

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

AN-9095

Smart Power Module 1200V Motion SPM3® Series Application Note

1 Introduction

This application note supports the 1200 V rated Motion SPM[®] 3 module. It should be used in conjunction with 1200 V Motion SPM 3 datasheet and application notes <u>AN-9086 - SPM 3 Package Mounting Guidance</u>.

1.1 Design Concept

Provides a minimized package and low power consumption module with improved reliability. This is achieved by applying a new 1200 V gate-driving high-voltage integrated circuit (HVIC), a new insulated-gate bipolar transistor (IGBT) of advanced silicon technology, and improved direct bonded copper (DBC) substrate base transfer mold package.

1200 V Motion SPM 3 module achieves reduced board size and improved reliability compared to existing discrete solutions. Target applications are inverterized motor drives for industrial use, such as fan motor for air conditioners, small power general-purpose inverters, and serve motors.

The temperature-sensing function of Motion SPM 3 product is implemented in the LVIC to enhance system reliability. An analog voltage proportional to the temperature of the LVIC is provided for monitoring the module temperature and necessary protections against over-temperature situations.

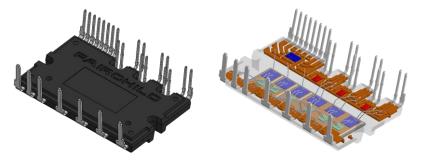
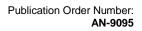


Figure 1. External View and Internal Structure of Motion SPM 3 Series

Table 1.	Product	Line-up and	Target	Application
----------	---------	-------------	--------	-------------


Target Application	Fairchild Device	IGBT Rating	Motor Rating ⁽²⁾	Isolation Voltage
Motor drives for industrial use,	FSBB10CH120D(F) ⁽¹⁾	10 A / 1200 V	1.5 kW / 440 V _{AC}	V _{ISO} = 2500 V _{RMS}
System air conditioners, General-purpose inverters,	FSBB15CH120D(F)	15 A / 1200 V	2.2 kW / 440 V _{AC}	(Sine 60 Hz, 1 min
Servo driver	FSBB20CH120D(F)	20 A / 1200 V	3.0 kW / 440 V _{AC}	All Shorted Pins Heat Sink)

Notes:

1. Difference between FSBB10CH120D and FSBB10CH120DF is temperature sensing range. Temperature range of FSBB10CH120D is 0 ~ 150°C, FSBB10CH120DF is -25 ~ 125°C.

These motor ratings are simulation results under following conditions: V_{AC} = 440 V, V_{DD} = 15 V, T_C = 100°C, T_J = 150°C, f_{PWM} = 5 kHz, PF=0.8, MI=0.9, Motor efficiency=0.75, overload 150% for 1min.

These motor ratings are general rating, so may be changed by conditions.

ON

ON Semiconductor®

www.onsemi.com

APPLICATION NOTE

Table of Contents

1	Intro	oduction	1
	1.1	Design Concept	
	1.2	Ordering Information	
	1.3	Features and Integrated Functions	
2	Pro	duct Synopsis	4
	2.1	Detailed Pin Definition & Notification	
	2.2	Absolute Maximum Ratings (TJ=25°C, unless otherwise specified)	
	2.3	Electrical Characteristics (TJ=25°C, unless otherwise specified)	9
3	Pac	kage	
-	3.1	Thermal Impedance	
	3.2	Detailed Package Outline Drawings	
	3.3	Marking Information	14
4	One	erating Sequence for Protections	15
	4.1	Short-Circuit Current Protection (SCP)	
	4.2	Under-Voltage Lockout Protection	
5	Kev	Parameter Design Guidance	17
Č	5.1	Shunt Resistor Selection at N-Terminal for Current Sensing & Protection	
	5.2	Time Constant of Internal Delay	
	5.3	Soft Turn-Off	19
	5.4	Fault Output Circuit	
	5.5	Circuit of Input Signal (IN(xH), IN(xL))	
	5.6	Bootstrap Circuit Design	
	5.6.		
	5.6.2 5.6.3		
	5.6.4		
	5.6.5		
	5.7		
	5.7.	5 ()	
6	Prin	nt Circuit Board (PCB) Design	29
J	6.1	General Application Circuit Example	
	6.2	PCB Layout Guidance	
7	Pac	king Information	31
•	i au		

1.2 Ordering Information

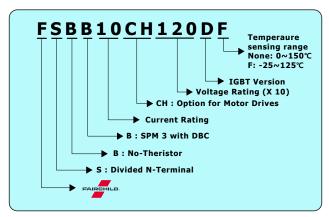


Figure 2. Ordering Information

1.3 Features and Integrated Functions

- DBC Substrate
 - Excellent Thermal Conductivity, Keeping 2500 V_{rms} Isolation Voltage from Pin to Heat Sink
- Integrated Components:
 - One-Channel HVIC (three HVIC) for High-Side IGBTs Control
 - Three-Channel LVIC (one LVIC) for Low-Side IGBTs Control
 - Six IGBTs / Diodes
 - Temperature Sensing of LVIC(Optional)
- Control Drive Supply:
- Single DC Supply Compatible Using Integrated Bootstrap Diode
- High-Side Gate Driver (One-Channel)
 - High-Voltage Level-Shift Circuit
 - Input interface: Active HIGH
 - Compatible for 3.3 V Controller Outputs
 - Under-Voltage Lockout without Fault Signal
- Low-Side Gate Driver (Three-Channel)
 - Input Interface: Active HIGH
 - Compatible for 3.3 V Controller Outputs
 - Under-Voltage Lockout with Fault Signal
 - Short-Circuit, Over-Current Protection
- Soft Turn-off Prevents Excessive Surge Voltage
- Temperature Sensing of LVIC (2 kind option)

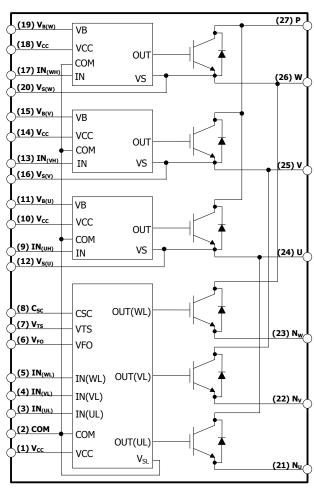


Figure 3. Internal Equivalent Circuit, Input / Output Pins

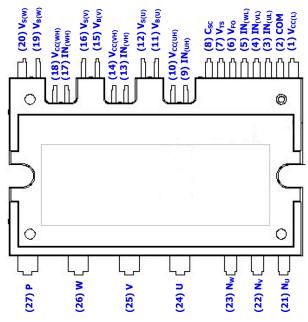


Figure 4. Package Top-View and Pin Assignment

2 Product Synopsis

This section discusses pin descriptions, electrical specifications, characteristics, and packaging.

Table 2. Pin Description

Pin Number	Name	Description
1	VCC(L)	Low-Side Common Bias Voltage for IC and IGBTs Driving
2	COM	Common Supply Ground
3	IN(UL)	Signal Input for Low-Side U Phase
4	IN(VL)	Signal Input for Low-Side V Phase
5	IN(WL)	Signal Input for Low-Side W Phase
6	VFO	Fault Output
7	VTS	Thermal Sensing Voltage in LVIC
8	CSC	Voltage Input for SC detection
9	IN(UH)	Signal Input for High-Side U Phase
10	VCC(UH)	High-Side Bias Voltage for U Phase IC
11	VB(U)	High-Side Bias Voltage for U Phase IGBT Driving
12	VS(U)	High-Side Bias Voltage Ground for U Phase IGBT Driving
13	IN(VH)	Signal Input for High-Side V Phase
14	VCC(VH)	High-Side Bias Voltage for V Phase IC
15	VB(V)	High-Side Bias Voltage for V Phase IGBT Driving
16	VS(V)	High-Side Bias Voltage Ground for V Phase IGBT Driving
17	IN(WH)	Signal Input for High-Side W Phase
18	VCC(WH)	High-Side Bias Voltage for W Phase IC
19	VB(W)	High-Side Bias Voltage for W Phase IGBT Driving
20	VS(W)	High-Side Bias Voltage Ground for W Phase IGBT Driving
21	NU	Negative DC-Link Input for U Phase
22	NV	Negative DC-Link Input for V Phase
23	NW	Negative DC-Link Input for W Phase
24	U	Output for U Phase
25	V	Output for V Phase
26	W	Output for W Phase
27	Р	Positive DC-Link Input

2.1 Detailed Pin Definition & Notification

- High-Side Bias Voltage Pins for Driving the IGBTs / High-Side Bias Voltage Ground Pins for Driving the IGBTs:
 - Pins: VB(U)-VS(U), VB(V)-VS(V), VB(W)-VS(W)
 - These are drive power supply pins for providing gate drive power to the high-side IGBTs.
 - The virtue of the ability to bootstrap the circuit scheme is that no external power supplies are required for the high-side IGBTs.
 - Each bootstrap capacitor is charged from the V_{CC} supply during ON state of the corresponding low-side IGBT.
 - To prevent malfunctions caused by noise and ripple in the supply voltage, a low-ESR, low-ESL filter capacitor should be mounted very close to these pins.
- Low-Side Bias Voltage Pin / High-Side Bias Voltage Pins:
 - ▶ Pins: VCC(L), VCC(WH), VCC(VH), VCC(UH)
 - These are control supply pins for the built-in ICs.
 - These four pins should be connected externally.
 - To prevent malfunctions caused by noise and ripple in the supply voltage, a low-ESR, low-ESL filter capacitor should be mounted very close to these pins.
- Common Supply Ground Pins
 - ► Pins: COM
 - These are supply ground pins for the built-in ICs.
 - Important! To avoid noise influences, the main power circuit current should not be allowed to blow through this pin.
- High-Side Bias Voltage Pins for Driving the IGBTs / High-Side Bias Voltage Ground Pins for Driving the IGBTs
 - ▶ Pins: VB(U) VS(U), VB(V) VS(V), VB(W) VS(W)
 - These are drive power supply pins fro providing gate drive power to the high-side IGBTs.
 - The virtue of the ability to bootstrap the circuit scheme is that no external power supplies are required for the high-side IGBTs.
 - Each bootstrap capacitor is charged from the VCC supply during the ON-state of the corresponding low-side IGBTs.

In order to prevent malfunctions caused by noise and ripple in supply voltage, a good quality (low ESR, low ESL) filter capacitor should be mount very close to these pins.

- Signal Input Pins
 - Pins: IN(UL), IN(VL), IN(WL), IN(UH), IN(VH), IN(WH)
 - These pins control the operation of the built-in IGBTs.
 - They are activated by voltage input signals. The terminals are internally connected to a Schmitttrigger circuit composed of 5 V-class CMOS.
 - The signal logic of these pins is active HIGH. The IGBT associated with each of these pins is turned ON when a sufficient logic voltage is applied to these pins.
 - The wiring of each input should be as short as possible to protect the Motion SPM[®] 3 module against noise influences.
 - To prevent signal oscillations, an RC coupling as illustrated in *Figure 29* is recommended.
- Fault Out Duration Selection Pin / Analog Temperature Sensing Output Pin
 - ▶ Pin: VTS
 - This indicates the temperature of the V-phase LVIC with analog voltage. LVIC itself creates some power loss, but mainly heat generated from the IGBTs increase the temperature of the LVIC.
 - V_{TS} versus temperature characteristics are illustrated in *Figure 38*
- Short-Circuit and Over-Current Detection Input Pin
 - Pin: CSC
 - The current detecting resistor (shunt resistor) should be connected between low pass filter before the pin CSC and the low-side ground (COM) to detect over-current or short-circuit current.
 (*Figure 21*)
 - The shunt resistor should be selected to meet the detection levels matched for the specific application. An RC filter should be connected to the CSC pin to eliminate noise.

The connection length between the shunt resistor and CSC pin should be minimized.

- Fault Output Pin
 - ► Pin: VFO
 - This is the fault output alarm pin. An active low output is given on this pin for a fault state condition in the SPM® module.
 - The alarm conditions are: Short-Circuit Protection (SCP), and low-side bias Under-Voltage Lockout (UVLO).
 - The VFO output is open drain configured. The VFO signal line should be pulled to the 5 V logic power supply with approximately $4.7 \text{ k}\Omega$ resistance.
- Positive DC-Link Pin
 - Pin: P
 - This is the DC-link positive power supply pin of the inverter.
 - It is internally connected to the collectors of the high-side IGBTs.
 - To suppress surge voltage caused by the DC-link wiring or PCB pattern inductance, connect a smoothing filter capacitor close to this pin (tip: metal film capacitor is typically used).

- Negative DC-Link Pins
 Pins: NU, NV, NW
 - These are the DC-link negative power supply pins (power ground) of the inverter.
 - These pins are connected to the low-side IGBT emitters of the each phase.
 - Inverter Power Output Pins
 - ▶ Pins: U, V, W
 - Inverter output pins for connecting to the inverter load (e.g. motor).

2.2 Absolute Maximum Ratings (TJ=25°C, unless otherwise specified)

Table 3. Inverter (Based on FSBB10CH120D)

Symbol	Parameter	Conditions	Rating	Unit
Vpn	Supply Voltage	Applied between P – NU, NV, NW	900	V
VPN(Surge)	Supply Voltage (Surge)	Applied between P – NU, NV, NW	1000	V
V _{CES}	Collector – Emitter Voltage		1200	V
±lc	Each IGBT Collector Current	Tc=25°C, TJ≤150°C	10	А
±lcp	Each IGBT Collector Current (Peak)	T _c =25°C, T _J \leq 150°C, Under 1 ms Pulse Width	20	А
Pc	Collector Dissipation	T _C =25°C per Chip	69	W
TJ	Operating Junction Temperature ⁽³⁾		-40~150	°C

Note:

3. The maximum junction temperature rating of the power chips integrated within the Motion SPM 3 product is 150°C.

Table 4. Control Part

Symbol	Parameter	Conditions	Rating	Unit
Vcc	Control Supply Voltage	Applied between VCC(H), VCC(H) - COM	20	V
V _{BS}	High-Side Control Bias Voltage	Applied between VB(x), VS(x)	20	V
V _{IN}	Input Signal Voltage	Applied between IN(xH), IN(xL) - COM	-0.3~V _{CC} +0.3	V
Vfo	Fault Output Supply Voltage	Applied between VFO - COM	-0.3~Vcc+0.3	V
I _{FO}	Fault Output Current	Sink Current at VFO Pin	2	mA
Vsc	Current Sensing Input Voltage	Applied between CSC - COM	-0.3~Vcc+0.3	V

Table 5. Total System

Symbol	Parameter	Conditions	Rating	Unit
Vpn(prot)	Self Protection Supply Voltage Limit (Short-Circuit Protection Capability)			V
Tc	Module Case Operation Temperature	See Figure 5	-40~125	°C
Tstg	Storage Temperature		-40~125	°C
VISO	Isolation Voltage	60 Hz, Sinusoidal, 1-Minute, Connect Pins to Heat Sink	2500	V_{rms}

Table 6. Thermal Resistance

Symbol	Parameter	Conditions		Rating	Unit
	Junction-to-Case Thermal Resistance		FSBB10CH120D(F)	1.80	
R _{th(j-c)Q}		Inverter IGBT Part (per 1/6 Module)	FSBB15CH120D(F)	1.50	
			FSBB20CH120D(F)	0.60	
		Inverter FWD Part (per 1/6 Module)	FSBB10CH120D(F)	2.75	°C/W
R _{th(j-c)} F			FSBB15CH120D(F)	1.75	
			FSBB20CH120D(F)	0.90	

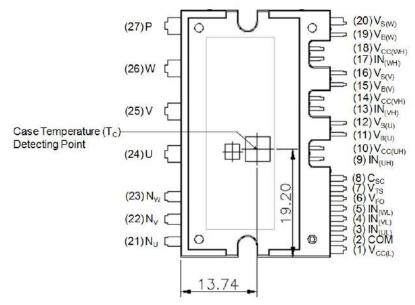


Figure 5. Case Temperature (Tc) Detecting Point

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P - NU, NV, NW	400	600	800	V
Vcc	Control Supply Voltage	Applied between VCC(xH) - COM(H), VCC(L) - COM(L)	13.5	15.0	16.5	V
VBS	High-Side Bias Voltage	Applied between VB(x) - VS(x)	13.0	15.0	18.5	V
dV _{CC} /dt, dV _{BS} /dt	Control Supply Variation		-1		+1	V/µs
t _{dead}	Blanking Time for Preventing Arm-Short	For Each Input Signal	2.0			μs
fрwм	PWM Input Signal	-40°C $\leq T_C \leq 125^{\circ}$ C, - 40°C $\leq T_J \leq 150^{\circ}$ C			20	kHz
Vsen	Voltage for Current Sensing	Applied between NU, NV, NW - COM(H, L) (Including Surge Voltage)	-5		5	V
P _{WIN(ON)}	Minimum Innut Dulos Width(4)	IC \leq 20 A, Wiring Inductance between NU, NV, NW	1.5			
Pwin(off)	Minimum Input Pulse Width ⁽⁴⁾	and DC Link N < 10 nH	1.5			μs
TJ	Junction Temperature		-40		150	°C

Table 7. Recommended Operating Conditions

Note:

4. This product might not make response if the input pulse width is less than the recommended value.

2.3 Electrical Characteristics (TJ=25°C, unless otherwise specified)

 Table 8. Inverter Part (Based on FSBB10CH120D)

Syı	mbol	Parameter	Condit	ions	Min. Typ. Max.		Max.	Unit
Vc	E(SAT)	Collector – Emitter Saturation Voltage	V _{CC} , V _{BS} =15 V, V _{IN} =5 V	Ic=10 A, TJ=25°C		2.2	2.8	V
,	VF	FWDi Forward Voltage	V _{IN} =0 V	I _F =10 A, T _J =25°C		2.2	2.8	V
	ton				0.45	0.85	1.35	
	t _{C(ON)}					0.25	0.60	
HS	toff		Vpn=600 V, Vcc=15 V, Vbs=15 V, Ic=10 A			0.95	1.50	
	tc(OFF)					0.10	0.45	-
	trr	Quuitabia a Tiraaa				0.25		
	ton	Switching Times	Tj=25, Vin=0 V ↔5 V, Ii	nductive Load ⁽⁵⁾		0.75	1.25	μs
	t _{C(ON)}					0.20	0.55	1
LS	toff					0.95	1.50	
	t _{C(OFF)}					0.10	0.45	
	trr					0.20		
ŀ	CES	Collector – Emitter Leakage Current	V _{CE} =V _{CES}				5	mA

Note:

5. ton and toFF include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching times of the IGBT itself under the given gate driving condition internally. *For the detailed information, see Figure 6 and Figure 7.*

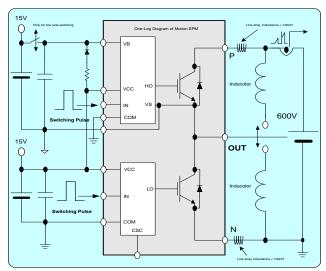


Figure 6. Switching Evaluation Circuit

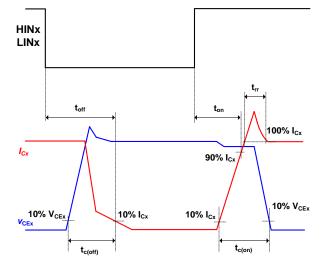


Figure 7. Switching Time Definition

Symbol	Parameter	Condi	tions	Min.	Тур.	Max.	Unit
Ідссн	Quiescent Vcc Supply	VCC(xH)=15 V, IN(xH)=0 V	VCC(xH) - COM(H)			0.15	
IQCCL	Current	VCC(L)=15 V, IN(xL)=0 V	VCC(L) - COM(L)			5.00	mA
Ірссн	Operating High-Side V _{CC} Supply Current	VCC(xH)=15 V, f _{PWM} =20 kHz One PWM Signal Input for H				0.30	mA
IPCCL	Operating Low-Side V _{CC} Supply Current	VCC(L)=15 V, f _{PWM} =20 kHz, Duty=50%, Applied to One PWM Signal Input for Low Side				8.5	mA
I _{QBS}	Quiescent V _{BS} Supply Current	V _{BS} =15 V, IN(xH)=0 V	VB(x) - VS(x)			0.30	mA
IPBS	Operating V _{BS} Supply Current	V _{CC} =V _{BS} =15 V, f _{PWM} =20 kHz, Duty=50%, Applied to One PWM Signal Input for High Side				4.50	mA
VFOH		Vcc=15 V, Vsc=0 V, VFO Circuit: 4.7 kW to 5 V Pull-up		4.5			V
VFOL	Fault Output Voltage	Vcc=15 V, Vsc=1 V, VFO Circ	cuit: 4.7 kW to 5 V Pull-up			0.5	
V _{SC(ref)}	Short-Circuit Trip Level	Vcc=15 V ⁽⁶⁾	CSC - COM(L)	0.43	0.50	0.57	V
UVccd		Detection Level		10.3		12.8	
UVccr	Supply Circuit,	Reset Level		10.8		13.3	v
UV _{BSD}	Under-Voltage Protection	Detection Level		9.5		12.0	
UV _{BSR}		Reset Level		10.0		12.5]
t _{FOD}	Fault-Out Pulse Width			50.0			μS
VIN(ON)	ON Threshold Voltage	Applied between IN(v(1))				2.6	v
VIN(OFF)	OFF Threshold Voltage	Applied between IN(xH) - CC	$Divi(\Pi), IN(XL) - COIVI(L)$	0.8			1 V

Note:

6. Short-circuit current protection is functioning only at the low-sides IGBTs.

3 Package

Since heat dissipation is an important factor limiting the po_{wer} module's current capability, the heat dissipation characteristics of a package are important in determining the performance. A trade-off exists among heat dissipation characteristics, package size, and isolation characteristics. The key to good package technology lies in the optimization package size while maintaining outstanding heat dissipation characteristics without compromising the isolation rating.

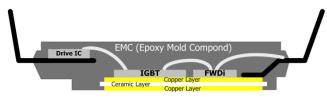


Figure 8. Vertical Structure of SPM 3 Package

In SPM 3 package, technology was developed with DBC substrate that resulted in good heat dissipation characteristics. Power chips are attached directly to the DBC substrate. This technology is applied SPM 3 package, achieving improved reliability and heat dissipation.

Figure 8 show vertical structure of SPM 3 package and *Figure 9* ~ *Figure 12* shows the package outline regarding isolation distance.

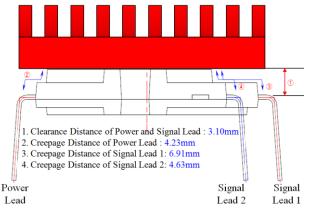


Figure 9. Isolation Distance between Heatsink and Pins

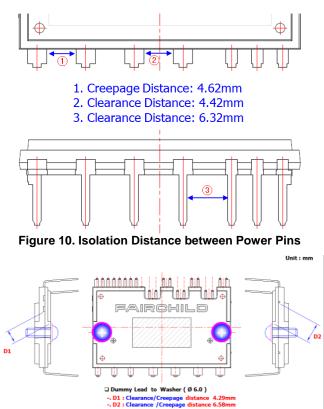


Figure 11. Isolation Distance between Live Dummy Pins and Mounting Screw

Deremeter		anditiona		Value		l Init
Parameter	Parameter Conditions					Unit
Device Flatness	See Figure 13		0		+150	μm
Mounting Torque	Mounting Scrown M2	Recommended 0.7 N·m		0.7	0.8	N∙m
Mounting Torque	Mounting Torque Mounting Screw: M3 Recommen		6.2	7.1	8.1	kg∙cm
Terminal Pulling Strength	Load 19.6 N		10			S
Terminal Bending Strength	Load 9.8 N, 90° Bend		2			Times
Weight				15		g

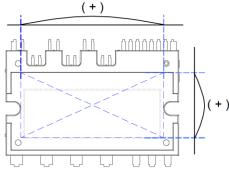


Figure 13. Flatness Measurement Position

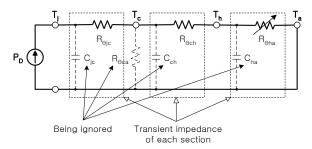



Figure 12. Isolation Distance between Signal Pins and High Potential Pins

3.1 Thermal Impedance

Figure 14. Transient Thermal Equivalent Circuit with a Heatsink

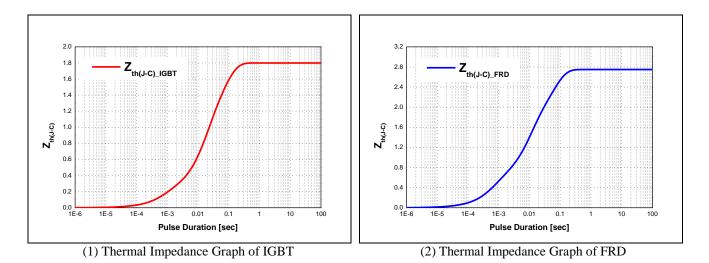
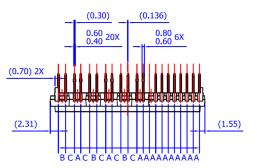
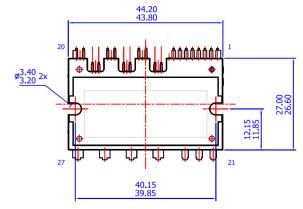
Figure 14 shows the thermal equivalent circuit of a SPM[®] package mounted on a heatsink. For sustained power dissipation P_D at the junction, the junction temperature T_j can be calculated as;

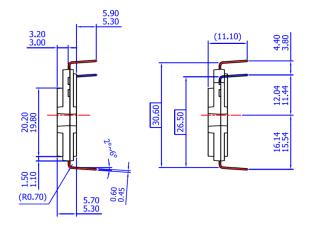
$$T_{j} = P_{D}(R_{\theta jc} + R_{\theta ch} + R_{\theta ha}) + T_{a}$$
(1)

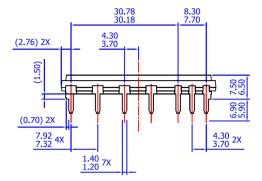
Where T_a is the ambient temperature and $R_{\theta jc}$, $R_{\theta ch}$, and $R_{\theta ha}$ represent the thermal resistance from the junction-tocase, case-to-heat sink, and the heat sink-to-ambient for each IGBT and diode within the SPM packages, respectively. Referencing *Figure 14*, the dotted component of $R_{\theta ca}$ can be ignored due to its large value.

From equation (1), it is evident that for a limited T_{jmax} (150°C). P_D can be increased by reducing $R_{\theta ha}$. This means that a more efficient cooling system will increase the power dissipation capability of SPM packages. An infinite heat sink will result if $R_{\theta ch}$ and $R_{\theta ha}$ are reduced to zero and the case temperature T_c is locked at the fixed ambient temperature T_a .

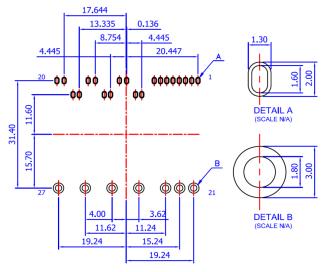
In practical operation, the power loss P_D is cyclic and therfore the transient RC equivalent circuit shown in *Figure 14* should be considered. For pulsed power loss, the thermal capacitance effect delays the rise in junction temperature, and thus permits a heavier loading of the SPM package. *Figure 15* shows thermal impedance curves of FSBB10CH120D. The thermal resistance goes into saturation in about 10 seconds. Other kind of SPM packages also shows similar characteristics.


Figure 15. Thermal Impedance Graphs (FSBB10CH120D)



3.2 Detailed Package Outline Drawings


LEAD PITCH (TOLERANCE : ±0.30) A : 1.778 B : 2.050 C : 2.531

NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD B) ALL DIMENSIONS ARE IN MILLIMETERS C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D) () IS REFERENCE E) [] IS ASS'Y QUALITY F) DRAWING FILENAME: MOD27BCREV2.0 G) FAIRCHILD SEMICONDUCTOR

LAND PATTERN RECOMMENDATIONS

3.3 Marking Information

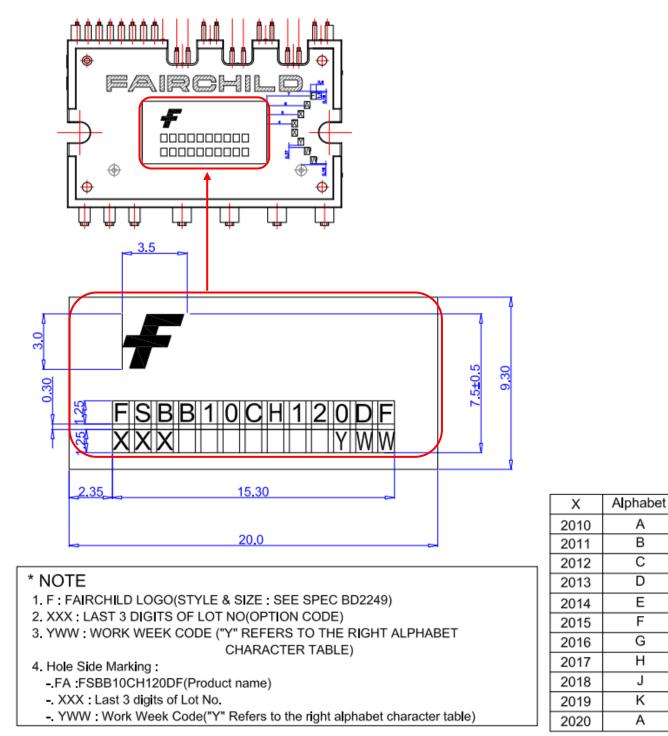


Figure 16. Marking Information

J

4 Operating Sequence for Protections

4.1 Short-Circuit Current Protection (SCP)

Motion SPM[®] 3 module uses a shunt resistor for the short circuit current detection, as shown in *Figure 17*. LVIC has a built-in short-circuit current protection function. This protection function senses the voltage to the CSC pin. If this voltage exceeds the $V_{SC(ref)}$ (the threshold voltage trip level of the short-circuit) specified in the device datasheets ($V_{SC(ref)}$, typ. is 0.5 V), a fault signal is asserted and the all

low side IGBTs are turned off. Typically, the maximum short-circuit current magnitude is gate-voltage dependent: higher gate voltage (V_{CC} & V_{BS}) results in larger short-circuit current. To avoid potential problems, the maximum short-circuit trip level is set below 1.7 times the nominal rated collector current. The LVIC short-circuit current protection-timing chart is shown in *Figure 18*.

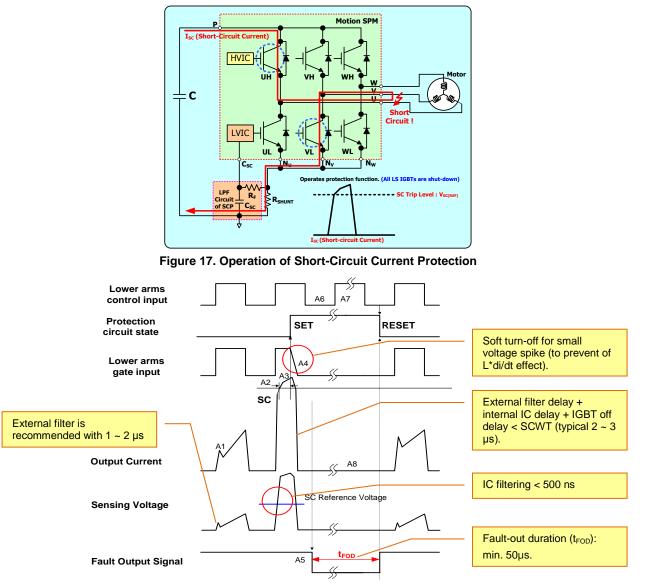


Figure 18. Timing Chart of Short-Circuit Current Protection Function

Notes:

- 7. A1-normal operation: IGBT on and carrying current.
- 8. A2-short-circuit current detection (SC trigger).
- 9. A3-hard IGBT gate interrupt.
- 10. A4-IGBT turns OFF by soft-off function.
- 11. A5-fault output timer operation start with internal delay (typ. 3.0 µs), t_{FOD}=min. 50 µs.
- 12. A6-input "L": IGBT OFF state.
- 13. A7-input "H": IGBT ON state, but during the active period of fault output the IGBT doesn't turn ON.
- 14. A8-IGBT keeps OFF state.

4.2 Under-Voltage Lockout Protection

The LVIC has an under-voltage lockout protection (UVLO) function to protect the low-side IGBTs from operation with insufficient gate driving voltage. A timing chart for this protection is shown in *Figure 19*.

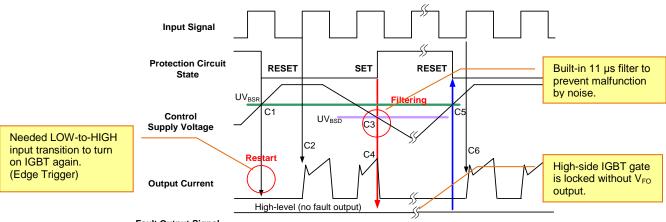


Figure 19. Timing Chart of Low-Side Under-Voltage Protection Function

Notes:

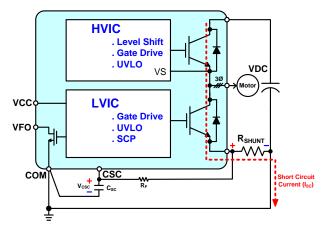
- 15. B1-control supply voltage rise: after the voltage rises UV_{CCR}, the circuits starts to operate when the next input is applied.
- 16. B2-normal operation: IGBT ON and carrying current.
- 17. B3-under-voltage detection (UV $_{CCD}$).
- 18. B4-IGBT OFF in spite of control input is alive.
- 19. B5-fault output signal starts.
- 20. B6-under-voltage reset (UV_{CCR}).
- 21. B7-normal operation: IGBT ON and carrying current. If fault-out duration (tFOD=min.50µs) is longer than UV_{CCR} timing, fault output and IGBT state are cleared after tFOD.

The HVIC has an under-voltage lockout function to protect the high-side IGBT from insufficient gate driving voltage. A timing chart for this protection is shown in *Figure 20*. A fault-out (FO) alarm is not given for low HVIC bias conditions.

Fault Output Signal

Figure 20. Timing Chart of High-Side Under-Voltage Protection Function

Notes:


- 22. C1-control supply voltage rises: after the voltage reaches UV_{BSR}, the circuit starts when the next input is applied.
- 23. C2-normal operation: IGBT ON and carrying current.
- 24. C3-under-voltage detection (UV_{BSD}).
- 25. C4-IGBT OFF in spite of control input is alive, but there is no fault output signal.
- 26. C5-under-voltage reset (UV_{BSR}).
- 27. C6-normal operation: IGBT ON and carrying current.

5 Key Parameter Design Guidance

For stable operation, there are recommended parameters for passive components and bias conditions, considering operating characteristics of Motion SPM[®] 3 module.

5.1 Shunt Resistor Selection at N-Terminal for Current Sensing & Protection

Figure 21 shows a recommended circuitry for over-current & short-circuit protection. The external RC time constant from the N-terminal shunt resistor to CSC must be lower than 2 μ s when over load condition is detected for a stable shutdown.

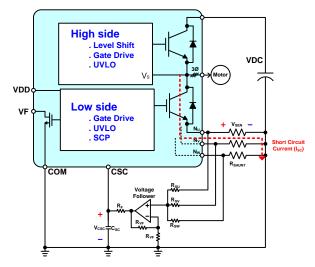


Figure 21. Recommended Circuitry for Over-Current & Short-Circuit Protection

Conditions	Min.	Тур.	Max.	Unit
Specification at TJ=25°C, Vcc=15 V	0.45	0.50	0.55	V

Table 12. Operating Short-Circuit Current Range (R_{SHUNT}=24.4 mΩ (Min.), 25.7 mΩ (Typ.), 27 mΩ (Max.)) (see the equations below)

Conditions	Min.	Тур.	Max.	Unit
Operating SC Level at T _J =25°C	16	19.5	22.5	А

(Table 11 and 12 are based on FSBB15CH120DF)

In case of one shunt, the value of shunt resistor is calculated by the following equations.

Maximum current trip level (depend on user selection):

$$I_{SC(max)} = 1.5 \times I_{C(max)}$$

SC trip reference voltage (depends on datasheet):

 $V_{SC(ref)} = min. \ 0.45V, typ. \ 0.5V, max. \ 0.55V$

Shunt resistance:

 $I_{SC(max)} = V_{SC(max)} / R_{SHUNT(min)} \rightarrow R_{SHUNT(min)} =$

V_{SC(max)} / I_{SC(max)}

If the deviation of the shunt resistor is limited below \pm 5%:

 $R_{SHUNT(typ)} = R_{SHUNT(min)} / 0.95,$

 $R_{SHUNT(max)} = R_{SHUNT(typ)} \times 1.05$

Actual SC trip current level becomes:

 $I_{SC(typ)} = V_{SC(typ)} / R_{SHUNT(typ)}, I_{SC(min)} =$

VSC(min) / RSHUNT(max)

Inverter output power:

$$V_{O,LL} = \frac{\sqrt{3}}{\sqrt{2}} \times MI \times \frac{V_{DC_Link}}{2}$$
$$P_{OUT} = \sqrt{3} \times V_{O,LL} \times I_{RMS} \times PF$$

where:

 $V_{O,LL}$ = Inverter Output Voltage between line to line;

MI = Modulation Index

 $I_{RMS} = Maximum \ load \ current \ of \ inverter; \ and$

PF = *Power Factor*

Average DC current

$$I_{DC_AVG} = (P_{out} \times Eff) / V_{DC_Link}$$

where:

The power rating of shunt resistor is calculated by the following equation:

$$P_{SHUNT} = (I^{2}_{DC_{AVG}} \times R_{SHUNT} \times Margin) / Derating Ratio$$

where:

 R_{SHUNT} =Shunt resistor typical value at T_C =25°C

Derating Ratio=Derating ratio of shunt resistor at T_{SHUNT} =100°C

(From datasheet of shunt resistor); and

Margin = Safety margin (determined by user)

✓ Shunt Resistor Calculation Examples

Calculation Conditions:

- DUT: FSBB15CH120DF
- Tolerance of shunt resistor: ±5%
- SC Trip Reference Voltage:

 $V_{SC(min)} = 0.45 \text{ V}, V_{SC(typ)} = 0.50 \text{ V}, V_{SC(max)} = 0.55 \text{ V}$

- Maximum Load Current of Inverter (I_{RMS}): 7.5 A_{rms}
- Maximum Peak Load Current of Inverter (I_{C(max)}): 10 A
- Modulation Index(MI) : 0.9
- DC Link Voltage(V_{DC_Link}): 600 V
- Power Factor(PF): 0.8
- Inverter Efficiency(Eff): 0.95
- Shunt Resistor Value at $T_C = 25^{\circ}C$ (R_{SHUNT}): 25.7 m Ω
- Derating Ratio of Shunt Resistor at T_{SHUNT}=100°C: 70%
- Safety Margin: 20%

Calculation Results:

- $I_{SC(max)}$: 1.5 × $I_{C(max)}$ = 1.5 x 15 A = 22.5 A
- $R_{SHUNT(min)}$: $V_{SC(max)} / I_{SC(max)} = 0.55 \text{ V} / 22.5 \text{ A} = 24.4 \text{ m}\Omega$
- $R_{SHUNT(typ)}$: $R_{SHUNT(min)} / 0.95 = 24.4 \text{ m}\Omega / 0.95 = 25.7 \text{ m}\Omega$
- $R_{SHUNT(max)}$: $R_{SHUNT(typ)} \ge 1.05 = 25.7 \text{ m}\Omega \ge 1.05 = 27 \text{ m}\Omega$
- $I_{SC(min)}$: $V_{SC(min)}$ / $R_{SHUNT(max)}$ = 0.45 V / 27 m Ω = 16.6 A
- $I_{SC(typ)}$: $V_{SC(typ)} / R_{SHUNT(typ)} = 0.5 \text{ V} / 25.7 \text{ m}\Omega = 19.5 \text{ A}$
- $V_{O,LL} = \frac{\sqrt{3}}{\sqrt{2}} \times MI \times \frac{V_{DC_Link}}{2} = \frac{\sqrt{3}}{\sqrt{2}} \times 0.9 \times 300 = 330.7 \text{ V}$
- $P_{OUT} = \sqrt{3} \times V_{O.LL} \times I_{RMS} \times PF = 3437 W$
- $I_{DC_AVG} = (P_{OUT}/Eff) / V_{DC_Link} = 6.03 \text{ A}$
- $P_{SHUNT} = (I^2_{DC_AVG} \times R_{SHUNT} \times Margin) / Derating Ratio$ = $(6.03^2 \times 0.0257 \times 1.2) / 0.7 = 1.6 W$ (Therefore,

the proper power rating of shunt resistor is over 2 W)

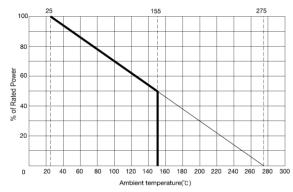


Figure 22. Derating Curve Example of Shunt Resistor (from RARA Elec.)

5.2 Time Constant of Internal Delay

Figure 23 is timing diagram of 1200V Motion SPM 3 module for Short-Circuit Protection (SCP) circuit operation. An RC filter is prevents noise-related SCP circuit malfunction. The RC time constant is determined by the applied noise time and the Short-Circuit Withstanding Time (SCWT) of Motion SPM 3 module. When the V_{CSC} voltage exceeds the SCP level, this is applied to the CSC pin via the RC filter. The RC filter delay (T1) is the time required for the CSC pin voltage to rise to the referenced SCP level. The LVIC has an internal filter time (logic filter time for noise elimination: T2). Consider this filter time when designing the RC filter of V_{CSC}.

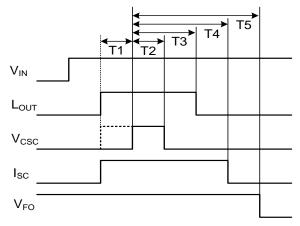


Figure 23. Timing Diagram

Notes:

- 28. VIN: Voltage of input signal.
- 29. LOUT: VGE of low-side IGBT.
- 30. V_{CSC}: Voltage of CSC pin.
- 31. I_{SC}: Short-circuit current.
- 32. VFO: Voltage of VFO pin.
- 33. T1: filtering time of RC filter of Vcsc.
- 34. T2: filtering time of CSC. If V_{CSC} width is less than T2, SCP does not operate.
- 35. T3: delay from CSC triggering to gate-voltage down.
- 36. T4: delay from CSC triggering to short-circuit current.
- 37. T5: delay from CSC triggering to fault-out signal.

Device Under Test	Typ. at Tյ=25°C	Typ. at Tյ=150°C	Max. at Tյ=25°C
	T2=0.25 µs	T2=0.09 µs	Considering
FSBB10CH120D	T3=0.62 µs	T3=0.57 µs	±20%
FSBB10CH120DF	T4=3 μs	T4=3.3 µs	Dispersion,
	T5=4.1 μs	T5=4.25 µs	T4=3.6 μs

Table 13. Time Table on Short-Circuit Conditions: V_{CSC} to $L_{OUT},\,I_{SC},\,V_{FO}$

Note:

 To guarantee safe short-circuit protection under all operating conditions, C_{SC} should be triggered within 1.0 μs after short-circuit occurs. (Recommendation: SCWT < 5.0 μs, Conditions: V_{DC}=800 V, V_{CC}=16.5 V, T_J=150°C).

It is recommended that delay from short-circuit to CSC triggering should be minimized

5.3 Soft Turn-Off

An LVIC soft turn-off function protects the low side IGBTs from over voltage of V_{PN} (supply voltage) by "short-circuit hard off," which is when IGBTs are turned off by short input signal before the SCP function under short-circuit condition. In this case, V_{PN} rapidly rises by fast and big di/dt of I_{SC} (short-circuit current). This kind of rapid rise of V_{PN} can cause destruction of IGBT by overvoltage. Therefore, soft-off function prevents IGBT rapid turning off by slow discharging of V_{GE} (gate-to-emitter voltage of IGBT).

An internal block diagram of LVIC and operation sequence of soft turn-off function is shown in *Figure 24* and *Figure 25*. This function operates by two internal protection functions (UVLO and SCP). When the IGBT is turned off in normal conditions, LVIC turns off the IGBT immediately by turn-off gate signal (IN(xL)) via gate driver block. Pre-driver turn-on output buffer of gate driver block, path ①. When the IGBT is turned off by a protection function, the gate driver is disabled by the protection function signal via output of protection circuit (disable output buffer, high-Z) and output of the protection circuit turn-on switch of the soft-off function. V_{GE} (IGBT gate-emitter voltage) is discharged slowly via circuit of soft-off (path (2)).

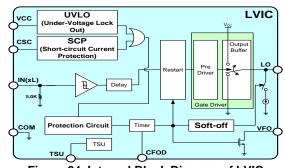
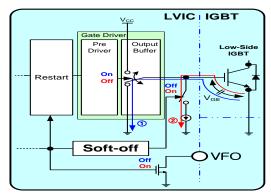
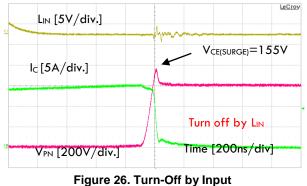


Figure 24. Internal Block Diagram of LVIC

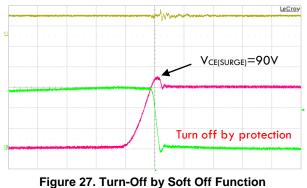
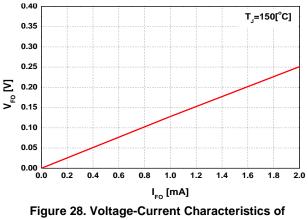


Figure 25. Operating Sequence of Soft Turn-Off

Figure 26 and *Figure 27* show normal turn-off switching operations performed satisfactorily at a V_{DC}=800 V with the surge voltage between the P and N pins (V_{PN(Surge)}) limited to under 1000 V. The difference between the hard and soft turn-off switching operation is also shown in *Figure 26* and *Figure 27*. The hard turn-off of the IGBT creates a large overshoot (155 V). The DC-link capacitor supply voltage should be limited to 800 V to safely protect the 1200 V Motion SPM 3. A hard turn-off, with a duration of less than 2 µs, may occur in the case of a short-circuit fault. For a normal short-circuit fault, the protection circuit becomes active and the IGBT is turned off softly to prevent excessive overshoot voltage. An overshoot voltage of <100 V occurs in this condition.

(FSBB10CH120D, Ref. Condition: V_{DC} =800 V, T_J=25°C)

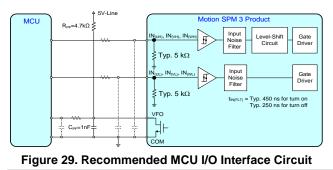
5.4 Fault Output Circuit


Table 14. Fault-Output Maximum Ratings

Symbol	ltem	Condition	Rating	Unit
Vfo	Fault Output Supply Voltage	Applied between V _{FO} -COM	-0.3 ~ Vcc+0.3	V
IFO	Fault Output Current	Sink Current at VFO Pin	2	mA

Table 15. Electric Characteristics

Symbol	ltem	Conditions	Min.	Max.	Unit
Vғон	Fault Output	$\begin{array}{c} V_{CC} = 15 \text{ V},\\ V_{SC} = 0, V_{FO}\\ \text{Circuit: 4.7 k}\Omega \text{ to}\\ 5 \text{ V Pull-Up} \end{array}$	4.5		V
Vfol	Supply Voltage	$\begin{array}{c} V_{CC} = 15 \text{ V}, \\ V_{SC} = 1 \text{ V}, V_{FO} \\ \text{Circuit: } 4.7 \text{k}\Omega \text{ to} \\ 5 \text{ V Pull-Up} \end{array}$		0.5	V


Because V_{FO} terminal is an open-drain type; it should be pulled up via a pull-up resistor. The resistor must satisfy the above specifications.

V_{FO} Terminal

5.5 Circuit of Input Signal (IN(xH), IN(xL))

Figure 29 shows the I/O interface circuit between the MCU and Motion SPM 3 product. Because the Motion SPM 3 product input logic is active HIGH and there are built-in pull-down resistors, external pull-down resistors are not needed.

The input and fault output maximum rated voltages are shown in *Table 16*. Since the fault output is open drain, its rating is VCC+0.3 V, 15 V supply interface is possible. However, it is recommended that the fault output be configured with the 5 V logic supplies, which is the same as the input signals. It is also recommended that the decoupling capacitors be placed at both the MCU and Motion SPM 3 product ends of the V_{FO} signal line, as close as possible to each device. The RC coupling at each input (parts shown dotted in *Figure 29*) can be changed depending on the PWM control scheme used in the application and the wiring impedance of the PCB layout.

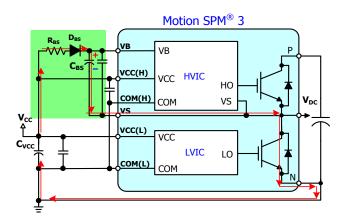
The input signal section of the 1200 V Motion SPM 3 module integrates a 5 k Ω (typical) pull-down resistor. Therefore, when using an external filtering resistor between the MCU output and the Motion SPM 3 series input, attention should be given to the signal voltage drop at the SPM 3 module input terminals to satisfy the turn-on threshold voltage requirement. For instance, R = 100 Ω and C = 1 nF for the parts shown dotted in *Figure 29*.

Table 16. Maximum Ratings of Input and VFO Pins

Symbol	ltem	Condition	Rating	Unit
Vin	Input Signal Voltage	Applied between IN _(xH) , IN _(xL) - COM(x)	-0.3 ~ Vcc +0.3	V
VFO	Fault Output Supply Voltage	Applied between VFO-COM(L)	-0.3 ~ Vcc +0.3	V

Table 17. Input Threshold Voltage Ratings (V_{cc}=15 V, T_J=25°C)

Symbol	ltem	Condition	Min.	Max.	Unit
Vin(on)	Turn-On Threshold Voltage	IN _(UH) , IN _(VH) , IN _(WH) - COM(H)		2.6	V
Vin(off)	Turn-Off Threshold Voltage	IN _(UL) , IN _(VL) , IN _(WL) - COM(L)	0.8		V


5.6 Bootstrap Circuit Design

5.6.1 Operation of Bootstrap Circuit

The V_{BS} voltage, which is the voltage difference between V_B (U, V, W) and V_S (U, V, W), provides the supply to the HVIC within the Motion SPM 3 series. This supply must be in the range of 13.0 V~18.5 V to ensure that the HVIC can fully drive the high-side IGBT. The under-voltage lockout protection for V_{BS} ensures that the HVIC does not drive the high-side IGBT if the V_{BS} voltage drops below a specific voltage (*refer to the datasheet*). This function prevents the IGBT from operating in a high-dissipation mode.

There are a number of ways in which the V_{BS} floating supply can be generated. One of them is the bootstrap

method described here (refer to *Figure 30*). This method has the advantage of being simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. The bootstrap supply is formed by a combination of a bootstrap diode, resistor, and the current flow path of the bootstrap circuit is shown in *Figure 30*. When V_S is pulled down to ground (low-side IGBT turn-on or low-side FRD freewheeling), the bootstrap capacitor (C_{BS}) is charged through the bootstrap diode (D_{BS}) and the resistor (R_{BS}) from the V_{DD} supply.

Figure 30. Current Path of Bootstrap Circuit for the Supply Voltage (V_{BS}) of a HVIC when Low-Side IGBT Turns On

5.6.2 Selection of Bootstrap Capacitor Considering Initial Charging

Adequate on-time of the low-side IGBT to fully charge the bootstrap capacitor is required for initial bootstrap charging. The initial charging time (t_{charge}) can be calculated by:

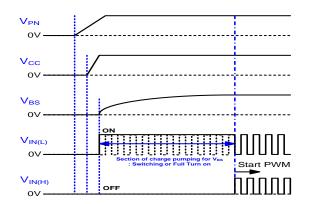
$$t_{charge} = C_{BS} \times R_{BS} \times \frac{1}{\delta} \times \ln \frac{V_{CC}}{V_{CC} - V_{BS(min)} - V_F - V_{LS}}$$
(2)

where:

 V_F = Forward voltage drop across the bootstrap diode;

 $V_{BS(min)}$ = The minimum value of the bootstrap voltage;

 C_{BS} = Value of the bootstrap capacitor;


 V_{LS} = Voltage drop across the low-side IGBT or load; and

 δ = Duty ratio of PWM (0 ~ 1).

When the bootstrap capacitor is charged initially; V_{CC} drop voltage is generated based on initial charging method, V_{CC} line SMPS output current, V_{CC} source capacitance, and bootstrap capacitance. If V_{CC} drop voltage reaches UV_{CCD} level, the low side is shut down and a fault signal is activated. To avoid this malfunction, related parameter and initial charging method should be considered. To reduce V_{CC} voltage drop at initial charging, a large V_{CC} source

capacitor and selection of optimized low-side turn-on method are recommended. Adequate on-time duration of the low-side IGBT to fully charge the bootstrap capacitor is initially required before normal operation of PWM starts.

Figure 31 shows an example of initial bootstrap charging sequence. Once V_{CC} establishes, V_{BS} needs to be charged by turning on the low-side IGBTs. PWM signals are typically generated by an interrupt triggered by a timer with a fixed interval, based on the switching carrier frequency. Therefore, it is desired to maintain this structure without creating complementary high-side PWM signals. The capacitance of V_{CC} should be sufficient to supply necessary charge to V_{BS} capacitance in all three phases. If a normal PWM operation starts before V_{BS} reaches V_{UVLO} reset level, the high-side IGBTs cannot switch without creating a fault signal. It may lead to a failure of motor start in some applications. If three phases are charged synchronously, initial charging current through a single shunt resistor may exceed the over-current protection level. Therefore, initial charging time for bootstrap capacitors should be separated, as shown in Figure 32. The effect of the bootstrap capacitance factor and charging method (lowside IGBT driving method) is shown in Figure 33.

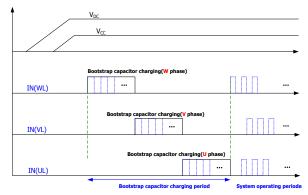


Figure 32. Recommended Initial Bootstrap Capacitors Charging Sequence



Figure 33.Initial Charging According to Bootstrap Capacitance and Charging Method (Ref. Condition: V_{cc}=15 V/300 mA, V_{cc} Capacitor=220 μ F, Bootstrap Capacitor=100 μ F, R_{BS}=20 Ω)

5.6.3 Selection of Bootstrap Capacitor Considering Operating

The bootstrap capacitance can be calculated by:

$$C_{BS} = \frac{I_{leak} \times \Delta t}{\Delta V_{BS}}$$
(3)

where:

 $\label{eq:linear} \begin{array}{l} \Delta t: \mbox{ maximum on pulse width of high-side IGBT;} \\ \Delta V_{BS}: \mbox{ the allowable discharge voltage of the } C_{BS} \\ \mbox{ (voltage ripple); and} \end{array}$

 I_{Leak} : maximum discharge current of the C_{BS} .

Mainly via the following mechanisms:

- Gate charge for turning the high-side IGBT on
- Quiescent current to the high-side circuit in HVIC
- Level-shift charge required by level-shifters in HVIC
- Leakage current in the bootstrap diode
- C_{BS} capacitor leakage current (ignored for nonelectrolytic capacitors)
- Bootstrap diode reverse recovery charge

Practically, 4.5 mA of I_{Leak} is recommended for the Motion SPM 3 products.(Refer to I_{PBS} value in datasheet) By considering dispersion and reliability, the capacitance is generally selected to be 2~3 times the calculated one. The C_{BS} is only charged when the high-side IGBT is off and the $V_{S(x)}$ voltage is pulled down to ground.

The on-time of the low-side IGBT must be sufficient to for the charge drawn from the C_{BS} capacitor to be fully replenished. This creates an inherent minimum on-time of the low-side IGBT (or off-time of the high-side IGBT).

Calculation Examples of Bootstrap Capacitance A

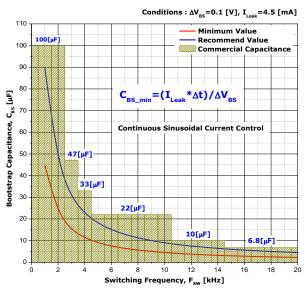


Figure 34. Capacitance of Bootstrap Capacitor on Variation of Switching Frequency

Based on switching frequency and recommended ΔV_{BS}

- ILeak: circuit current = 4.5 mA (recommended value)
- ∆V_{BS}: discharged voltage = 0.1 V (recommended value)
- Δt: maximum on pulse width of high-side IGBT = 0.2 ms (depends on application)

$$C_{BS_min} = \frac{I_{leak} \times \Delta t}{\Delta V_{BS}} = \frac{4.5 \text{mA} \times 0.2 \text{ms}}{0.1 \text{V}} = 9.0 \times 10^{-6}$$

 \Rightarrow More than 2 times (4)
 $\Rightarrow 18 \text{ uF} (22 \text{ uF STD value})$

Note:

39. The capacitance value can be changed according to the switching frequency, the capacitor selected, and the recommended V_{BS} voltage of 13.0~18.5 V (from datasheet). The above result is just a calculation example. This value can be changed according to the actual control method and lifetime of the component.

Calculation Examples of Bootstrap Capacitance B

Based on operating conditions, UV_{BS} function, and allowable recommended $V_{B(x)}\mbox{-}V_{S(x)}$

To avoid unexpected under-voltage protection and to keep V_{BS} within recommended value, bootstrap capacitance should be selected based on the operating conditions. Bootstrap voltage ripple is influenced by bootstrap resistor, load condition, output frequency, and switching frequency. Check the bootstrap voltage under the maximum load condition in the system. *Figure 35* shows example of $V_{B(x)}$ - $V_{S(x)}$ ripple voltage during operation.

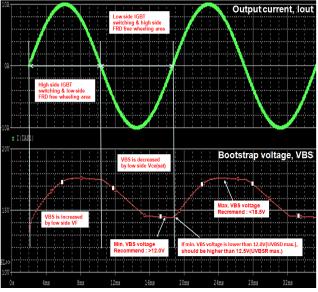


Figure 35. Recommendation of Bootstrap Ripple Voltage during Operation

5.6.4 Selection of Bootstrap Diode

When high side IGBT or diode conducts, the bootstrap diode (D_{BS}) supports the entire bus voltage. A withstand voltage higher than 1200 V is recommended. It is important that the diode should be a fast recovery (recovery time < 100 ns) device to minimize the amount of charge that is fed back from the bootstrap capacitor into the V_{CC} supply. Similarly, the high voltage reverse leakage current is important if the capacitor has to store a charge for long periods of time. Recommended diodes are as below.

- STM: STTH112(DO-41), STTH112U(SMB)
- Vishay: EGF1T(DO-214BA), SF1200(SOD-57)

5.6.5 Selection of Bootstrap Resistor

A resistor R_{BS} must be added in series with the bootstrap diode to slow down the dV_{BS}/dt and to limit inrush current at initial C_{BS} charging. It also determines the time to charge the bootstrap capacitor. That is, if the minimum ON pulse width of low-side IGBT or the minimum OFF pulse width of high-side IGBT is t₀, the bootstrap capacitor has to be charged ΔV during this period. Therefore, the value of bootstrap resistance can be calculated by the following equation.

$$R_{BS} = \frac{(V_{DD} - V_{BS}) \times t_O}{C_{BS} \times \Delta V_{BS}}$$
(5)

For the selection of R_{BS} , pulse power rating should be considered for initial charging of bootstrap capacitor. To use a large bootstrap capacitor, high pulse power rating is required for the bootstrap resistor. An example of resistor pulse power rating is shown in *Figure 36*.

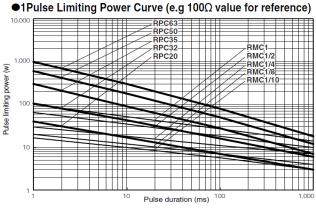


Figure 36. Example of Pulse Power Curve of Resistor (from KAMAYA OHM)

5.7 Thermal Sensing Unit (TSU)

The junction temperature of power devices should not exceed the maximum junction temperature. Even though there is some margin between the T_{jmax} specified on the datasheet and the T_{jmax} at which power devices are destroyed, attention should be paid to ensure the junction temperature stays well below the T_{jmax} . An NTC had to be mounted on the heat sink or very close to the module if over-temperature protection was required in the application.

5.7.1 Basic Concept

Thermal Sensing Unit (TSU) uses the technology based on the temperature dependency of transistor V_{BE} ; V_{BE} decrease 2 mV as temperature increase 1°C.

The TSU has analog voltage output reflects the temperature of the LVIC. The relationship between V_{TS} voltage output and LVIC temperature is shown in *Figure 38* and *Table 18* shows the raw data. Also, the TSU have 2 kind of temperature profile, one is $0 \sim 150^{\circ}$ C, another is $-25 \sim 125^{\circ}$ C. It does not have any self-protection function, and, therefore, it should be used appropriately based on application requirement. It should be noted that there is a time lag from IGBT temperature to LVIC temperature. So it is very difficult to respond quickly when temperature rises sharply in a transient condition such as shoot-through event. Even though TSU has some limitation, it will be definitely useful in enhancing the system reliability.

Figure 37 shows the LVIC location of FSBB10CH120DF.

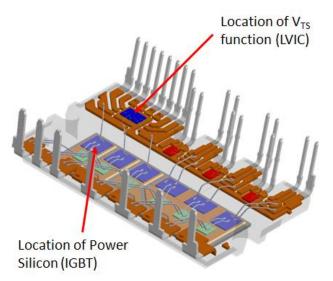
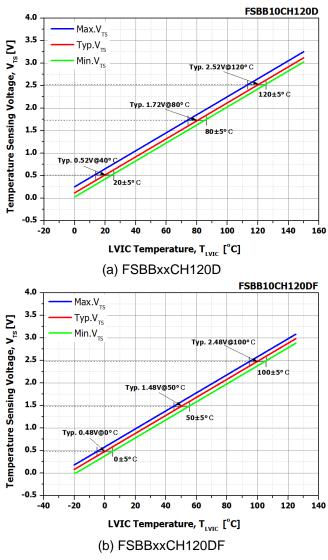
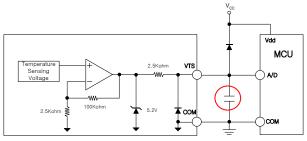
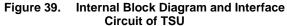
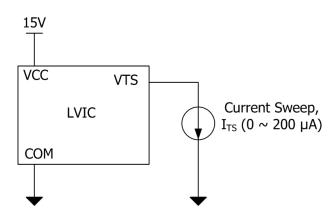


Figure 37. Location of VTS Function (LVIC)

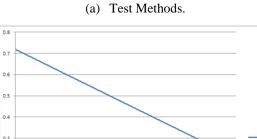

Figure 38. LVIC Temperature vs. V_{TS} Graph

Figure 39 shows the equivalent circuit diagram of TSU inside IC and a typical application diagram. This output voltage is clamped to 5.2 V by an internal Zener diode, but in case the maximum input range of Analog to Digital converter of MCU is below 5.2 V, an external Zener diode should be inserted between an A/D input pin and the analog ground pin of MCU. An amplifier can be used to change the range of voltage input to the Analog to Digital converter to have better resolution of the temperature. It is recommended to add a ceramic capacitor of 1000 pF between V_{TS} and Com (Ground) to make the V_{TS} more stable.

Vts[V]

0.2

0

Figure 40 shows the sourcing capability of V_{TS} pin at 25°C and the test method. V_{TS} voltage decreases as the sourcing current increases. Therefore, the load connected to V_{TS} pin should be minimized to maintain the accurate voltage output level without degradation. The relationship between V_{TS} voltage and LVIC temperature can be expressed as the following equations.

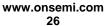
[FSBB10CH120D]

VTS,min = 0.02*TLVIC + 0.140 - 0.100 [V]	(6)
--	-----

$$VTS, typ = 0.02*TLVIC + 0.140 [V]$$
(7)

$$VTS,max = 0.02*TLVIC + 0.140 + 0.100 [V]$$
(8)

[FSBBxxCH120DF]


$$V_{\rm TS,min} = 0.02 * T_{\rm LVIC} + 0.480 - 0.100 \, [V]$$
⁽⁹⁾

$$V_{\text{TS,typ}} = 0.02^* T_{\text{LVIC}} + 0.480 \text{ [V]}$$
(10)

$$V_{\rm TS,max} = 0.02^* T_{\rm LVIC} + 0.480 + 0.100 \, [V] \tag{11}$$

The maximum variation of V_{TS} is ± 0.1 V due to process variation which is equivalent $\pm 5^{\circ}$ C approximately. This is regardless of the temperature because the slopes of three lines are identical. If the ambient temperature information is available, for example, through NTC in the system, V_{TS} can be measured to adjust the offset before the motor starts to operate.

As temperature decrease further below 0°C (-25°C), V_{TS} decreases linearly until it reaches zero volts. If the temperature of LVIC increases above 150°C (125°C), which is above the maximum operating temperature, V_{TS} would increase theoretically up to 5.2 V until it gets clamped by the internal Zener diode.

Vts at 25°C

200

(b) Test Result Figure 40. Load Variation of V_{TS}

Its[uA]

Table 18. (a) V_{TS} Table of FSBB10CH120D

1 0.060 0.160 0.260 39 0.820 0.920 1.020 77 1.580 1.680 1.780 115 2.340 2.440 2 0.080 0.180 0.280 40 0.840 0.940 1.040 78 1.620 1.700 1.800 116 2.360 2.440 3 0.100 0.200 0.300 41 0.860 0.980 1.680 1.720 1.820 117 2.380 2.440 4 0.120 0.220 0.320 42 0.880 1.800 1.740 1.800 118 2.400 2.500 5 0.140 0.240 0.380 44 0.920 1.20 82 1.801 1.80 1.80 1.80 1.80 1.80 1.80 1.22 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400<			- 13 - 4		3001											
1 0.060 0.160 0.260 39 0.820 0.920 1.020 77 1.580 1.680 1.780 115 2.340 2.440 2 0.080 0.180 0.280 40 0.840 0.940 1.040 78 1.620 1.720 1.820 117 2.380 2.440 3 0.100 0.220 0.320 42 0.880 0.980 1.680 1.740 1.840 118 2.400 2.500 5 0.140 0.240 0.340 43 0.900 1.000 1.120 82 1.880 1.780 1.880 119 2.420 2.520 6 0.160 0.280 0.380 44 0.920 1.020 1.120 82 1.880 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1	T [℃]				T [℃]				T [℃]				T [℃]		Тур [V]	Max [V]
2 0.080 0.180 0.280 40 0.840 0.940 1.040 78 1.600 1.700 1.800 116 2.360 2.460 3 0.100 0.200 0.300 41 0.860 0.960 1.060 79 1.620 1.720 1.820 117 2.380 2.480 4 0.120 0.220 0.320 42 0.880 1.980 1.080 1.760 1.840 118 2.400 2.520 6 0.160 0.260 0.380 44 0.920 1.020 1.120 82 1.860 1.900 121 2.460 2.540 7 0.180 0.280 0.380 45 0.940 1.020 1.180 83 1.700 1.800 1.900 121 2.460 2.560 8 0.200 0.300 0.440 48 1.000 1.180 1.80 1.900 122 2.620 2.600 2.600 2.600 2.600	0	0.040	0.140	0.240	38	0.800	0.900	1.000	76	1.560	1.660	1.760	114	2.320	2.420	2.520
3 0.100 0.200 0.300 41 0.860 0.960 1.060 79 1.620 1.720 1.820 117 2.380 2.480 4 0.120 0.220 0.320 42 0.880 0.980 1.080 80 1.640 1.740 1.840 118 2.400 2.500 5 0.140 0.240 0.340 43 0.900 1.100 81 1.660 1.760 1.860 120 2.440 2.560 6 0.160 0.260 0.360 44 0.920 1.020 1.120 82 1.860 1.900 1.22 2.660 8 0.200 0.300 0.400 44 1.000 1.100 85 1.740 1.880 1.900 1.22 2.640 11 0.260 0.360 0.460 49 1.020 1.120 1.220 87 1.780 1.880 1.900 2.600 2.600 2.600 2.600 2.600	1	0.060	0.160	0.260	39	0.820	0.920	1.020	77	1.580	1.680	1.780	115	2.340	2.440	2.540
4 0.120 0.220 0.320 42 0.880 0.980 1.080 80 1.640 1.740 1.840 118 2.400 2.500 5 0.140 0.220 0.360 44 0.920 1.020 1.120 82 1.680 1.780 1.880 120 2.440 2.540 7 0.180 0.280 0.380 45 0.940 1.040 1.140 83 1.700 1.800 1.900 121 2.460 2.580 9 0.220 0.320 0.400 46 0.960 1.060 1.160 84 1.720 1.820 1.920 122 2.480 2.580 9 0.220 0.320 0.440 48 1.000 1.100 1.200 86 1.760 1.860 1.960 1.24 2.520 2.600 11 0.260 0.360 0.440 0.540 1.040 1.140 1.240 88 1.800 1.900 2.000	2	0.080	0.180	0.280	40	0.840	0.940	1.040	78	1.600	1.700	1.800	116	2.360	2.460	2.560
5 0.140 0.240 0.340 43 0.900 1.000 1.100 81 1.860 1.760 1.860 1.19 2.420 2.520 6 0.160 0.220 0.360 44 0.920 1.020 1.120 82 1.680 1.780 1.880 1.20 2.440 2.540 7 0.180 0.220 0.320 0.400 46 0.960 1.160 84 1.700 1.800 1.900 122 2.480 2.560 9 0.220 0.320 0.400 46 0.960 1.180 85 1.740 1.840 1.940 123 2.500 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.700 1.780 1.880 1.900 2.001 122 2.640 2.600 2.700 127 2.580 2.640 2.700 127 2.580	3	0.100	0.200	0.300	41	0.860	0.960	1.060	79	1.620	1.720	1.820	117	2.380	2.480	2.580
60.1600.2600.360440.9201.0201.120821.6801.7801.8801202.4402.54070.1800.2800.380450.9401.0401.140831.7001.8001.9001212.4602.56080.2000.3000.400460.9601.6601.160841.7201.8201.9201222.4802.58090.2200.3200.420470.9801.0801.180851.7401.8401.9401222.5002.600100.2400.3400.440481.0001.1001.200861.7601.8601.9601222.5402.640120.2800.3800.480501.0401.1401.240881.8001.9002.0001262.5602.660130.3000.4000.500511.0601.1601.260891.8201.9202.0201272.5802.660140.3200.4200.520521.0801.1801.280901.8401.9402.0401282.6002.700150.3400.4400.540531.1001.2001.300911.8601.9602.0601302.6402.740170.3800.4800.580551.1401.2401.340931.9002.0002.10013	4	0.120	0.220	0.320	42	0.880	0.980	1.080	80	1.640	1.740	1.840	118	2.400	2.500	2.600
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.140	0.240	0.340	43	0.900	1.000	1.100	81	1.660	1.760	1.860	119	2.420	2.520	2.620
8 0.200 0.300 0.400 46 0.900 1.160 84 1.720 1.820 1.920 122 2.480 2.580 9 0.220 0.320 0.420 47 0.980 1.080 1.180 85 1.740 1.840 1.940 123 2.500 2.600 10 0.240 0.340 0.440 48 1.000 1.100 1.200 86 1.760 1.860 1.960 124 2.520 2.600 11 0.260 0.360 0.460 49 1.020 1.120 1.220 87 1.760 1.880 1.980 122 2.520 2.660 13 0.300 0.400 0.500 51 1.060 1.160 1.280 90 1.840 1.940 2.040 128 2.660 2.760 15 0.340 0.440 0.550 54 1.120 1.220 1.320 92 1.880 1.940 2.040 1.131	6	0.160	0.260	0.360	44	0.920	1.020	1.120	82	1.680	1.780	1.880	120	2.440	2.540	2.640
9 0.220 0.320 0.420 47 0.980 1.080 1.180 85 1.740 1.840 1.940 123 2.500 2.600 10 0.240 0.340 0.440 48 1.000 1.100 1.200 86 1.760 1.860 1.960 124 2.520 2.620 11 0.260 0.360 0.460 49 1.020 1.120 1.220 87 1.780 1.880 1.980 125 2.540 2.660 13 0.300 0.400 0.500 51 1.060 1.160 1.260 89 1.820 1.902 2.020 127 2.580 2.660 14 0.320 0.420 0.520 52 1.080 1.320 90 1.840 1.940 2.040 128 2.600 2.700 15 0.340 0.440 0.560 55 1.140 1.240 1.340 93 1.900 2.000 2.101 131	7	0.180	0.280	0.380	45	0.940	1.040	1.140	83	1.700	1.800	1.900	121	2.460	2.560	2.660
10 0.240 0.340 0.440 48 1.000 1.100 1.200 86 1.760 1.860 1.960 124 2.520 2.620 11 0.260 0.360 0.460 49 1.020 1.120 1.220 87 1.780 1.880 1.980 125 2.540 2.640 12 0.280 0.380 0.480 50 1.040 1.140 1.240 88 1.800 1.900 2.000 126 2.560 2.660 13 0.300 0.400 0.500 51 1.060 1.180 1.280 90 1.840 1.940 2.040 122 2.560 2.700 15 0.340 0.440 0.540 53 1.100 1.220 1.320 92 1.880 1.980 2.080 123 2.660 2.770 16 0.400 0.560 56 1.140 1.240 1.340 93 1.900 2.000 2.100 1.32	8	0.200	0.300	0.400	46	0.960	1.060	1.160	84	1.720	1.820	1.920	122	2.480	2.580	2.680
11 0.260 0.360 0.460 49 1.020 1.120 1.220 87 1.780 1.880 1.980 125 2.540 2.640 12 0.280 0.380 0.480 50 1.040 1.140 1.240 88 1.800 1.900 2.000 126 2.560 2.660 13 0.300 0.400 0.500 51 1.060 1.160 1.260 89 1.820 1.920 2.020 127 2.580 2.680 14 0.320 0.420 0.520 52 1.080 1.180 1.280 90 1.840 1.940 2.040 128 2.600 2.700 15 0.340 0.440 0.560 54 1.120 1.220 1.320 92 1.880 1.980 2.060 1.30 2.740 17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 1.332	9	0.220	0.320	0.420	47	0.980	1.080	1.180	85	1.740	1.840	1.940	123	2.500	2.600	2.700
12 0.280 0.380 0.480 50 1.040 1.140 1.240 88 1.800 1.900 2.000 126 2.560 2.660 13 0.300 0.400 0.500 51 1.060 1.160 1.260 89 1.820 1.920 2.020 127 2.580 2.680 14 0.320 0.420 0.520 52 1.080 1.180 1.280 90 1.840 1.940 2.040 128 2.600 2.700 15 0.340 0.440 0.540 53 1.100 1.200 1.320 92 1.880 1.980 2.080 130 2.640 2.740 17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 131 2.660 2.760 18 0.400 0.500 0.600 56 1.160 1.260 1.360 94 1.920 2.020 2.120	10	0.240	0.340	0.440	48	1.000	1.100	1.200	86	1.760	1.860	1.960	124	2.520	2.620	2.720
13 0.300 0.400 0.500 51 1.060 1.160 1.260 89 1.820 1.920 2.020 127 2.580 2.680 14 0.320 0.420 0.520 52 1.080 1.180 1.280 90 1.840 1.940 2.040 128 2.600 2.700 15 0.340 0.440 0.540 53 1.100 1.200 1.300 91 1.860 1.960 2.060 129 2.620 2.720 16 0.360 0.460 0.560 54 1.120 1.220 1.320 92 1.880 1.980 2.080 130 2.640 2.740 17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 131 2.660 2.760 18 0.400 0.500 0.600 55 1.160 1.260 1.360 94 1.920 2.002 2.120	11	0.260	0.360	0.460	49	1.020	1.120	1.220	87	1.780	1.880	1.980	125	2.540	2.640	2.740
14 0.320 0.420 0.520 52 1.080 1.180 1.280 90 1.840 1.940 2.040 128 2.600 2.700 15 0.340 0.440 0.540 53 1.100 1.200 1.300 91 1.860 1.960 2.060 129 2.620 2.720 16 0.360 0.460 0.560 54 1.120 1.220 1.320 92 1.880 1.980 2.080 130 2.640 2.740 17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 131 2.660 2.760 18 0.400 0.500 0.602 57 1.180 1.280 1.380 95 1.940 2.040 2.140 133 2.700 2.800 20 0.440 0.540 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180	12	0.280	0.380	0.480	50	1.040	1.140	1.240	88	1.800	1.900	2.000	126	2.560	2.660	2.760
15 0.340 0.440 0.540 53 1.100 1.200 1.300 91 1.860 1.960 2.060 129 2.620 2.720 16 0.360 0.460 0.560 54 1.120 1.220 1.320 92 1.880 1.980 2.080 130 2.640 2.740 17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 131 2.660 2.760 18 0.400 0.500 0.600 56 1.160 1.260 1.360 94 1.920 2.020 2.120 132 2.680 2.780 19 0.420 0.520 0.620 57 1.180 1.280 1.380 95 1.940 2.040 2.140 133 2.700 2.820 21 0.460 0.560 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180	13	0.300	0.400	0.500	51	1.060	1.160	1.260	89	1.820	1.920	2.020	127	2.580	2.680	2.780
16 0.360 0.460 0.560 54 1.120 1.220 1.320 92 1.880 1.980 2.080 130 2.640 2.740 17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 131 2.660 2.760 18 0.400 0.500 0.600 56 1.160 1.260 1.360 94 1.920 2.020 2.120 132 2.680 2.780 19 0.420 0.520 0.620 57 1.180 1.280 1.380 95 1.940 2.040 2.140 133 2.700 2.800 20 0.440 0.540 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180 135 2.740 2.840 22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 2.200	14	0.320	0.420	0.520	52	1.080	1.180	1.280	90	1.840	1.940	2.040	128	2.600	2.700	2.800
17 0.380 0.480 0.580 55 1.140 1.240 1.340 93 1.900 2.000 2.100 131 2.660 2.760 18 0.400 0.500 0.600 56 1.160 1.260 1.360 94 1.920 2.020 2.120 132 2.680 2.780 19 0.420 0.520 0.620 57 1.180 1.280 1.380 95 1.940 2.040 2.140 133 2.700 2.800 20 0.440 0.540 0.640 58 1.220 1.320 1.420 97 1.980 2.060 2.160 134 2.720 2.840 21 0.460 0.560 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180 135 2.740 2.840 22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 2.200 136 2.760 2.860 23 0.500 0.600 0.700	15	0.340	0.440	0.540	53	1.100	1.200	1.300	91	1.860	1.960	2.060	129	2.620	2.720	2.820
18 0.400 0.500 0.600 56 1.160 1.260 1.360 94 1.920 2.020 2.120 132 2.680 2.780 19 0.420 0.520 0.620 57 1.180 1.280 1.380 95 1.940 2.040 2.140 133 2.700 2.800 20 0.440 0.540 0.640 58 1.200 1.300 1.400 96 1.960 2.060 2.160 134 2.720 2.820 21 0.460 0.560 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180 135 2.740 2.840 22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 136 2.760 2.860 23 0.500 0.600 0.700 61 1.260 1.460 1.99 2.020 2.100 2.130 138 2.800	16	0.360	0.460	0.560	54	1.120	1.220	1.320	92	1.880	1.980	2.080	130	2.640	2.740	2.840
19 0.420 0.520 0.620 57 1.180 1.280 1.380 95 1.940 2.040 2.140 133 2.700 2.800 20 0.440 0.540 0.640 58 1.200 1.300 1.400 96 1.960 2.060 2.160 134 2.720 2.820 21 0.460 0.560 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180 135 2.740 2.840 22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 2.200 136 2.760 2.860 23 0.500 0.600 0.700 61 1.260 1.360 1.460 99 2.020 2.120 2.20 137 2.780 2.880 24 0.520 0.620 0.700 62 1.320 1.420 1.50 101 2.060 2.160 2.260	17	0.380	0.480	0.580	55	1.140	1.240	1.340	93	1.900	2.000	2.100	131	2.660	2.760	2.860
20 0.440 0.540 0.640 58 1.200 1.300 1.400 96 1.960 2.060 2.160 134 2.720 2.820 21 0.460 0.560 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180 135 2.740 2.840 22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 2.200 136 2.760 2.860 23 0.500 0.600 0.700 61 1.260 1.360 1.460 99 2.020 2.120 2.200 137 2.780 2.880 24 0.520 0.620 0.720 62 1.280 1.380 1.480 100 2.040 2.140 2.240 138 2.800 2.900 25 0.540 0.660 0.760 64 1.320 1.420 1.520 102 2.080 2.180 2.80	18	0.400	0.500	0.600	56	1.160	1.260	1.360	94	1.920	2.020	2.120	132	2.680	2.780	2.880
21 0.460 0.560 0.660 59 1.220 1.320 1.420 97 1.980 2.080 2.180 135 2.740 2.840 22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 2.200 136 2.760 2.860 23 0.500 0.600 0.700 61 1.260 1.360 1.460 99 2.020 2.120 2.220 137 2.780 2.880 24 0.520 0.620 0.720 62 1.280 1.380 1.480 100 2.040 2.140 2.240 138 2.800 2.900 25 0.540 0.640 0.740 63 1.300 1.400 1.500 101 2.060 2.160 2.260 139 2.820 2.920 26 0.560 0.660 0.760 64 1.320 1.420 1.520 102 2.080 2.180 2.80	19	0.420	0.520	0.620	57	1.180	1.280	1.380	95	1.940	2.040	2.140	133	2.700	2.800	2.900
22 0.480 0.580 0.680 60 1.240 1.340 1.440 98 2.000 2.100 2.200 136 2.760 2.860 23 0.500 0.600 0.700 61 1.260 1.360 1.460 99 2.020 2.120 2.220 137 2.780 2.880 24 0.520 0.620 0.720 62 1.280 1.380 1.480 100 2.040 2.140 2.240 138 2.800 2.900 25 0.540 0.640 0.740 63 1.300 1.400 1.500 101 2.060 2.160 2.260 139 2.820 2.920 2.920 26 0.560 0.660 0.760 64 1.320 1.420 1.520 102 2.080 2.180 2.300 141 2.840 2.940 2.940 27 0.580 0.680 0.780 65 1.340 1.440 1.540 103 2.100	20	0.440	0.540	0.640	58	1.200	1.300	1.400	96	1.960	2.060	2.160	134	2.720	2.820	2.920
23 0.500 0.600 0.700 61 1.260 1.360 1.460 99 2.020 2.120 2.220 137 2.780 2.880 24 0.520 0.620 0.720 62 1.280 1.380 1.480 100 2.040 2.140 2.240 138 2.800 2.900 25 0.540 0.640 0.740 63 1.300 1.400 1.500 101 2.060 2.160 2.260 139 2.820 2.920 2.600 26 0.560 0.660 0.760 64 1.320 1.420 1.520 102 2.080 2.180 2.280 140 2.840 2.940 27 0.580 0.680 0.780 65 1.340 1.440 1.540 103 2.100 2.200 2.300 141 2.860 2.960 28 0.600 0.700 0.800 66 1.360 1.460 1.560 104 2.120 2.340 <td>21</td> <td>0.460</td> <td>0.560</td> <td>0.660</td> <td>59</td> <td>1.220</td> <td>1.320</td> <td>1.420</td> <td>97</td> <td>1.980</td> <td>2.080</td> <td>2.180</td> <td>135</td> <td>2.740</td> <td>2.840</td> <td>2.940</td>	21	0.460	0.560	0.660	59	1.220	1.320	1.420	97	1.980	2.080	2.180	135	2.740	2.840	2.940
240.5200.6200.720621.2801.3801.4801002.0402.1402.2401382.8002.900250.5400.6400.740631.3001.4001.5001012.0602.1602.2601392.8202.920260.5600.6600.760641.3201.4201.5201022.0802.1802.2801402.8402.940270.5800.6800.780651.3401.4401.5401032.1002.2002.3001412.8602.960280.6000.7000.800661.3601.4601.5601042.1202.2202.3201422.8802.980290.6200.7200.820671.3801.4801.5801052.1402.2402.3401432.9003.000300.6400.7400.840681.4001.5001.6001062.1602.2602.3601442.9203.020310.6600.7600.860691.4201.5201.6201072.1802.2802.4001462.9603.040320.6800.7800.880701.4401.5401.6801082.2002.3002.4201472.9803.080330.7000.8000.900711.4601.5601.6601092.2202.3202.4	22	0.480	0.580	0.680	60	1.240	1.340	1.440	98	2.000	2.100	2.200	136	2.760	2.860	2.960
250.5400.6400.740631.3001.4001.5001012.0602.1602.2601392.8202.920260.5600.6600.760641.3201.4201.5201022.0802.1802.2801402.8402.940270.5800.6800.780651.3401.4401.5401032.1002.2002.3001412.8602.960280.6000.7000.800661.3601.4601.5601042.1202.2202.3201422.8802.980290.6200.7200.820671.3801.4801.5801052.1402.2402.3401432.9003.000300.6400.7400.840681.4001.5001.6001062.1602.2602.3601442.9203.020310.6600.7600.860691.4201.5201.6201072.1802.2802.3801452.9403.040320.6800.7800.880701.4401.5401.6801082.2002.3002.4001462.9603.060330.7000.8000.900711.4601.5601.6601092.2202.3202.4201472.9803.080340.7200.8200.920721.4801.5801.6801102.2402.340148	23	0.500	0.600	0.700	61	1.260	1.360	1.460	99	2.020	2.120	2.220	137	2.780	2.880	2.980
26 0.560 0.660 0.760 64 1.320 1.420 1.520 102 2.080 2.180 2.280 140 2.840 2.940 27 0.580 0.680 0.780 65 1.340 1.440 1.540 103 2.100 2.200 2.300 141 2.860 2.960 28 0.600 0.700 0.800 66 1.360 1.460 1.560 104 2.120 2.200 2.300 141 2.860 2.980 29 0.620 0.720 0.820 67 1.380 1.480 1.580 105 2.140 2.240 2.340 143 2.900 3.000 30 0.640 0.740 0.840 68 1.400 1.500 1.600 106 2.160 2.260 2.360 144 2.920 3.020 31 0.660 0.760 0.860 69 1.420 1.520 1.620 107 2.180 2.380 145	24	0.520	0.620	0.720	62	1.280	1.380	1.480	100	2.040	2.140	2.240	138	2.800	2.900	3.000
270.5800.6800.780651.3401.4401.5401032.1002.2002.3001412.8602.960280.6000.7000.800661.3601.4601.5601042.1202.2202.3201422.8802.980290.6200.7200.820671.3801.4801.5801052.1402.2402.3401432.9003.000300.6400.7400.840681.4001.5001.6001062.1602.2602.3601442.9203.020310.6600.7600.860691.4201.5201.6201072.1802.2802.3801452.9403.040320.6800.7800.880701.4401.5401.6601092.2202.3002.4001462.9603.060330.7000.8000.900711.4601.5601.6601092.2202.3202.4201472.9803.080340.7200.8200.920721.4801.5801.6801102.2402.3401483.0003.100	25	0.540	0.640	0.740	63	1.300	1.400	1.500	101	2.060	2.160	2.260	139	2.820	2.920	3.020
28 0.600 0.700 0.800 66 1.360 1.460 1.560 104 2.120 2.220 2.320 142 2.880 2.980 29 0.620 0.720 0.820 67 1.380 1.480 1.580 105 2.140 2.240 2.340 143 2.900 3.000 30 0.640 0.740 0.840 68 1.400 1.500 1.600 106 2.160 2.260 2.360 144 2.920 3.020 31 0.660 0.760 0.860 69 1.420 1.520 1.620 107 2.180 2.280 2.380 144 2.940 3.040 32 0.680 0.780 0.880 70 1.440 1.540 1.640 108 2.200 2.300 2.400 146 2.960 3.060 33 0.700 0.800 0.900 71 1.460 1.560 1.660 109 2.220 2.320 2.420 <td>26</td> <td>0.560</td> <td>0.660</td> <td>0.760</td> <td>64</td> <td>1.320</td> <td>1.420</td> <td>1.520</td> <td>102</td> <td>2.080</td> <td>2.180</td> <td>2.280</td> <td>140</td> <td>2.840</td> <td>2.940</td> <td>3.040</td>	26	0.560	0.660	0.760	64	1.320	1.420	1.520	102	2.080	2.180	2.280	140	2.840	2.940	3.040
29 0.620 0.720 0.820 67 1.380 1.480 1.580 105 2.140 2.240 2.340 143 2.900 3.000 30 0.640 0.740 0.840 68 1.400 1.500 1.600 106 2.160 2.260 2.360 144 2.920 3.020 31 0.660 0.760 0.860 69 1.420 1.520 1.620 107 2.180 2.280 2.380 145 2.940 3.040 32 0.680 0.780 0.880 70 1.440 1.540 1.640 108 2.200 2.300 2.400 146 2.960 3.040 33 0.700 0.800 0.900 71 1.460 1.560 1.660 109 2.220 2.320 2.420 147 2.980 3.080 34 0.720 0.820 0.920 72 1.480 1.580 1.680 110 2.240 2.340 148	27	0.580	0.680	0.780	65	1.340	1.440	1.540	103	2.100	2.200	2.300	141	2.860	2.960	3.060
30 0.640 0.740 0.840 68 1.400 1.500 1.600 106 2.160 2.260 2.360 144 2.920 3.020 31 0.660 0.760 0.860 69 1.420 1.520 1.620 107 2.180 2.280 2.380 145 2.940 3.040 32 0.680 0.780 0.880 70 1.440 1.540 1.640 108 2.200 2.300 2.400 146 2.960 3.060 33 0.700 0.800 0.900 71 1.460 1.560 1.660 109 2.220 2.320 2.420 147 2.980 3.080 34 0.720 0.820 0.920 72 1.480 1.580 1.680 110 2.240 2.340 2.440 148 3.000 3.100	28	0.600	0.700	0.800	66	1.360	1.460	1.560	104	2.120	2.220	2.320	142	2.880	2.980	3.080
31 0.660 0.760 0.860 69 1.420 1.520 1.620 107 2.180 2.280 2.380 145 2.940 3.040 32 0.680 0.780 0.880 70 1.440 1.540 1.640 108 2.200 2.300 2.400 146 2.960 3.060 33 0.700 0.800 0.900 71 1.460 1.560 1.660 109 2.220 2.320 2.420 147 2.980 3.080 34 0.720 0.820 0.920 72 1.480 1.580 1.680 110 2.240 2.440 148 3.000 3.100	29	0.620	0.720	0.820	67	1.380	1.480	1.580	105	2.140	2.240	2.340	143	2.900	3.000	3.100
32 0.680 0.780 0.880 70 1.440 1.540 1.640 108 2.200 2.300 2.400 146 2.960 3.060 33 0.700 0.800 0.900 71 1.460 1.560 1.660 109 2.220 2.320 2.420 147 2.980 3.080 34 0.720 0.820 0.920 72 1.480 1.580 1.680 110 2.240 2.440 148 3.000 3.100	30	0.640	0.740	0.840	68	1.400	1.500	1.600	106	2.160	2.260	2.360	144	2.920	3.020	3.120
33 0.700 0.800 0.900 71 1.460 1.560 1.660 109 2.220 2.320 2.420 147 2.980 3.080 34 0.720 0.820 0.920 72 1.480 1.580 1.680 110 2.240 2.340 2.440 148 3.000 3.100	31	0.660	0.760	0.860	69	1.420	1.520	1.620	107	2.180	2.280	2.380	145	2.940	3.040	3.140
34 0.720 0.820 0.920 72 1.480 1.580 1.680 110 2.240 2.340 2.440 148 3.000 3.100	32	0.680	0.780	0.880	70	1.440	1.540	1.640	108	2.200	2.300	2.400	146	2.960	3.060	3.160
	33	0.700	0.800	0.900	71	1.460	1.560	1.660	109	2.220	2.320	2.420	147	2.980	3.080	3.180
35 0.740 0.840 0.940 73 1.500 1.600 1.700 111 2.260 2.360 2.460 149 3.020 3.120	34	0.720	0.820	0.920	72	1.480	1.580	1.680	110	2.240	2.340	2.440	148	3.000	3.100	3.200
	35	0.740	0.840	0.940	73	1.500	1.600	1.700	111	2.260	2.360	2.460	149	3.020	3.120	3.220
36 0.760 0.860 0.960 74 1.520 1.620 1.720 112 2.280 2.380 2.480 150 3.040 3.140	36	0.760	0.860	0.960	74	1.520	1.620	1.720	112	2.280	2.380	2.480	150	3.040	3.140	3.240
37 0.780 0.880 0.980 75 1.540 1.640 1.740 113 2.300 2.400 2.500	37	0.780	0.880	0.980	75	1.540	1.640	1.740	113	2.300	2.400	2.500				

b) V_{TS} Table of FSBB10CH120DF

ITCJ [M] [M] [M] ITCJ [M] [M] </th <th></th> <th>•••••</th> <th></th> <th></th> <th>VIS 10</th> <th>,</th>												•••••			VIS 10	,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Тур [V]		T [℃]				T [℃]				T [℃]				T [℃]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.400	2.300	2.200	91	1.660	1.560	1.460	54	0.920	0.820	0.720	17	0.180	0.080	0.000	-20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.420	2.320	2.220	92	1.680	1.580	1.480	55	0.940	0.840	0.740	18	0.200	0.100	0.000	-19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 2.440	2.340	2.240	93	1.700	1.600	1.500	56	0.960	0.860	0.760	19	0.220	0.120	0.020	-18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.460	2.360	2.260	94	1.720	1.620	1.520	57	0.980	0.880	0.780	20	0.240	0.140	0.040	-17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.480	2.380	2.280	95	1.740	1.640	1.540	58	1.000	0.900	0.800	21	0.260	0.160	0.060	-16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2.500	2.400	2.300	96	1.760	1.660	1.560	59	1.020	0.920	0.820	22	0.280	0.180	0.080	-15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.520	2.420	2.320	97	1.780	1.680	1.580	60	1.040	0.940	0.840	23	0.300	0.200	0.100	-14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.540	2.440	2.340	98	1.800	1.700	1.600	61	1.060	0.960	0.860	24	0.320	0.220	0.120	-13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2.560	2.460	2.360	99	1.820	1.720	1.620	62	1.080	0.980	0.880	25	0.340	0.240	0.140	-12
-9 0.200 0.300 0.400 28 0.940 1.040 1.140 65 1.680 1.780 1.880 102 2.420 2.55 -8 0.220 0.320 0.420 29 0.960 1.060 1.160 66 1.700 1.800 1.900 103 2.440 2.55 -7 0.240 0.340 0.440 30 0.980 1.080 1.180 67 1.720 1.820 1.920 104 2.460 2.50 -6 0.260 0.360 0.460 31 1.000 1.120 1.220 69 1.760 1.860 1.960 106 2.500 2.60 -4 0.300 0.400 0.500 33 1.040 1.140 1.240 70 1.780 1.880 1.980 107 2.520 2.60 -3 0.320 0.420 0.520 34 1.060 1.260 71 1.800 1.900 2.000 108 <t< td=""><td>0 2.580</td><td>2.480</td><td>2.380</td><td>100</td><td>1.840</td><td>1.740</td><td>1.640</td><td>63</td><td>1.100</td><td>1.000</td><td>0.900</td><td>26</td><td>0.360</td><td>0.260</td><td>0.160</td><td>-11</td></t<>	0 2.580	2.480	2.380	100	1.840	1.740	1.640	63	1.100	1.000	0.900	26	0.360	0.260	0.160	-11
-8 0.220 0.320 0.420 29 0.960 1.060 1.160 66 1.700 1.800 1.900 103 2.440 2.5 -7 0.240 0.340 0.440 30 0.980 1.080 1.180 67 1.720 1.820 1.920 104 2.460 2.5 -6 0.260 0.360 0.460 31 1.000 1.100 1.200 68 1.740 1.840 1.940 105 2.480 2.56 -5 0.280 0.380 0.480 32 1.020 1.120 1.220 69 1.760 1.860 1.960 106 2.500 2.60 -3 0.320 0.420 0.520 34 1.060 1.160 1.280 72 1.820 1.920 109 2.560 2.60 -2 0.340 0.440 0.540 35 1.080 1.180 1.280 72 1.820 1.920 2.020 109	0 2.600	2.500	2.400	101	1.860	1.760	1.660	64	1.120	1.020	0.920	27	0.380	0.280	0.180	-10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2.620	2.520	2.420	102	1.880	1.780	1.680	65	1.140	1.040	0.940	28	0.400	0.300	0.200	-9
-6 0.260 0.360 0.460 31 1.000 1.100 1.200 68 1.740 1.840 1.940 105 2.480 2.56 -5 0.280 0.380 0.480 32 1.020 1.120 1.220 69 1.760 1.860 1.960 106 2.500 2.60 -4 0.300 0.400 0.500 33 1.040 1.140 1.240 70 1.780 1.880 1.980 107 2.520 2.60 -3 0.320 0.420 0.520 34 1.060 1.160 1.260 71 1.800 1.900 2.000 108 2.540 2.60 -2 0.340 0.440 0.540 35 1.080 1.180 1.280 72 1.820 1.920 2.020 109 2.560 2.66 -1 0.360 0.460 0.560 36 1.100 1.200 1.300 74 1.860 1.960 2.060	0 2.640	2.540	2.440	103	1.900	1.800	1.700	66	1.160	1.060	0.960	29	0.420	0.320	0.220	-8
-5 0.280 0.380 0.480 32 1.020 1.120 1.220 69 1.760 1.860 1.960 106 2.500 2.60 -4 0.300 0.400 0.500 33 1.040 1.140 1.240 70 1.780 1.880 1.980 107 2.520 2.60 -3 0.320 0.420 0.520 34 1.060 1.160 1.260 71 1.800 1.900 2.000 108 2.540 2.60 -2 0.340 0.440 0.540 35 1.080 1.180 1.280 72 1.820 1.920 2.020 109 2.560 2.60 -1 0.360 0.460 0.560 36 1.100 1.220 1.320 74 1.860 1.960 2.040 110 2.580 2.60 0 0.380 0.480 0.580 37 1.120 1.220 1.320 74 1.860 1.960 2.060 <	0 2.660	2.560	2.460	104	1.920	1.820	1.720	67	1.180	1.080	0.980	30	0.440	0.340	0.240	-7
-4 0.300 0.400 0.500 33 1.040 1.140 1.240 70 1.780 1.880 1.980 107 2.520 2.63 -3 0.320 0.420 0.520 34 1.060 1.160 1.260 71 1.800 1.900 2.000 108 2.540 2.64 -2 0.340 0.440 0.540 35 1.080 1.180 1.280 72 1.820 1.920 2.020 109 2.560 2.66 -1 0.360 0.460 0.560 36 1.100 1.200 1.300 73 1.840 1.940 2.040 110 2.580 2.66 0 0.380 0.480 0.580 37 1.120 1.220 1.320 74 1.860 1.960 2.060 111 2.602 2.77 1 0.400 0.500 0.600 38 1.140 1.240 1.340 75 1.880 1.980 2.080 <t< td=""><td>0 2.680</td><td>2.580</td><td>2.480</td><td>105</td><td>1.940</td><td>1.840</td><td>1.740</td><td>68</td><td>1.200</td><td>1.100</td><td>1.000</td><td>31</td><td>0.460</td><td>0.360</td><td>0.260</td><td>-6</td></t<>	0 2.680	2.580	2.480	105	1.940	1.840	1.740	68	1.200	1.100	1.000	31	0.460	0.360	0.260	-6
-3 0.320 0.420 0.520 34 1.060 1.160 1.260 71 1.800 1.900 2.000 108 2.540 2.64 -2 0.340 0.440 0.540 35 1.080 1.180 1.280 72 1.820 1.920 2.020 109 2.560 2.66 -1 0.360 0.460 0.560 36 1.100 1.200 1.300 73 1.840 1.940 2.040 110 2.580 2.66 0 0.380 0.480 0.580 37 1.120 1.220 1.320 74 1.860 1.960 2.060 111 2.600 2.74 1 0.400 0.500 0.600 38 1.140 1.240 1.340 75 1.880 1.980 2.080 1112 2.620 2.74 2 0.420 0.520 0.620 39 1.160 1.260 1.360 76 1.900 2.000 2.100 <t< td=""><td>0 2.700</td><td>2.600</td><td>2.500</td><td>106</td><td>1.960</td><td>1.860</td><td>1.760</td><td>69</td><td>1.220</td><td>1.120</td><td>1.020</td><td>32</td><td>0.480</td><td>0.380</td><td>0.280</td><td>-5</td></t<>	0 2.700	2.600	2.500	106	1.960	1.860	1.760	69	1.220	1.120	1.020	32	0.480	0.380	0.280	-5
-2 0.340 0.440 0.540 35 1.080 1.180 1.280 72 1.820 1.920 2.020 109 2.560 2.60 -1 0.360 0.460 0.560 36 1.100 1.200 1.300 73 1.840 1.940 2.040 110 2.580 2.60 0 0.380 0.480 0.580 37 1.120 1.220 1.320 74 1.860 1.960 2.060 111 2.600 2.70 1 0.400 0.500 0.600 38 1.140 1.240 1.340 75 1.880 1.980 2.080 112 2.620 2.77 2 0.420 0.520 0.620 39 1.160 1.260 1.360 76 1.900 2.000 2.100 113 2.640 2.74 3 0.440 0.540 0.640 40 1.180 1.280 1.380 77 1.920 2.020 2.120 114 2.660 2.74 4 0.460 0.560 0.660 41	0 2.720	2.620	2.520	107	1.980	1.880	1.780	70	1.240	1.140	1.040	33	0.500	0.400	0.300	-4
-1 0.360 0.460 0.560 36 1.100 1.200 1.300 73 1.840 1.940 2.040 110 2.580 2.64 0 0.380 0.480 0.580 37 1.120 1.220 1.320 74 1.860 1.960 2.060 111 2.600 2.74 1 0.400 0.500 0.600 38 1.140 1.240 1.340 75 1.880 1.980 2.080 1112 2.620 2.74 2 0.420 0.520 0.620 39 1.160 1.260 1.360 76 1.900 2.000 2.100 113 2.640 2.74 3 0.440 0.540 0.640 40 1.180 1.280 1.380 77 1.920 2.020 2.120 114 2.660 2.74 4 0.460 0.560 0.660 41 1.200 1.300 1.400 78 1.940 2.140 115 2.	0 2.740	2.640	2.540	108	2.000	1.900	1.800	71	1.260	1.160	1.060	34	0.520	0.420	0.320	-3
0 0.380 0.480 0.580 37 1.120 1.220 1.320 74 1.860 1.960 2.060 111 2.600 2.70 1 0.400 0.500 0.600 38 1.140 1.240 1.340 75 1.880 1.980 2.080 112 2.620 2.70 2 0.420 0.520 0.620 39 1.160 1.260 1.360 76 1.900 2.000 2.100 113 2.640 2.70 3 0.440 0.540 0.640 40 1.180 1.280 1.380 77 1.920 2.020 2.120 114 2.660 2.70 4 0.460 0.560 0.660 41 1.200 1.300 1.400 78 1.940 2.040 2.140 115 2.680 2.70 5 0.480 0.580 0.680 42 1.220 1.320 1.420 79 1.960 2.060 2.160 11	0 2.760	2.660	2.560	109	2.020	1.920	1.820	72	1.280	1.180	1.080	35	0.540	0.440	0.340	-2
1 0.400 0.500 0.600 38 1.140 1.240 1.340 75 1.880 1.980 2.080 112 2.620 2.77 2 0.420 0.520 0.620 39 1.160 1.260 1.360 76 1.900 2.000 2.100 113 2.640 2.74 3 0.440 0.540 0.640 40 1.180 1.280 1.380 77 1.920 2.020 2.120 114 2.660 2.74 4 0.460 0.560 0.660 41 1.200 1.300 1.400 78 1.940 2.040 2.140 115 2.680 2.74 5 0.480 0.580 0.680 42 1.220 1.320 1.420 79 1.960 2.060 2.160 116 2.700 2.86 6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 11	0 2.780	2.680	2.580	110	2.040	1.940	1.840	73	1.300	1.200	1.100	36	0.560	0.460	0.360	-1
2 0.420 0.520 0.620 39 1.160 1.260 1.360 76 1.900 2.000 2.100 113 2.640 2.74 3 0.440 0.540 0.640 40 1.180 1.280 1.380 77 1.920 2.020 2.120 114 2.660 2.74 4 0.460 0.560 0.660 41 1.200 1.300 1.400 78 1.940 2.040 2.140 115 2.680 2.74 5 0.480 0.580 0.680 42 1.220 1.320 1.420 79 1.960 2.060 2.160 116 2.700 2.86 6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 117 2.720 2.86 7 0.520 0.620 0.720 44 1.260 1.360 1.460 81 2.000 2.100 2.200 118 2.740 2.84 8 0.540 0.640 0.740 45	0 2.800	2.700	2.600	111	2.060	1.960	1.860	74	1.320	1.220	1.120	37	0.580	0.480	0.380	0
3 0.440 0.540 0.640 40 1.180 1.280 1.380 77 1.920 2.020 2.120 114 2.660 2.70 4 0.460 0.560 0.660 41 1.200 1.300 1.400 78 1.940 2.040 2.140 115 2.680 2.70 5 0.480 0.580 0.680 42 1.220 1.320 1.420 79 1.960 2.060 2.160 116 2.700 2.80 6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 117 2.720 2.80 6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 117 2.720 2.80 7 0.520 0.620 0.740 45 1.280 1.380 1.460 81 2.000 2.100 2.220 11	0 2.820	2.720	2.620	112	2.080	1.980	1.880	75	1.340	1.240	1.140	38	0.600	0.500	0.400	1
4 0.460 0.560 0.660 41 1.200 1.300 1.400 78 1.940 2.040 2.140 115 2.680 2.74 5 0.480 0.580 0.680 42 1.220 1.320 1.420 79 1.960 2.060 2.160 116 2.700 2.84 6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 117 2.720 2.84 7 0.520 0.620 0.720 44 1.260 1.360 1.460 81 2.000 2.100 2.200 118 2.740 2.84 8 0.540 0.640 0.740 45 1.280 1.380 1.480 82 2.020 2.120 2.200 118 2.740 2.84 9 0.560 0.660 0.760 46 1.300 1.400 1.500 83 2.040 2.140 2.240 120 2.780 2.84 10 0.580 0.680 0.780 47	0 2.840	2.740	2.640	113	2.100	2.000	1.900	76	1.360	1.260	1.160	39	0.620	0.520	0.420	2
5 0.480 0.580 0.680 42 1.220 1.320 1.420 79 1.960 2.060 2.160 116 2.700 2.80 6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 117 2.720 2.80 7 0.520 0.620 0.720 44 1.260 1.360 1.460 81 2.000 2.100 2.200 118 2.740 2.80 8 0.540 0.640 0.740 45 1.280 1.380 1.480 82 2.020 2.120 2.220 119 2.760 2.80 9 0.560 0.660 0.760 46 1.300 1.480 82 2.020 2.140 2.240 120 2.780 2.80 9 0.560 0.660 0.760 46 1.300 1.400 1.500 83 2.040 2.140 2.240 120 2.780 2.80 10 0.580 0.680 0.780 47 1.320	0 2.860	2.760	2.660	114	2.120	2.020	1.920	77	1.380	1.280	1.180	40	0.640	0.540	0.440	3
6 0.500 0.600 0.700 43 1.240 1.340 1.440 80 1.980 2.080 2.180 117 2.720 2.83 7 0.520 0.620 0.720 44 1.260 1.360 1.460 81 2.000 2.100 2.200 118 2.740 2.84 8 0.540 0.640 0.740 45 1.280 1.380 1.480 82 2.020 2.120 2.220 119 2.760 2.84 9 0.560 0.660 0.760 46 1.300 1.400 1.500 83 2.040 2.140 2.240 120 2.780 2.84 10 0.580 0.680 0.780 47 1.320 1.420 1.520 84 2.060 2.140 2.240 120 2.780 2.84	0 2.880	2.780	2.680	115	2.140	2.040	1.940	78	1.400	1.300	1.200	41	0.660	0.560	0.460	4
7 0.520 0.620 0.720 44 1.260 1.360 1.460 81 2.000 2.100 2.200 118 2.740 2.84 8 0.540 0.640 0.740 45 1.280 1.380 1.480 82 2.020 2.120 2.220 119 2.760 2.84 9 0.560 0.660 0.760 46 1.300 1.400 1.500 83 2.040 2.140 2.240 120 2.780 2.84 10 0.580 0.680 0.780 47 1.320 1.420 1.520 84 2.060 2.160 2.260 121 2.800 2.94	0 2.900	2.800	2.700	116	2.160	2.060	1.960	79	1.420	1.320	1.220	42	0.680	0.580	0.480	5
8 0.540 0.640 0.740 45 1.280 1.380 1.480 82 2.020 2.120 2.220 119 2.760 2.80 9 0.560 0.660 0.760 46 1.300 1.400 1.500 83 2.040 2.140 2.240 120 2.780 2.80 10 0.580 0.680 0.780 47 1.320 1.420 1.520 84 2.060 2.160 2.260 121 2.800 2.90	0 2.920	2.820	2.720	117	2.180	2.080	1.980	80	1.440	1.340	1.240	43	0.700	0.600	0.500	6
9 0.560 0.660 0.760 46 1.300 1.400 1.500 83 2.040 2.140 2.240 120 2.780 2.84 10 0.580 0.680 0.780 47 1.320 1.420 1.520 84 2.060 2.160 2.260 121 2.800 2.90	0 2.940	2.840	2.740	118	2.200	2.100	2.000	81	1.460	1.360	1.260	44	0.720	0.620	0.520	7
10 0.580 0.680 0.780 47 1.320 1.420 1.520 84 2.060 2.160 2.260 121 2.800 2.90	0 2.960	2.860	2.760	119	2.220	2.120	2.020	82	1.480	1.380	1.280	45	0.740	0.640	0.540	8
	0 2.980	2.880	2.780	120	2.240	2.140	2.040	83	1.500	1.400	1.300	46	0.760	0.660	0.560	9
	0 3.000	2.900	2.800	121	2.260	2.160	2.060	84	1.520	1.420	1.320	47	0.780	0.680	0.580	10
<u>11</u> 0.600 0.700 0.800 48 1.340 1.440 1.540 85 2.080 2.180 2.280 122 2.820 2.92	0 3.020	2.920	2.820	122	2.280	2.180	2.080	85	1.540	1.440	1.340	48	0.800	0.700	0.600	11
12 0.620 0.720 0.820 49 1.360 1.460 1.560 86 2.100 2.200 2.300 123 2.840 2.94	0 3.040	2.940	2.840	123	2.300	2.200	2.100	86	1.560	1.460	1.360	49	0.820	0.720	0.620	12
13 0.640 0.740 0.840 50 1.380 1.480 1.580 87 2.120 2.220 2.320 124 2.860 2.90	0 3.060	2.960	2.860	124	2.320	2.220	2.120	87	1.580	1.480	1.380	50	0.840	0.740	0.640	13
14 0.660 0.760 0.860 51 1.400 1.500 1.600 88 2.140 2.240 2.340 125 2.880 2.980	0 3.080	2.980	2.880	125	2.340	2.240	2.140	88	1.600	1.500	1.400	51	0.860	0.760	0.660	14
15 0.680 0.780 0.880 52 1.420 1.520 1.620 89 2.160 2.260 2.360					2.360	2.260	2.160	89	1.620	1.520	1.420	52	0.880	0.780	0.680	15
16 0.700 0.800 0.900 53 1.440 1.540 1.640 90 2.180 2.280 2.380					2.380	2.280	2.180	90	1.640	1.540	1.440	53	0.900	0.800	0.700	16

6 Print Circuit Board (PCB) Design

6.1 General Application Circuit Example

Figure 41 shows a general application circuitry of interface schematic with control signals connected directly to a MCU. *Figure 42* shows guidance of PCB layout for Motion SPM[®] 3 Module.

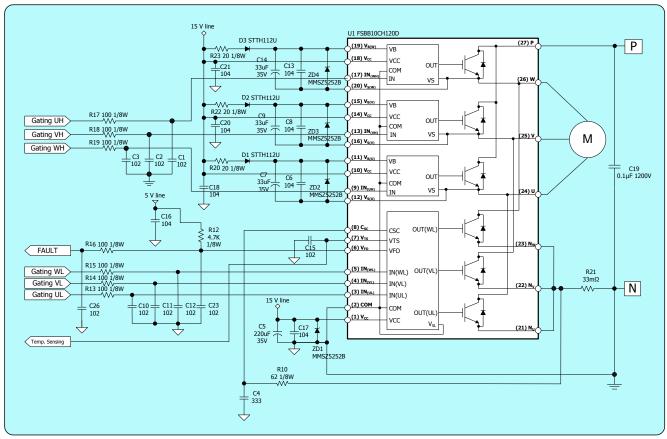


Figure 41. General Application Circuitry for Motion SPM 3 Module

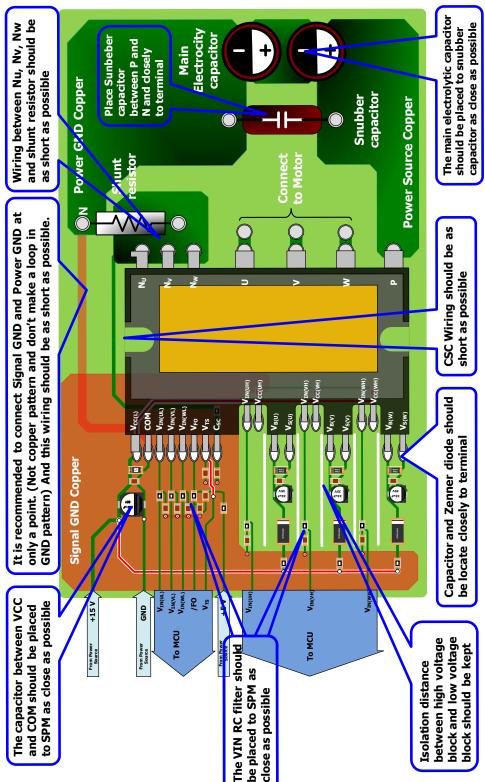
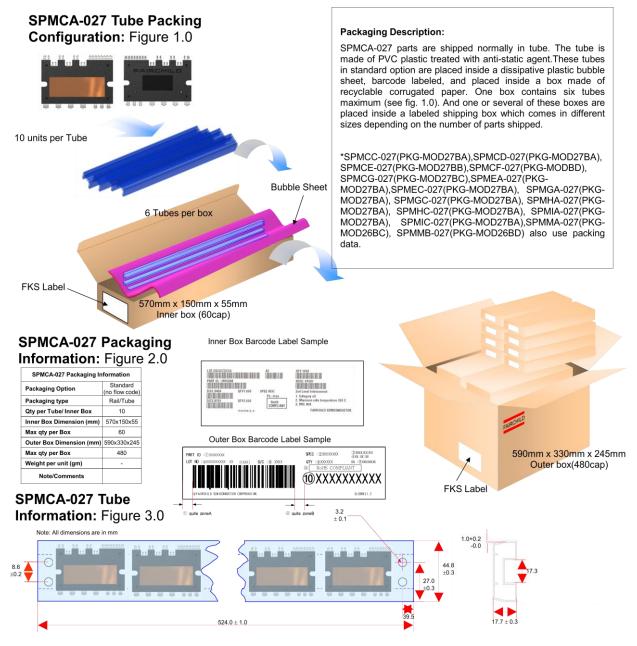



Figure 42. Print Circuit Board (PCB) Layout Guidance for Motion SPM® 3 Module

6.2 PCB Layout Guidance

7 Packing Information

NOTES:

A : ALL DIMENSION ARE IN MILLIMETERS UNLESS

OTHERWISE SPECIFIED B : DRAWING FIEL NAME : PKG-MOD27BAREV1

Figure 43. Packing Information

AN-9095

Related Resources - Product Datasheets and Application Notes

<u>AN-9086- SPM 3 Package Mounting Guidance</u> <u>RD-404 – Reference Design</u> <u>FSBB10CH120D – Product Information</u> <u>FSBB10CH120DF – Product Information</u>

> ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support inplantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harnless against all claims, costs, damages, and expenses, and reasonable attomey fe

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC