High Efficiency, <30 mW No-load PFC

ON Semiconductor®

www.onsemi.com

DESIGN NOTE

Table 1. DEVICE DETAILS

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1615C	Adapter	85 to 265 Vac	Up to 120 W	PFC	Non-isolated
	Characteristic		Output Specification		
	Output Voltage		400 Vdc Nominal		
	Nominal Current		300 mA		
	No Load Standby		< 30 mW		
	Min Current		Zero		

Description

The NCP1615C is a high voltage PFC controller designed to drive PFC boost stages based on an innovative Current Controlled Frequency Foldback (CCFF) method. In this mode, the circuit classically operates in critical conduction mode (CrM) when the inductor current exceeds a programmable value. When the current is below this preset level, the NCP1615C linearly decays the frequency down to a minimum of about 26 kHz when the input current is zero. CCFF maximizes the efficiency at both nominal and light load. In particular, the standby losses are reduced to a minimum. An innovative circuitry allows near-unity power factor even when the switching frequency is reduced.

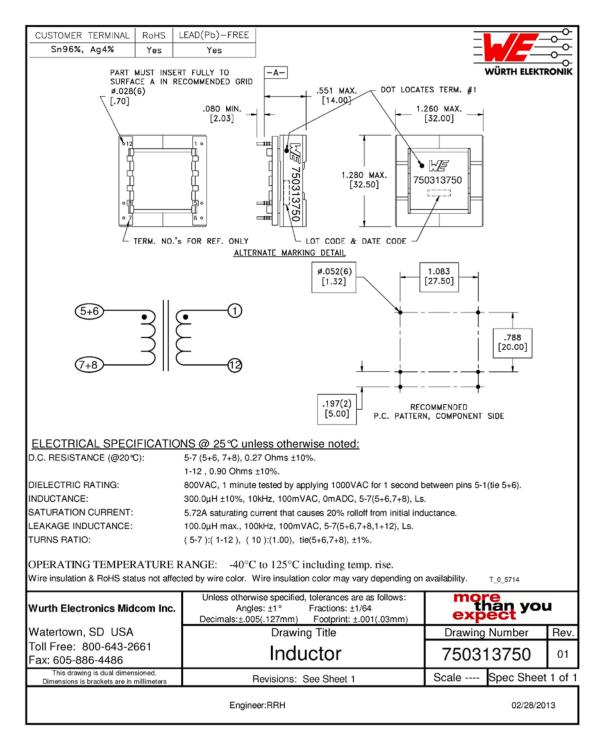
The integrated high voltage startup circuit eliminates the need for external startup components and consumes negligible power during normal operation. Housed in a SOIC-16 package, the NCP1615C also incorporates the features necessary for robust and compact PFC stages, with few external components.

Key Features

- High Voltage Startup Circuit
- Critical Conduction Mode (CrM)
- Novel CCCF Based Control Scheme Maximizes Efficiency Across Line and Load
- Skip Mode Near the Line Zero Crossing
- Fast Line/Load Transient Compensation (Dynamic Response Enhancer)
- Valley Turn On
- Input Voltage Range Detection
- PFCOK Signal
- Input to Force Controller into Standby Mode
- Input Filter Capacitor (X2) Discharge Circuitry Enables Very Low Standby Power Applications
- Line Removal Detection to Reset the Downstream Converter
- Power Savings Mode Enables < 30 mW No-Load Power

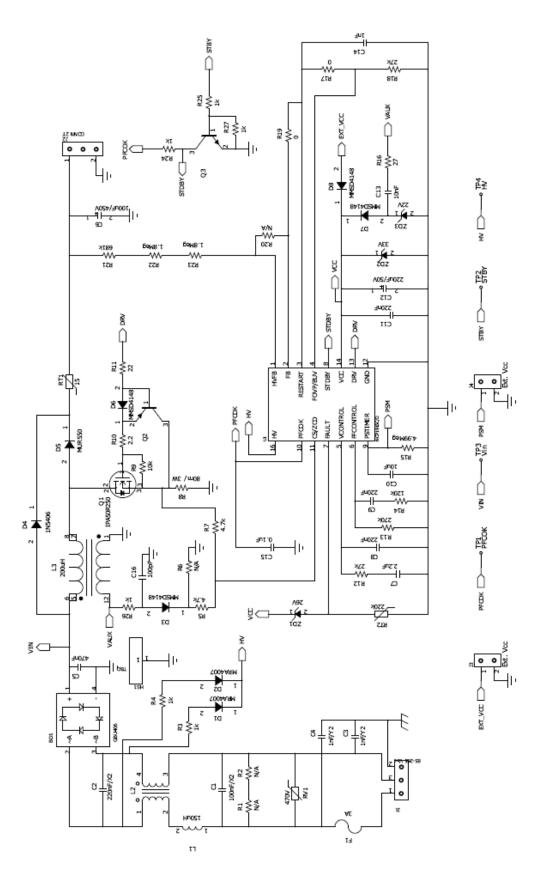
Safety Features

- Restart Pin Allows Adjustment of Bulk Voltage Hysteresis in Standby Mode
- Adjustable Bulk Undervoltage Detection (BUV)
- Soft Overvoltage Protection
- Integrated Brownout Detection
- Overcurrent Protection
- Open Pin Protection for FB and BUV Pins
- Internal Thermal Shutdown
- Latch Input
- Low Power Mode Operation if the Bypass Diode is Shorted

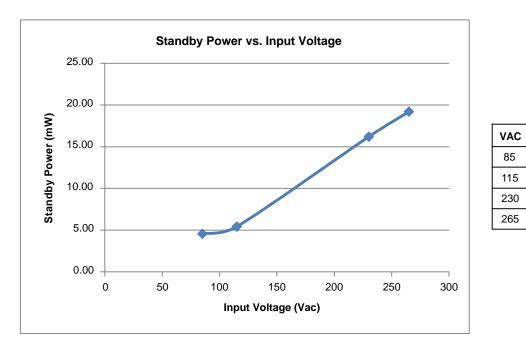

- Open Ground Pin Fault Monitoring
- Line Overvoltage Detection

Instructions

- Always Use an Isolated AC Supply when Testing
- When Operating with Ext. Vcc Bias (J3), it is Important to Connect the AC Line Voltage First, then Connect


External Vcc. Failure to Do This will Activate the Line Removal Detection Feature, and the Board will Not Start until Vcc is Discharged to ~4.5 V

- To Enter Power Savings Mode (PSM), Remove the Jumper Labeled "PSM" (J4)
- To Enter Standby Mode, Apply 5 V to the Test Point Labeled "STDBY"



TRANSFORMER DESIGN

CIRCUIT SCHEMATIC

VAC	Pin (W)	lo (mA)	Vout (V)	Po (W)	Eff (%)
85	31.0	71.2	397.8	28.3	91.4
85	62.4	146.5	397.9	58.3	93.5
85	94.0	221.3	398.0	88.1	93.7
85	126.2	296.5	398.1	118.0	93.5
115	30.9	71.7	398.2	28.6	92.3
115	61.6	146.1	398.3	58.2	94.4
115	92.6	220.9	398.3	88.0	95.0
115	124.0	296.5	398.3	118.1	95.2
230	30.2	71.4	398.2	28.4	94.2
230	62.0	146.4	398.2	58.3	94.1
230	92.3	221.9	398.3	88.4	95.8
230	122.4	296.5	398.3	118.1	96.5
265	30.1	71.8	398.3	28.6	95.0
265	61.3	147.1	398.2	58.6	95.6
265	92.1	221.9	398.3	88.4	96.0
265	122.3	297.2	398.3	118.4	96.8

Pin (mW)

4.55

5.42

16.2

19.2

Average efficiency = 94.57%

Figure 2. Efficiency

POWER SAVINGS MODE

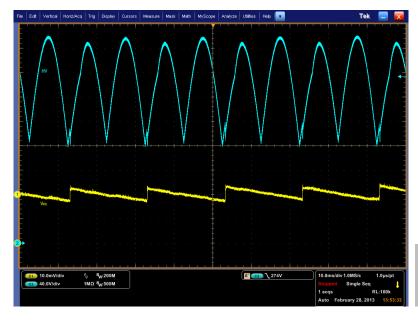
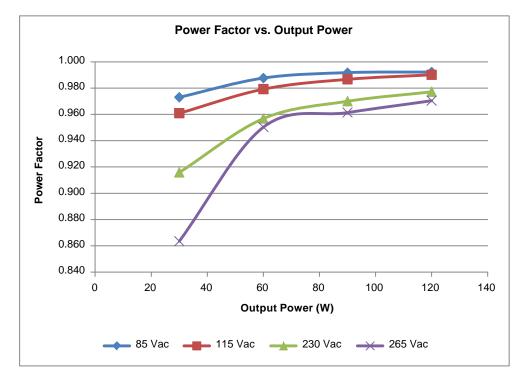
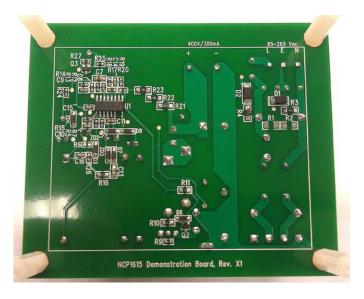
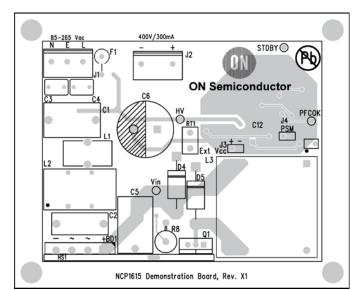
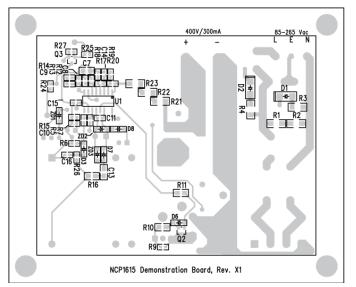



Figure 3. Power Savings Mode

- V_{CC} is regulated at V_{CC(PS_on)}, typically 11 V, by turning on the HV start-up circuit at the valley of every half-cycle.
- The start-up circuit turns on at the valley of every half-cycle provided that V_{CC} is below V_{CC(PS_on)}.
- The start-up circuit is disabled once V_{CC} exceeds V_{CC(PS_on)}. There is no hysteresis in the comparator ensuring that V_{CC} will be below the V_{CC(PS_on)} regulation level during the next half-cycle.
- Measured data with 2-wire connection: - 5.42 mW at 115 Vac
 - 16.2 mW at 230 Vac
 - V_{CC} in Regulation Ch. 1 (Yellow): V_{CC} (AC Coupled) Ch. 2 (Blue): HV


POWER FACTOR


VAC	Pin (W)	Po (W)	PF
85	31.0	28.3	0.973
85	62.4	58.3	0.988
85	94.0	88.1	0.992
85	126.2	118.0	0.992
115	30.9	28.6	0.961
115	61.6	58.2	0.979
115	92.6	88.0	0.987
115	124.0	118.1	0.990
230	30.2	28.4	0.916
230	62.0	58.3	0.957
230	92.3	88.4	0.970
230	122.4	118.1	0.977
265	30.1	28.6	0.864
265	61.3	58.6	0.950
265	92.1	88.4	0.961
265	122.3	118.4	0.970


Figure 4. Power Factor

DEMO BOARD

BILL OF MATERIALS

Table 2. BILL OF MATERIALS

Qty	Ref		Component Type	Value	Rating	Pkg/Dimensions	P/N	Supplier
1	L1	-	DM Choke	150 μH		7447021_WURTH	7447021	WURTH
1	L2	-	CM Choke	8.5 mH		IND_744823210	744823210	WURTH
1	L3	-	PFC Transformer	300 μH		EFD-30	750313750	WURTH
1	C1	-	X2	100 nF	305 Vac	5 x 10.5 x 18 mm	B32922C3104M	
1	C2	-	X2	220 nF	305 Vac	7 x 12.5 x 18 mm	B32922C3224M	
1	C10	SMT	Ceramic	10 μF	6.3 V	C0603W	C1608X5R0J106K080AB	TDK
1	C16	SMT	Ceramic	100 pF	50 V	C0603W	C1608X7R1H101K	TDK
1	C15	SMT	Ceramic	100 nF	50 V	C0603W	C1608X7R1H104K080AA	TDK
3	C8, C9, C11	SMT	Ceramic	220 nF	50 V	C0603W	C1608X7R1H224K080AB	TDK
1	C7	SMT	Ceramic	2.2 μF	16 V	C0805W	C2012X7R1C225K125AB	TDK
1	C13	SMT	Ceramic	10 nF	50 V	C0805W	C2012X7R1H103K	TDK
1	C14	SMT	Ceramic	1 nF	50 V	C0603W	CGA3E2X7R1H102K080AA	TDK
2	C3, C4	-	Y2	1 nF	250 Vac	5 mm	DE2E3KY102MA2BM01	Murata
1	C5	-	MKP	470 nF	400 V	15 mm	ECW-F4474JL	Panasonic
1	C6	-	Electrolytic	100 μF	450 V	18 x 40 mm	EKXG451ELL101MM40S	UCC
1	C12	-	Electrolytic	220 μF	35 V	8 x 15 mm	EKY-350ELL221MH15D	UCC
1	F1	-	Fuse	3 A	250 V/3 A	2AG	0224003.HXP	LITTELFUSE
1	RV1	-	MOV	2.5 kA	470 V	10 mm	S10K300	EPCOS
2	R1, R2	SMT	Resistor	Open		R1206W		
2	R6, R20	SMT	Resistor	Open		R0603W		
2	R17, R19	SMT	Resistor	0		R0603W	CRCW06030000Z0EA	Vishay/Dale
1	R9	SMT	Resistor	10 kΩ		R0603W	CRCW060310K0FKEA	Vishay/Dale
1	R14	SMT	Resistor	120 kΩ		R0603W	CRCW0603120KFKEA	Vishay/Dale
4	R24, R25, R26, R27	SMT	Resistor	1 kΩ		R0603W	CRCW06031K00FKEA	Vishay/Dale
1	R13	SMT	Resistor	270 kΩ		R0603W	CRCW0603270KFKEA	Vishay/Dale
2	R12, R18	SMT	Resistor	27 kΩ		R0603W	CRCW060327K0FKEA	Vishay/Dale
2	R5, R7	SMT	Resistor	4.7 kΩ		R0603W	CRCW06034K70FKEA	Vishay/Dale
1	R15	SMT	Resistor	4.99 MΩ		R0603W	CRCW06034M99FKEA	Vishay/Dale
1	R11	SMT	Resistor	22 Ω		R0805W	CRCW080522R0JNEA	Vishay/Dale
1	R16	SMT	Resistor	27 Ω		R0805W	CRCW080527R0JNEA	Vishay/Dale
1	R10	SMT	Resistor	2.2 Ω		R0805W	CRCW08052R20JNEA	Vishay/Dale
2	R3, R4	SMT	Resistor	1 kΩ		R1206W	CRCW12061K00JNEA	Vishay/Dale
2	R22, R23	SMT	Resistor	1.8 MΩ		R1206W	CRCW12061M80JNEA	Vishay/Dale
1	R21	SMT	Resistor	681 kΩ		R1206W	CRCW1206681KFKEA	Vishay/Dale
1	R8	-	Resistor	100 mΩ		3 W	LOB3R100FLFLT	TT Electronics
1	RT1	-	NTC	10 Ω		5 mm	B57153S0100M000	EPCOS
1	RT2	-	NTC	220 kΩ		2.5 mm	NTCLE100E3224JB0	Vishay/Dale
1	Q3	SMT	NPN	MMBT3904L	40 V/200 mA	SOT-23	MMBT3904LT1G	ON Semiconducto
1	Q2	SMT	PNP	MMBT589	30 V/1 A	SOT-23	MMBT589LT1G	ON Semiconducto

Qty	Ref		Component Type	Value	Rating	Pkg/Dimensions	P/N	Supplier
1	D4	-	Fast Acting	1N5406	600 V/3 A	DO201AD	1N5406G	ON Semiconductor
1	BD1	-	Bridge	GBU406	600 V/4 A	18.5 x 22 mm	GBU406	Diodes
4	D3, D6, D7, D8	SMT	General Purpose	MMSD4148	100 V/200 mA	SOD-123	MMSD4148T1G	ON Semiconductor
1	ZD3	SMT	Zener	22 V	500 mW	SOD-123	MMSZ22T1G	ON Semiconductor
1	ZD1	SMT	Zener	27 V	500 mW	SOD-123	MMSZ27T1G	ON Semiconductor
1	ZD2	SMT	Zener	33 V	500 mW	SOD-123	MMSZ33T1G	ON Semiconductor
2	D1, D2	-	Rectifier	MRA4007	1000 V/1 A	SMA	MRA4007T3G	ON Semiconductor
1	D5	-	Fast Acting	MUR550	520 V/5 A	DO201AD	MUR550APFRLG	ON Semiconductor
1	U1	-	PFC Controller	NCP1615C		SO16NB_LESS_PIN_15	NCP1615CDR2G	ON Semiconductor
1	Q1	-	HV MOSFET	IPA50R250CP	500 V/13 A	TO-220FP	IPA50R250CP	Infineon
4	TP1, TP2, TP3, TP4	-	Test Point			TESTPOINT		
2	J3, J4	-	SIP-2P			0.1" Pitch	104351–1	TE Connectivity
1	J2	-	2T Screw Block			10 mm Pitch	ED200/2DS	On Shore Technology
1	J1	-	3T Screw Block			5 mm Pitch	OSTTA030161	On Shore Technology
4	J5, J6, J7, J8	-	Standoff			MTGNP685H370V6P	4820	Keystone Electronics
1	HS1	-	Heatsink			Cut to fit		

Table 2. BILL OF MATERIALS (continued)

REFERENCES

[1] NCP1615 Datasheet (NCP1615/D)

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC barduets for any such unintended or unauthorized application. Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regard

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative