# Auto Gain Control using the NSVP264SDSF3, NSVR351SDSA3 and NCV2904



www.onsemi.com

# APPLICATION NOTE

#### Overview

This application note explains about an Auto Gain Control (AGC) for FM Radio Frequency using ON Semiconductor's NSVP264SDSF3, NSVR351SDSA3 and NCV2904.

NSVP264SDSF3 is a dual type PIN diode best suited for high-frequency applications which is assembled in the 3-pin surface mount package.

For information about the performance, please refer to the datasheet of this product.

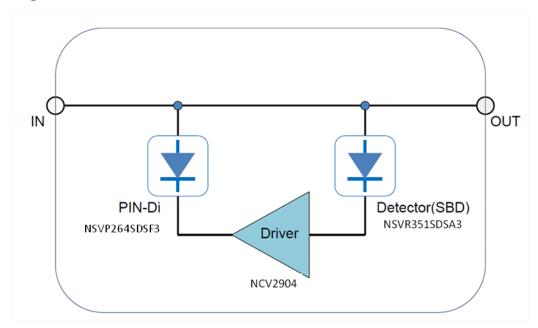
NSVR351SDSA3 is a dual type silicon schottky barrier diode best suited for high-frequency applications which is assembled in the 3-pin surface mount package.

For information about the performance, please refer to the datasheet of this product.

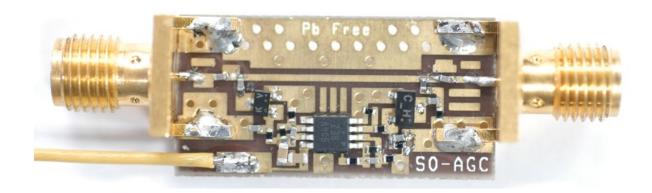
NCV2904 is a Single Supply Dual Operational Amplifiers which is assembled in the 8-pin surface mount package.

For information about the performance, please refer to the datasheet of this product.

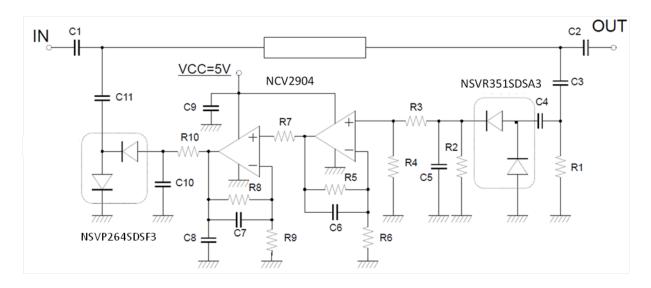
The evaluation board is adjusted to achieve the most suitable performance on FM Radio Frequency (90 MHz).


A standard material FR4 is used for the printed circuit board (PCB). Please note that the losses of the PCB and the SMA connector are not excluded from the Power level.

## ■ Summary of Data


Ta = 25°C, Circuit Voltage = 5.0 V, f = 90 MHz

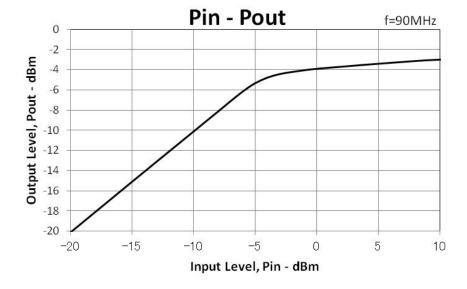
| Parameter       | Symbol | Result |       |      | Unit  |     |
|-----------------|--------|--------|-------|------|-------|-----|
| Circuit Current | Icc    | 0.40   | 0.45  | 0.66 | 1.62  | mA  |
| Input Power     | Pin    | -20.1  | -10.0 | 0.0  | 9.9   | dBm |
| Output Power    | Pout   | -20.2  | -10.2 | -3.9 | -3.0  | dBm |
| Power Gain      | Ga     | -0.1   | -0.1  | -3.9 | -13.0 | dBm |


# ■ Block Diagram

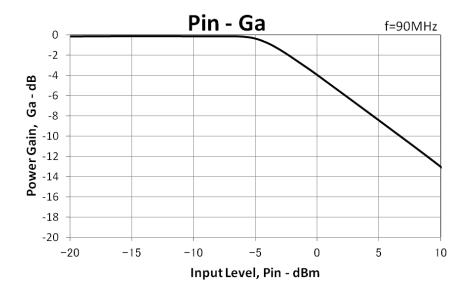


#### **■** Evaluation Board

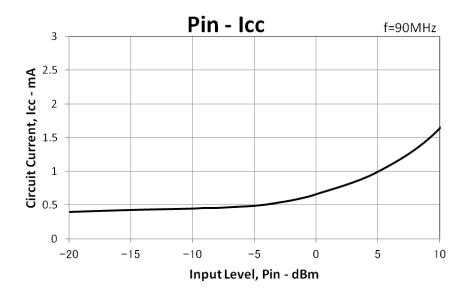



# ■ Circuit Design




#### **■** Bill of Materials

| Part      | Ref.     | Size           | Specification | Manufacturer       |
|-----------|----------|----------------|---------------|--------------------|
| PIN-Di    | _        | MCP            | NSVP264SDSF3  | ON Semiconductor   |
| Driver    | _        | Micro8         | NCV2904       | ON Semiconductor   |
| Detector  | _        | СР             | NSVR351SDSA3  | ON Semiconductor   |
| Resistor  | R1       | 1005           | 68 Ω          | Various            |
|           | R2       | 1005           | 470 kΩ        | Various            |
|           | R3       | 1005           | 1.2 kΩ        | Various            |
|           | R4       | 1005           | 82 kΩ         | Various            |
|           | R5       | 1005           | 33 kΩ         | Various            |
|           | R6       | 1005           | 3.9 kΩ        | Various            |
|           | R7       | 1005           | 220 Ω         | Various            |
|           | R8       | 1005           | 47 kΩ         | Various            |
|           | R9       | 1005           | 3.9 kΩ        | Various            |
|           | R10      | 1005           | 68 Ω          | Various            |
| Capacitor | C1, C2   | 1005           | 1000 pF       | TAIYOYUDEN         |
|           | C3       | 1005           | 4 pF          | TAIYOYUDEN         |
|           | C4 to C7 | 1005           | 1000 pF       | TAIYOYUDEN         |
|           | C8, C9   | 1608           | 0.1 μF        | ROHM MCH182CN104KK |
|           | C10, C11 | 1005           | 1000 pF       | TAIYOYUDEN         |
| Material  | _        | 25.4 x 12.7 mm | FR4           |                    |


#### ■ Pin - Pout



#### **■** Power Gain



#### **■ Circuit Current**



ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer