature falls by hysteresis, the output turned on again (automatic restoration). The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax=150°C.

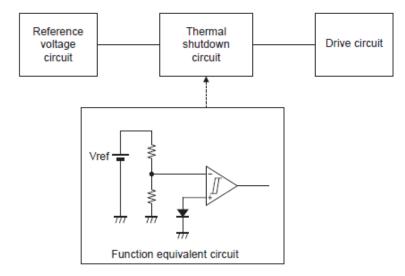
TSD = 
$$200^{\circ}$$
C (typ)  
 $\Delta$ TSD =  $75^{\circ}$ C (typ)

#### (1) Thermal shutdown temperature


The thermal shutdown temperature Ttsd is 200±20°C with fluctuations.

#### (2) Thermal shutdown operation

The operation of the thermal shutdown circuit is shown in the figure below.

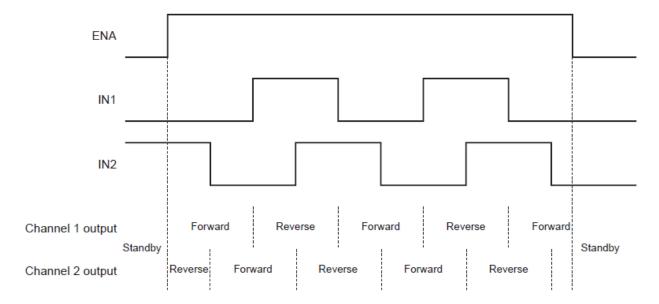

When the chip temperature Tj is in the direction of increasing (solid line), the output turns off at approximately 200°C.

When the chip temperature Tj is in the direction of decreasing (dotted line), the output turns on (returns) at approximately 125°C.



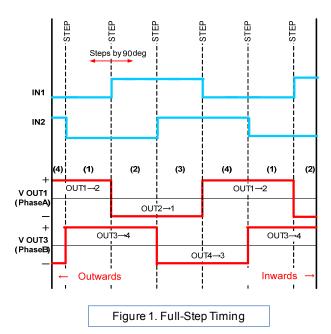
(Thermal shutdown circuit block diagram)

The thermal shutdown circuit compares the voltage of the heat sensitive element (diode) with the reference voltage and shuts off the drive circuit at a certain temperature to protect the IC chip from overheating.




Note: The above is an example of thermal shutdown circuits although ther are same differences from the actual internal circuit.

#### **Design Documentation**


- (1) Voltage magnitude relationship There are no restrictions on the magnitude relationships between the voltage applied to Vcc and ENA,IN1,IN2.
- (2) Observe the following points when designing the printed circuit board pattern layout.
  - Make the Vcc and ground lines as wide and as short as possible to lower the wiring inductance.
  - Insert bypass capacitors between Vcc and ground mounted as close as possible to the IC.
  - Resistors of about 10KΩ must be inserted between the CPU output ports and the IN1 to IN4 pins if the microcontroller and the LB1909MC are mounted on different printed circuit boards and the ground potentials differ significantly.

Timing Chart - Full-Step (2phase excitation) drive-



#### **Operation principal**

 Full-Step Drive Motor advances 90 degree by inputting 1 step.



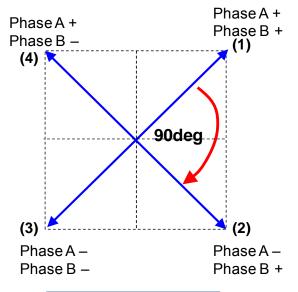
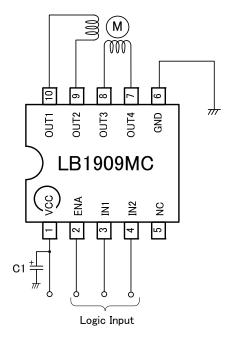
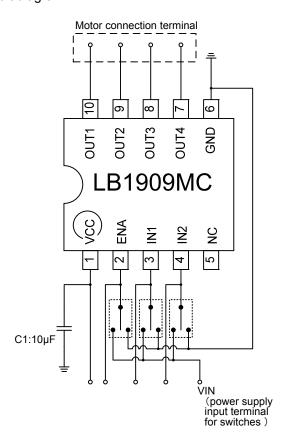




Figure 2. Motor electric angle (Full Step Drive)

#### **Application Circuit Example**

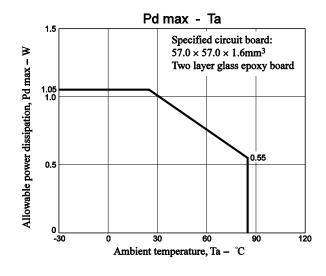
1. Example of applied circuit when one stepping motor driving

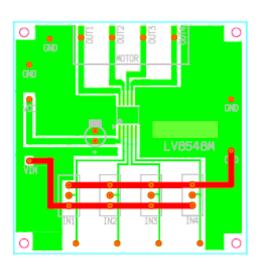



<sup>\*</sup> Bypass capacitor (C1) connected between  $V_{CC}$ -GND of all examples of applied circuit recommends the electric field capacitor of  $0.1\mu A$  to  $10\mu A$ .

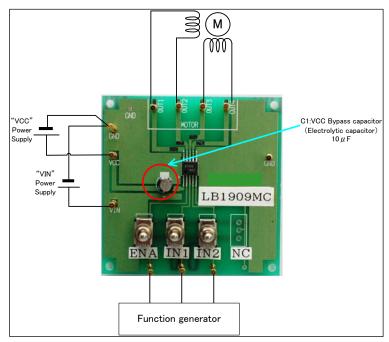
Mount the position where the capacitor is mounted on nearest IC.

Confirm there is no problem in operation in the state of the motor load including the temperature property about the value of the capacitor.


#### **Evaluation Board Manual**


1. Evaluation Board circuit diagram




Bill of Materials for LB1909MC Evaluation Board

| Bill of Materials for EB 1900MO Evaluation Board |     |                      |             |      |               |                              |                             |                         |              |  |
|--------------------------------------------------|-----|----------------------|-------------|------|---------------|------------------------------|-----------------------------|-------------------------|--------------|--|
| Designator                                       | Qty | Description          | Value       | Tol  | Footprint     | Manufacturer                 | Manufacturer<br>Part Number | Substitution<br>Allowed | Lead<br>Free |  |
|                                                  |     |                      |             |      |               |                              |                             |                         |              |  |
| IC1                                              | 1   | Motor Driver         |             |      | SOIC-10<br>NB | ON semiconductor             | LB1909MC                    | No                      | Yes          |  |
| C1                                               | 1   | VCC Bypass capacitor | 10μF<br>50V | ±20% |               | SUN Electronic<br>Industries | 50ME10HC                    | Yes                     | Yes          |  |
| SW1-SW3                                          | 3   | Switch               |             |      |               | MIYAMA                       | MS-621-A01                  | Yes                     | Yes          |  |
| TP1-TP11                                         | 11  | Test points          |             |      |               | MAC8                         | ST-1-3                      | Yes                     | Yes          |  |

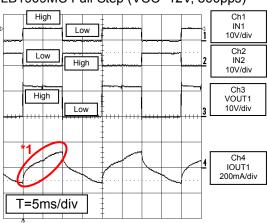




#### 2. One stepping motor drive



- Connect a stepping motor with OUT1, OUT2, OUT3 and OUT4.
- Connect the motor power supply with the terminal VCC, the control power supply with the terminal VIN. Connect the GND line with the terminal GND.
- STP motor drives it in a Full-Step, Half-Step by inputting a signal such as follows into IN1~IN4.
- For input signal to function generator, refer to p.8.


  To reverse motor rotation, make sure to input signal to outward direction.

Waveform of LB1909MC evaluation board when driving stepping motor

• Full-Step Drive

# LB1909MC Full-Step (VCC=12V, 200pps) Ch1 IN1 10V/div Ch2 IN2 10V/div Ch3 VOUT1 10V/div T=5ms/div

#### LB1909MC Full-Step (VCC=12V, 500pps)



\*1. When the motor rotation is at a high speed, current gradient increases by the inductance of motor (L).

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa