

Test Procedure for the LV8711TGEVB Evaluation Board

For Stepper Motor Control

Figure 1: Setup for Stepper Motor Control

Equipment	Efficiency
Power supply1	5V-0.5A
Power supply2	18V-1.5A
Function generator	1kHz
Multimeter	-
Oscilloscope	4 channel
Current probe1	-
Current probe2	-
LV8711T Evaluation Board	-
Stepper Motor	18V-1A

Table1: Required Equipment

Allowable Operating Ratings

- Motor supply voltage (VM): 4 to 16V
- Logic supply voltage (VCC): 2.7 to 5.5V
- Reference voltage for constant current (VREF): 0 to VCC-1.8V

Each constant setting method for the above circuit diagram example is as follows:

- Current LIMIT (100%) set VREF=1V (when internal regulator REG1 output is connected) (I)limit = VREF/5/RNF = 1V/5/0.47Ω = 425mA
- Chopping frequency setting Fchop = (I)chop/(Cchop×Vt×2) = 10uA/(180pF×0.5V×2) = 55.5kHz

Test Procedure:

- 1. Connect the test setup as shown Figure 1.
- 2. Apply input voltage to the terminal VREF. (The terminal REG1 short circuit is assumed.)
- 3. Turn the switch of "PS" on. (Knock it down for above in Figure 1.)
- 4. Check VREG5 and frequency of the triangle waveform on the terminal CHOP.
- Keep other switches in middle position. Input drive signals to IN1A, IN1B, IN2A and IN2B from DSP.

Refer to the following timing charts.

6. Check the drive signals and output current waveforms at scope whether they are similar to the charts.

And check the waveform of PWM constant current control.

Table2: Desired Results

INPUT	OUTPUT
VCC=3.3V (Power Supply 1)	VREG5=4.5V to 5.5V
VM=8.5V (Power Supply 2)	VREG1=
VREF=REG1(=1V)	0.95V to
PS=High	1.05V
ATT1=ATT2=Low	
When it controls in Full-Step	
IN1A/IN1B/IN2A/IN2B=10Hz(Duty50%)	
When it controls in Half-Step	
IN1A/IN1B/IN2A/IN2B=10Hz(Duty40%)	

For smaller DC motor(s) control (When a motor is connected between OUT1A and OUT1B.)

Figure 2. Setup for smaller DC motor(s) control

Equipment	Efficiency
Power supply1	5V-0.5A
Power supply2	18V-1.5A
Function generator	200kHz
Multimeter	-
Oscilloscope	4 channel
Current probe1	-
Current probe2	-
LV8711T Evaluation Board	-
DC Motor	18V-1A

Table3: Required Equipment

ON Semiconductor

•

Test Procedure

- Connect DC motor(s) between OUT1A and OUT1B, OUT2A and OUT2B.
- Connect the motor power supply with the terminal VM, the control power supply with the terminal VCC. Connect the GND line with the terminal GND.
- Input the reference voltage to the terminal VREF.
 - (The terminal REG1 short circuit is assumed.)
 - Turn the switch of "PS" on. (Knock it down for above in follow image.)
- Turn the swith of IN1A, IN1B, IN2A and IN2B ON or OFF. When DSP is connected to previous Input pins, keep their switches middle position.

Refer to the following timing chart.

Table4: Desired Results

INPUT	OUTPUT
VCC=3.3V (Power Supply 1)	VREG5=4.5V to
VM=8.5V (Power Supply 2)	5.5V
VREF=REG1(=1V)	VREG1=
PS=High	0.95V to
ATT1=ATT2=Low	1.05V
When it controls in Direct-PWM (CW/Brak e) IN1A/IN2A=High	
IN1B/IN2B=20kHz(Duty20%)	

For a larger DC motor control

Figure 3. Setup for a larger DC motor control

Equipment	Efficiency
Power supply1	5V-0.5A
Power supply2	18V-2.5A
Function generator	200kHz
Multimeter	-
Oscilloscope	4 channel
Current probe1	-
Current probe2	-
LV8711T Evaluation Board	With RNF resistors 0Ω
DC Motor	18V-2A

Table5: Required Equipment

ON Semiconductor[®]

Test Procedure

- Change each RNF resistors to 0Ω .
- Connect Output pin OUT1A with OUT2A, OUT1B with OUT2B each other directly.
- Connect Input pin IN1A with IN2A, IN1B with IN2B each other directly.
- Connect DC motor between OUT1A/2A and OUT1B/2B.
- Connect the motor power supply with the terminal VM, the control power supply with the terminal VCC. Connect the GND line with the terminal GND.
- Connect REG1 to VREF directly.
- Turn the switch of "PS" on. (Knock it down for above in previous image.)
- Turn the swith of IN1A/2A and IN1B/2B ON or OFF. When DSP is connected to previous Input pins, keep their switches middle position. Refer to the timing chart on P.5.

Tableo: Desireu Results		
INPUT	OUTPUT	
VCC=3.3V (Power Supply 1)	VREG5=4.5V to	
VM=12V (Power Supply 2)	5.5V	
VREF=REG1(=1V)	VREG1=	
PS=High	0.95V to	
ATT1=ATT2=Low	1.05V	
When it controls in Direct-PWM (CW/Brak e)		
IN1A/IN2A=High		
IN1B/IN2B=100kHz(Duty50%)		

Table6: Desired Results

In this case, waveforms are similar to them on P.5.