# NB3N1900K Evaluation Board User's Manual

#### Introduction

The NB3N1900KMNGEVB evaluation boards were developed for the NB3N1900K (HCSL) devices. This evaluation board was designed to provide a flexible and convenient platform to quickly evaluate, characterize and verify the operation of the NB3N1900K devices.

This evaluation board manual contains:

- Information on the NB3N1900K Evaluation Board
- Assembly Instructions
- Test and Measurement Setup Procedures
- Board Schematic and Bill of Materials



(Top View)



## **ON Semiconductor®**

http://onsemi.com

## EVAL BOARD USER'S MANUAL

This manual should be used in conjunction with the device datasheet which contains full technical details on the device specifications and operation.



(Bottom View)

Figure 1. NB3N1900KMNGEVB Evaluation Board

## **BOARD FEATURES**

#### Single Board Design/Layout

- Accommodates the Electrical Characterization of the NB3N1900K (HCSL Outputs)
- Incorporates On-board I<sup>2</sup>C/SMBus Interface Circuitry Powered from a USB Connection, Minimizing Cabling
- Convenient and Compact Board Layout
- 3.3 V Power Supply Device Operation
- Differential Inputs/Outputs Signals are Accessed via SMA Connectors or High Impedance Probes

#### Other Board Features

There are no vias on the high-speed differential I/O metal traces so as to eliminate via impedance and stub affects. Board stand-offs are installed.

#### Board Layout

The NB3N1900K QFN–72 Evaluation Board provides a high bandwidth,  $50-\Omega$  controlled trace impedance environment (100- $\Omega$  line-to-line differential) and is implemented in four layers.

- All Layers are Constructed with FR4 Dielectric Material
- The First Layer is the Primary Signal Layer, Including All of the Differential Inputs and Outputs
- The Second Layer is the Ground Plane. It is Dedicated for the DUT Ground/SMA Ground Plane
- The Third Layer is Dedicated as the Power Plane. A Portion of this 3<sup>rd</sup> Layer is Designated for the Device VDD and VDDIO Power Planes
- The Fourth Layer Contains Control Lines, Power Supply Banana Jacks and Device Power Pin By-pass Capacitors

#### Layer Stack

- L1 (Top) Signal
- L2 Device Ground and SMA Ground
- L3 VDD, VDDIO (Separate Device Power Supplies)
- L4 (Bottom), Power Supply By-pass Capacitors, Control Pin Traces and Banana Jacks



## 4-LAYER STACK-UP

Figure 2. NB3N1900KMNGEVB Evaluation Board Layer Stack-Up

#### **Power Supplies**

Each VDD, VDDIO and GND power supply has a separate side-launch banana jack located on bottom side.

This board is capable of measuring device IDD & IDDIO separately.

Board Layer #2 = SMA Ground = Device GND = 0 V.

GND Banana Jack = negative power supply for DUTGND and SMAGND.

Exposed Pad (EP): The exposed pad footprint on the board is soldered to the exposed pad of the QFN–72 package, and is electrically connected to GND power supply.

Board Layer #3 = VDD and VDDIO Power Supplies

VDD = positive power supply for core and inputs; VDD/VDDA/VDDR (pins #1, 8)

VDDIO = positive power supply for outputs; VDDIO (pins #21, 31, 45, 58, 68)

VDD & VDDIO have the power supply filtering per datasheet by the banana jacks.

All VDD/VDDA/VDDR/VDDIO device pins have a 0.1  $\mu$ F bypass capacitor installed on top side next to package pins.

#### **Control Pins**

Each control pin can be managed manually with a H/L jumper header; H = VDD, L = GND.

Tri-Level Input Pins – HBW\_BYP\_LBW#, SA\_0 and SA\_1

The three tri-level input pins, HBW\_BYPASS\_LBW#, SA0 and SA1, have selectable (with jumper) 4.7 k $\Omega$  pull-up to VDD and 4.7 k $\Omega$  pull-down to GND resistors; No jumper defaults to open/float.

- For a HIGH Level Put Jumper to High
- For a LOW Level Put Jumper to Low
- For a MID Level Put Jumper to both High and Low; this will Enable both Pull-up and Pull-down Resistors

#### HBW\_BYP\_LBW#

At J16 header, there is a  $4.7 \text{ k}\Omega$  pull-up to VDD and a  $4.7 \text{ k}\Omega$  pull-down resistor to GND for manual control.



Figure 3. HBW\_BYP\_LBW# Schematic Configuration

#### SA\_0 & SA\_1

At J21 and J23 headers, there are 4.7  $k\Omega$  pull-ups to VDD and 4.7  $k\Omega$  pull-down resistors to GND for manual control.



Figure 4. SA\_0 & SA\_1 Schematic Configuration

OE\_n# Pins (Output Enable/Disable Function)

Four of the eight differential outputs can be controlled manually using the convenient High/Low OE\_n# jumpers. See Figure 5.

All eight of the OE\_n#s can be controlled individually/ automatically by using the software GUI. GUI control is accomplished via the USB. See Figure 5.



Figure 5. OE\_n# Pins Schematic Configuration

#### *100M\_133M# – Frequency Selection (J18)*

The 100M\_133M# frequency selection pin can be controlled manually with the High/Low header jumper J18, H = 100 MHz, L = 133 MHz.



Figure 6. 100M\_133M# Pin Schematic Configuration

#### PWRGD/PWRDN# (J19)

The PWRGD/PWRDN# pin can be controlled manually with the High/Low header jumper J19; H = PWRGD, L = PWRDN#.



Figure 7. PWRGD/PWRDN# Pin Schematic Configuration

#### **Differential Clock Inputs and Outputs**

#### CLK\_IN & CLK\_IN# – Differential Clock Inputs

The differential Clock input traces, CLK\_IN/CLK\_IN#, are equal length routed straight from the SMA connectors on the left side directly to the DUT; there are no vias on metal traces.

CLK\_IN & CLK\_IN# have resistor pads (R63 & R64) to GND to terminate a signal generator, if used.  $50-\Omega$  resistors are installed. **Remove these resistors** if CLK\_IN & CLK\_IN# are driven by another IC device.

#### DIF\_n and DIF\_n# – Differential Outputs

NB3N1900KMNGEVB were designed to measure the differential HCSL outputs with a 50- $\Omega$  scope head or high-impedance FET probe. (See Output Schematic in Figure 8)

Six of the nineteen differential outputs are designed to have equal length metal traces from the device pins to the SMA connectors.

The other thirteen differential outputs have shortened metal traces, do not have SMA connectors and can be observed with a high-impedance probe on the metal pads provided.

Each DIF\_n/DIF\_n# output has a provision for  $C_{Load}$ ; 2 pF capacitors are installed on all outputs.

 $R_S$  &  $R_P$  pads are located close to the DUT.  $R_S = 33-\Omega$  is installed for the NB3N1900K.

<u>NB3N1900K (HCSL Outputs)</u>:  $R_P$  can be uninstalled on the six output pair with long metal traces to SMA connectors; Use 50- $\Omega$  to GND of the oscilloscope head for  $R_P$ 

 $R_P$  is installed (50- $\Omega$  to GND) on the short metal traces without SMA connectors and will use Hi-Z probes.

#### Table 1. NB3N1900KMNGEVB OUTPUT LOAD AND TERMINATION VS. OSCILLOSCOPE MEASUREMENT

| Device | Output Traces | R <sub>S</sub> | R <sub>P</sub>             | C <sub>Load</sub> | Scope                |
|--------|---------------|----------------|----------------------------|-------------------|----------------------|
| 1900K  | Long (1.5")   | 33-Ω           | Open (DNI) or 50- $\Omega$ | 2 pF              | 50- $\Omega$ or Hi-Z |
| 1900K  | Short         | 33-Ω           | 50-Ω                       | 2 pF              | Hi-Z                 |



#### Figure 8. Differential Outputs Schematic Configuration: Long (OUT6) vs. Short (OUT7) Metal Traces

#### **HCSL Output Measurement**

HCSL outputs are typically terminated with  $50-\Omega$  to ground. Measuring HCSL outputs can be easily accomplished by:

#### NB3N1900K (HCSL Outputs) – 50- $\Omega$ Oscilloscope Head

With  $R_P$  removed from board, connect the HCSL outputs through the SMA connectors to the 50- $\Omega$  internal impedance of the oscilloscope sampling head.

#### NB3N1900K (HCSL Outputs) – Use Hi-Z Probe

With  $R_P$  installed, use a high-impedance probe on the output's metal trace. Holes for headers to connect to Hi-Z probes are available, but the header pins are not installed.

- Single-ended Hi-Z Probes or,
- Differential Hi-Z Probe;

#### Misc. Pins

#### *FB\_OUT & FB\_OUT# – External Termination of Feedback Pins*

FB\_OUT & FB\_OUT# have convenient "test point anvils" to monitor these pins with Hi-Z probe.

<u>NB3N1900K (HCSL)</u>: Since the FB\_OUT & FB\_OUT# pins do not drive transmission lines (no SMAs), the board layout has these pins loaded/terminated at the DUT per datasheet;  $83-\Omega$  to GND is installed for the 100- $\Omega$  board.

#### IREF Pin

<u>NB3N1900K (HCSL)</u>: The R<sub>REF</sub> resistor (R99) to GND is for the HCSL output part device.

 $R_{REF} = 475 \cdot \Omega$  is installed for the 100- $\Omega$  board.

#### **Graphical User Interface (GUI)**

#### USB & I<sup>2</sup>C/SMBus Interface

The NB3N1900K EVB has an on-board  $I^2C/SMB$ us interface circuitry located in the upper left section of the board.

This circuitry will interface with the software program and the device via the SDA and SCL input pins, and can control all twelve of the OE\_n# pins, PLL Mode and Frequency Select directly from the GUI.

### SCL & SDA

The SMBus Clock (SCL) and Data (SDA) pins are exercised through the on-board  $I^2C$  interface.

In order to enable the  $I^2C$  control of the DUT, header jumpers J27 & J28 must be shorted.

The I<sup>2</sup>C/SMBus interface circuitry is powered separately from the USB type-B connection and is isolated from device VDD and VDDIO.

The SDA and SCL pins can also be externally accessed by an off-board programmer, allowing other SMBus emulators to be used to program the DUT. If used, remove both jumpers J27 & J28. "Test-point anvils" TP33 & TP34 are available for external control of the device with the use with mini-grabber cables.

To receive the GUI software and GUI software manual please contact below:



### QUICK START LAB SET-UP USER'S GUIDE

#### Pre-Power-Up

- 1. Connect power supply cables to VDD, VDDIO and GND banana jacks; (do not turn power on, yet).
- 2. Connect a signal generator to the SMA connectors for the CLK\_IN & CLK\_IN# inputs.
- 3.  $50-\Omega$  termination resistors are installed for a signal generator on the board. Set appropriate input signal levels; (HCSL input, VIL = 0 V, VIH = 700 mV, Frequency 100.00 or 133.33 MHz).
- 4. Ensure the PWRGD/PWRDN# pin is in the Low state before power up (PWRDN#). There is a jumper on pin 6 to easily select between High and Low. See Figure 7.
- 5. The 100M\_133M# and HBW\_BYP\_LBW pins need to be hardware selected with jumpers. See Figures 3 and 6.
- 6. Connect the DIF\_n/DIF\_n# outputs to the appropriate oscilloscope.

#### Table 2. POWER SUPPLY CONNECTIONS

| Device Pin<br>Power Supply Connector | Power Supply |
|--------------------------------------|--------------|
| VDD, VDDIO                           | VCC = +3.3 V |
| GND                                  | 0 V          |



Figure 9. Power Supply Connections





#### **Power-Up Sequence**

- 1. Turn on power supply, 3.3 V (VDD & VDDIO)
- 2. Move PWRGD/PWRDN# jumper from Low to logic High, PWRGD position
- 3. Turn on the Differential Clock Signal for the CLK\_IN inputs
- 4. Monitor DIF\_n/DIF\_n# outputs on oscilloscope

#### Optional

#### **Graphical User Interface**

There is a stand-alone Graphical User Interface software package and user's manual that will interface with the DUT via the USB connector.

- 1. Connect the USB port on the evaluation board to a USB port on the PC via cable.
- 2. See the stand-alone GUI instructions document.
- 3. Allow Windows to install the necessary drivers for the eval board USB interface hardware.
- 4. Start the GUI program.

| Ref. Des.                                                      | Qty | Part#              | Value                                   | PCB Footprint            | Vendor          | Vendor PN       | Manufacturer           |
|----------------------------------------------------------------|-----|--------------------|-----------------------------------------|--------------------------|-----------------|-----------------|------------------------|
| B1                                                             | 1   |                    | PC Board,<br>Clock Fanout<br>Board      |                          | HiQ Electronics | NB3N1900KMNGEVB |                        |
| C1–C35,<br>C37, C42,<br>C43                                    | 38  | C1005C0G1H020C     | 2.0 pF                                  | C0402                    | Digi-Key        | 445-4863-1-ND   | TDK                    |
| C36, C44                                                       | 2   | TR3A106K010C2000   | 10 μF                                   | C1206                    | Digi-Key        | 718-1300-1-ND   | Vishay                 |
| C38, C40,<br>C67, C68                                          | 4   | GRM155R61A105ME15D | 1 μF                                    | C0402                    | Digi-Key        | 490-5409-1-ND   | Murata                 |
| C39, C41,<br>C46–C54,<br>C56–C58,<br>C60, C62,<br>C65, C69     | 18  | 0402ZD104KAT2A     | 100 nF                                  | C0402                    | Digi-Key        | 478-1129-1-ND   | AVX                    |
| C45                                                            | 1   | C1608X5R1A106M     | 10 μF                                   | C0603                    | Digi-Key        | 445-6853-1-ND   | TDK                    |
| C55, C59,<br>C61                                               | 3   | C1005X5R0J475M     | 4.7 μF                                  | C0402                    | Digi-Key        | 445-7395-1-ND   | ТDК                    |
| C63                                                            | 1   | 0402YC103KAT2A     | 10 nF                                   | C0402                    | Digi-Key        | 478-1114-1-ND   | AVX                    |
| C64, C66                                                       | 2   | GRM1555C1H100JZ01D | 10 pF                                   | C0402                    | Digi-Key        | 490-1278-1-ND   | Murata                 |
| D1                                                             | 1   | PACDN004SR         | PACDN004                                | SOT_143                  | Mouser          | 748-PACDN004SR  | ON Semiconductor       |
| FB1, FB2                                                       | 2   | BLM18KG601SN1D     | 600                                     | L0603                    | Digi-Key        | 490-5258-1-ND   | Murata                 |
| FB3, FB4                                                       | 2   | BLM15AG601SN1D     | 600                                     | L0402                    | Digi-Key        | 490-1006-1-ND   | Murata                 |
| H1, H2, H3,<br>H4                                              | 4   |                    | .129 Hole in<br>.240 Round<br>Pad       | HOLE_0.240R0.12<br>9_PTH |                 |                 |                        |
| J1–J4, J6, J7,<br>J10, J11, J13,<br>J14, J15, J17,<br>J20, J22 | 14  | 142-0701-801       | SMA Jack, End<br>Launch                 | SMA_Jack_End_L<br>aunch  | Digi-key        | J502-ND         | Johnson<br>Components  |
| J5, J8, J9,<br>J12, J16, J18,<br>J19, J21, J23                 | 9   | 961103-6404-AR     | Header 3-pin                            | HDR_1X3_2P54             | Digi-Key        | 3M9448-ND       | 3М                     |
| J24                                                            | 1   | 571-0500           | Banana Jack,<br>Thru-Hole, Red          | con_571-0500             | Mouser          | 164-6219        | Deltron                |
| J25                                                            | 1   | 571-0700           | Banana Jack,<br>Thru-Hole,<br>Yellow    | con_571-0500             | Mouser          | 164-7170        | Deltron                |
| J26                                                            | 1   | 571-0100           | Banana Jack,<br>Thru-Hole,<br>Black     | con_571-0500             | Mouser          | 164-6218        | Deltron                |
| J27, J28                                                       | 2   | 961102-6404-AR     | Header 2-pin                            | HDR_1X2_2P54             | Digi-Key        | 3M9447-ND       | 3M                     |
| J29                                                            | 1   | USB-B1SMHSW6       | Conn, USB–B,<br>SMT                     | Con_USB_B_RA             | Digi-Key        | ED2994-ND       | On Shore<br>Technology |
| LED1                                                           | 1   | LTST-C190KGKT      | LED, Green                              | LED_0603                 | Digi-Key        | 160-1435-1-ND   | Lite-On                |
| M1–M8, M10                                                     | 9   | QPC02SXGN-RC       | Shunt                                   |                          | Digi-Key        | S9337-ND        | Sullins                |
| M9,<br>M11–M13                                                 | 4   | 1808               | Standoff,<br>4–40 1/4 × 5/8             |                          | Digi-Key        | 1808K-ND        | Keystone               |
| M14–M17                                                        | 4   | PMS 440 0025 PH    | Screw, 4–40 × 0.25, PHP                 |                          | Digi-Key        | H342-ND         | Building Fasteners     |
| PR1-PR6                                                        | 6   | No Part            | 4 Round Pads,<br>.060 with<br>.040 Hole | BERG_2X2_2P54            |                 |                 |                        |

#### Table 3. BILL OF MATERIALS FOR THE NB3N1900KMNGEVB

|  | Table 3. BILL OF MATERIALS FOR THE NB3N1900KMNGEVB | (continued) |
|--|----------------------------------------------------|-------------|
|--|----------------------------------------------------|-------------|

| Ref. Des.                                                                                                                                                                                                                      | Qty | Part#            | Value                    | PCB Footprint | Vendor   | Vendor PN     | Manufacturer     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--------------------------|---------------|----------|---------------|------------------|
| R1, R2, R5,<br>R6, R10, R11,<br>R14, R18,<br>R19, R22,<br>R25, R27,<br>R30, R31,<br>R32, R34,<br>R37, R39,<br>R41, R43,<br>R45, R48,<br>R51, R58,<br>R61, R65,<br>R69, R72,<br>R75, R77,<br>R79, R83,<br>R88, R92,<br>R95, R97 | 38  |                  | 33 Ω                     | R0402         | Digi-Key | P33JTR-ND     | Panasonic        |
| R3, R7, R16,<br>R20, R23,<br>R28, R33,<br>R35                                                                                                                                                                                  | 8   |                  | 49.9 Ω                   | R0402         | Digi-Key | P49.9LCT-ND   | Panasonic        |
| R4, R8, R17,<br>R21, R24,<br>R26, R29,<br>R36, R38,<br>R40, R42,<br>R40, R42,<br>R50, R52,<br>R54, R57,<br>R60, R62,<br>R66, R71,<br>R74, R76,<br>R78, R82,<br>R87, R90,<br>R94, R96,<br>R98                                   | 30  |                  | 49.9 Ω                   | R0402         | Digi-Key | P49.9LCT-ND   | Panasonic        |
| R9, R12,<br>R13, R15,<br>R46, R49,<br>R56, R59,<br>R70, R73,<br>R80, R84                                                                                                                                                       | 12  | CRCW04020000Z0ED | 0 Ω                      | R0402         | Digi-Key | 541-0.0JCT-ND | Vishay           |
| R63, R64                                                                                                                                                                                                                       | 2   | ERJ-3EKF49R9V    | 49.9 Ω                   | R0603         | Digi-Key | P49.9HCT-ND   | Panasonic        |
| R67, R68,<br>R85, R89                                                                                                                                                                                                          | 4   | ERJ-3GEYJ472V    | 4.7 kΩ                   | R0603         | Digi-Key | P4.7KGCT-ND   | Panasonic        |
| R81, R86                                                                                                                                                                                                                       | 2   | ERJ-3GEYJ472V    | 4.7 kΩ                   | R0603         | Dig-Key  | P4.7KGCT-ND   | Panasonic        |
| R91, R93                                                                                                                                                                                                                       | 2   | ERJ-3GEYJ2R2V    | 2.2 Ω                    | R0603         | Digi-Key | P2.2GCT-ND    | Panasonic        |
| R99                                                                                                                                                                                                                            | 1   | ERJ-2RKF4120X    | 475 Ω                    | R0402         | Digi-Key | P412LCT-ND    | Panasonic        |
| R100, R102                                                                                                                                                                                                                     | 2   | ERJ-2GE0R00X     | 0 Ω                      | R0402         | Digi-Key | P0.0JCT-ND    | Panasonic        |
| R101, R103                                                                                                                                                                                                                     | 2   | ERJ-2RKF69R8X    | 82.5 Ω                   | R0402         | Digi-Key | P69.8LCT-ND   | Panasonic        |
| R104–R106,<br>R108–R110                                                                                                                                                                                                        | 6   | ERJ-2GEJ103X     | 10 kΩ                    | R0402         | Digi-Key | P10KJCT-ND    | Panasonic        |
| R107                                                                                                                                                                                                                           | 1   | ERJ-2RKF1202X    | 12 kΩ                    | R0402         | Digi-Key | P12.0KLCT-ND  | Panasonic        |
| R111                                                                                                                                                                                                                           | 1   | ERJ-2GEJ471X     | 470 Ω                    | R0402         | Digi-Key | P470JCT-ND    | Panasonic        |
| R112                                                                                                                                                                                                                           | 1   | ERJ-2GEJ222X     | 2.2 kΩ                   | R0402         | Digi-Key | P2.2KJCT-ND   | Panasonic        |
| SG1-SG12                                                                                                                                                                                                                       | 12  | No Part          | Solder Gap               | R0201         |          |               |                  |
| TP1-TP22,<br>TP24, TP26,<br>TP28, TP29                                                                                                                                                                                         | 26  |                  | Test Pad<br>30 × 30 mil  | tp_30_30      |          |               |                  |
| TP23, TP25,<br>TP27,<br>TP30–TP34                                                                                                                                                                                              | 8   | 5015             | Test Point, SMT          | tp_70_135     | Digi-Key | 5015KCT-ND    | Keystone         |
| TP35, TP36                                                                                                                                                                                                                     | 2   | No Part          | Test Pad<br>30 × 60 mil  | tp_30_60      |          |               |                  |
| TP37-TP40                                                                                                                                                                                                                      | 4   | No Part          | Test Pad<br>50 × 100 mil | tp_50_100     |          |               |                  |
| U1                                                                                                                                                                                                                             | 1   | NB3N1900KMNG     | DNI<br>NB3N1900K         | QFN_72P_0P5MM | _        | -             | ON Semiconductor |

| Ref. Des. | Qty | Part#                 | Value             | PCB Footprint         | Vendor           | Vendor PN          | Manufacturer     |
|-----------|-----|-----------------------|-------------------|-----------------------|------------------|--------------------|------------------|
| U2        | 1   | FT2232HQ-REEL         | FT2232H           | QFN_64_0p5            | Digi-Key         | 768-1025-1-ND      | FTDI             |
| U3        | 1   | 93LC46BT-I/ST         | 93LC46B           | TSSOP_8_4p4W_<br>0P65 | Digi-Key         | 93LC46BT-I/STCT-ND | Microchip        |
| U4        | 1   | NCP4586DSN33T1G       | NCP4586,<br>3.3 V | SOT23_5p              | ON Semiconductor | NCP4586DSN33T1G    | ON Semiconductor |
| Y1        | 1   | ABM8G-12.000MHZ-4Y-T3 | 12 MHz            | Cry-4p-SMD1           | Digi-Key         | 535-10901-1-ND     | Abracon Corp     |

#### Table 3. BILL OF MATERIALS FOR THE NB3N1900KMNGEVB (continued)

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product caret a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC bor and surgical implant into the personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC may and of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC towas not or feasible in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative