FM Radio Amplifier with Filter using the NSVF6003SB6

ON Semiconductor®

APPLICATION NOTE

www.onsemi.com

Overview

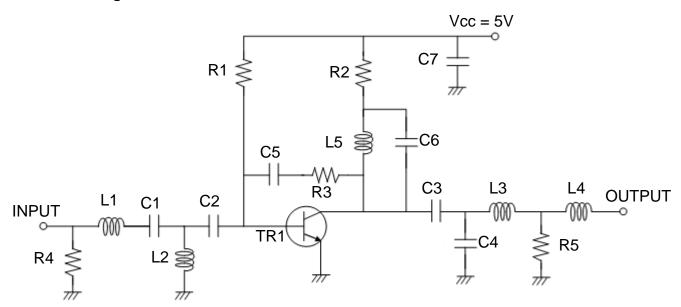
This application note explains about ON Semiconductor's NSVF6003SB6 which is used as a Low Noise Amplifier (LNA) for FM Radio.

The NSVF6003SB6 is a silicon bipolar transistor best suited for highfrequency applications which is assembled in the 6-pin surface mount package of the high collector dissipation.

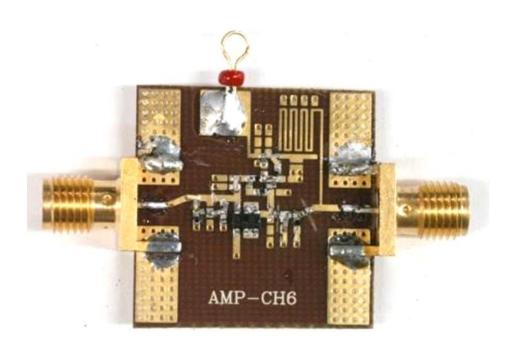
For information about the performance, please refer to the datasheet of this product.

Since the evaluation board is adjusted to achieve optimal performance in worldwide FM band, the product can provide 16.5 dB gain and 2.1 dB noise figure.

A standard material FR4 is used for the printed circuit board (PCB). Please note that the losses of the PCB and the SMA connector are not excluded from the noise figure.

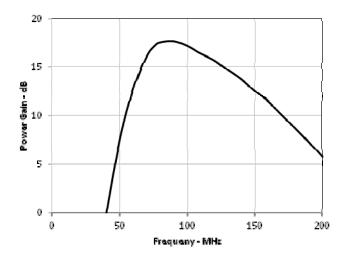

■Summary of Data

Ta = 25°C, Input Power = -30 dBm, Zo = 50Ω


Parameter	Symbol	Condition	Result	Unit
DC Voltage	Vcc		5	V
DC Current	Icc		13.2	mA
Power Gain		f = 76 MHz	17.2	
	Gp	f = 90 MHz	17.6	dB
		f = 108 MHz	16.5	
Noise Figure		f = 76 MHz	2.11	
	NF	f = 90 MHz	1.75	dB
		f = 108 MHz	1.75	
Input Return Loss		f = 76 MHz	12.4	
	RLin	f = 90 MHz	13.5	dB
		f = 108 MHz	10.0	
Output Return Loss	RLout	f = 76 MHz	7.0	
		f = 90 MHz	11.5	dB
		f = 108 MHz	9.5	
Isolation		f = 76 MHz	36.8	
	ISL	f = 90 MHz	35.0	dB
		f = 108 MHz	34.8	
Gain 1dB Compression Input Power	Pin1dB	f = 100 MHz	-18	dBm
Input 3rd order Intercept Point	IIP3	f1 = 100 MHz f2 = 101 MHz Pin = -35dBm	-10	dBm

^{*} Noise Figure includes the loss of PCB and SMA connector.

■ Circuit Design


■ Evalution Board

■ Bill of Materials

Item	Symbol	Value	Manufacture	Size
Bip-Tr	TR1	NSVF6003SB6	ON Semiconductor	SC-62
Capacitor	C1	22 pF	Murata GRM155	1005
	C2	82 pF	Murata GRM155	1005
	C3	22 pF	Murata GRM155	1005
	C4	2 pF	Murata GRM155	1005
	C5	10 pF	Murata GRM155	1005
	C6	0.1 uF	Murata GRM155	1005
	C7	0.1 uF	Murata GRM155	1005
Resistor	R1	39 kΩ	Various	1005
	R2	39 Ω	Various	1005
	R3	2.2 kΩ	Various	1005
	R4	100 kΩ	Various	1005
	R5	100 kΩ	Various	1005
Inductor	L1	100 nH	TDK MLG1005S	1005
	L2	82 nH	TOKO LL1005-FH	1005
	L3	100 nH	TOKO LL1608-FS	1608
	L4	39 nH	TDK MLG1005S	1005
	L5	100 nH	TOKO LL1608-FS	1608
Material		FR-4		25 x 16 mm

■ Measurement Results

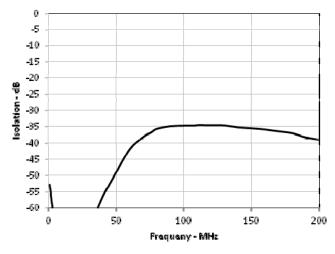


Figure 1 Power Gain vs. Frequency

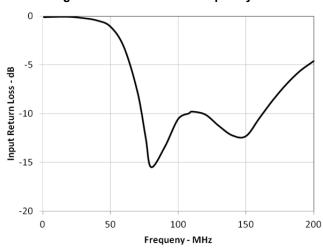


Figure 2 Isolation vs. Frequency

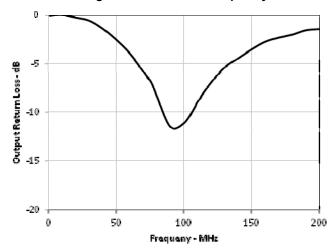


Figure 3 Input Return Loss vs. Frequency

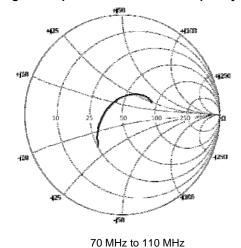


Figure 4 Output Return Loss vs. Frequency

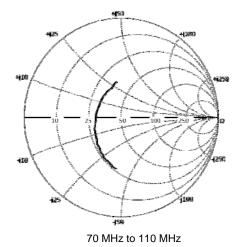


Figure 5 Smith Chart S11

Figure 6 Smith Chart S22

■ Measurement Results

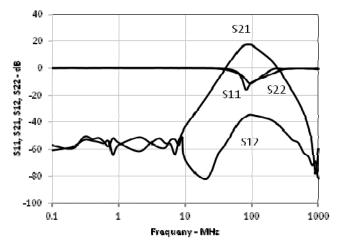


Figure 7 Noise Figure vs. Frequency

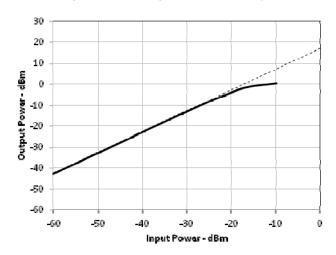


Figure 9 Output Power vs. Input Power

Figure 8 Wide Span

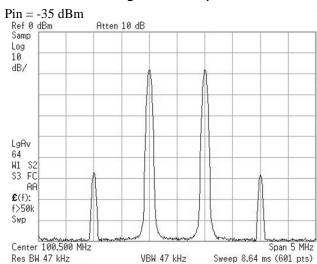


Figure 10 Input 3rd order Intercept Point

APPLICATIONS INFORMATION

Gain 1dB Compression Input Power (Pin1dB)

Pin1dB is measured the input power level when the power gain increase more 1 dB than that of linear range.

Input 3rd order Intercept Point (IIP3)

IIP3 is defined by the following equations.

IIP3 = Pin + (IM3 / 2)

(eq. 1)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer