Using the AX-SFJK / AX-SFJK-API under ARIB STD-T108

ON Semiconductor®

www.onsemi.com

APPLICATION NOTE

ABSTRACT

This application note outlines the expected performance when operating the AX–SFJK / AX–SFJK–API SigfoxTM verified transceiver under ARIB STD–T108 v1.0. Lab measurements show that the AX–SFJK / AX–SFJK–API meet the ARIB STD–108 requirements. The evaluation kit DVK–SFJK–1–GEVK v1.0 (PCB marked F143–MINI–DVK–ARIB REV 1.0) was used for measurements.

ARIB-STD-T108 REQUIREMENTS

The AX–SFJK / AX–SFJK–API transmit at 923.2 MHz with transmit power < 20 mW (13 dBm). It operates under the ARIB–STD–T108 as a "Low Power Radio Station" in the frequency band 922.3 MHz < f < 928.1 MHz, using one unit radio channel of 200 kHz BW centered at 923.2 MHz. The corresponding spectral mask defining the limits for TX operation is given in Table 1 and Figure 1: The limit on emissions into the lower and upper adjacent channels is –15 dBm. Below the lower adjacent channel and above the upper adjacent channel the –36 dBm limit from the 915 MHz to 930 MHz band applies. N = 1 for AX–SFJK / AX–SFJK–API.

Table 3-16 Permissible Values for Unwanted Emission Intensity (A	Antenna inj	out)
--	-------------	------

Frequency band	Spurious emission strength (average power)	Reference bandwidth
f <= 710 MHz	-36 dBm	100 kHz
710 MHz < f <= 900 MHz	-55 dBm	1M Hz
900 MHz < f <= 915 MHz	-55 d Bm	100 kHz
915 MHz < f <= 930 MHz* (Except for $ f \cdot fc <= (200+100 \times n) \text{ kHz}$ if bandwidth of unit radio channel is 200 kHz, except for $ f \cdot fc <= (100+50 \times n) \text{ kHz}$ if bandwidth of unit radio channel is 100 kHz. Except for $ f \cdot fc <= (100+100 \times n) \text{ kHz}$ if frequency band is 915.9MHz <= f <= 916.9MHz and 920.5MHz <= 922.3MHz. Where n is a number of unit radio channels constituting the radio channel and is an integer from 1 to 5)	—36 dBm	100 kHz
930 MHz < f <= 1000 MHz	-55 dBm	100 kHz
1000MHz < f <= 1,215 MHz	-45 dBm	1M Hz
1,215 MHz < f	-30 dBm	1M Hz

* Permissible Values for Unwanted Emission Intensity in 915 MHz < f <= 925 MHz

shall be -55 dBm/100 kHz, before July 24, 2012.

 Table 1: Permissible Values for Unwanted Emission Intensity. For AX–SFJK / AX–SFJK–API operation at 923.2 MHz

 the bandwidth of the unit radio channel is 200 kHz and n = 1. The RMS detector should be used.

(Note: Center frequency is one of frequencies shown in Table 3.11 to Table 3.15 of

3.2.3 Radio channel and n is a number of unit radio channels constructing

a radio channel.)

Figure 1. The limit on emissions into the lower and upper adjacent channels is –15 dBm. Below the lower adjacent channel and above the upper adjacent channel the –36 dBm limit from the 915 MHz to 930 MHz band applies. N = 1 for AX–SFJK / AX–SFJK–API.

Conducted TX Measurement Results

The following figures display the results of conducted measurements on the AX-SFJK evaluation kit

DVK–SFJK–1–GEVK v1.0 (PCB marked F143–MINI–DVK–ARIB REV 1.0), showing compliance with the limits described above.

Figure 2. Channel power measurement. The regulatory limit is 13 dBm.

Emissions in the spurious domain

Figure 3. Spurious emission 40 MHz – 915 MHz. The transmit frequency is 923.2 MHz. (Note: The region from 710 MHz – 900 MHz shall be measured with RBW = 1 MHz, rather than 100 kHz. It is shown separately in Figure 4).

Figure 4. Spurious emission 710 MHz – 900 MHz. The transmit frequency is 923.2 MHz.

The device uses one unit radio channel of 200 kHz BW centered at 923.2 MHz. The regulatory limit is -36dBm in 100 kHz RBW from 915.0 to 922.9 MHz and from 923.5 MHz to 930.0 MHz. The measurement was performed with RBW= 3 kHz. The red limit line represents the limits from Figure 1 corrected by 15.2 dB = 10*Log10(100/3) dB to account for the difference in RBW. (The corrected limit line applies to continuous energy, rather than localized peaks. The + 13dBm in–band region is not corrected.) The two

spectra show transmissions at the edges of the frequency range utilized by the device, 923.2 MHz +/– 96 kHz, to show compliance at the most critical points (922.9 MHz and 923.5 MHz). Note: In the default configuration the device only transmits at 923.2 MHz +/– 18 kHz. The +/– 96 kHz represent a possible future extension of the Sigfox standard. The regions from 915.0 MHz – 922.2 MHz and 924.2 MHz – 930.0 MHz are not displayed. There are no significant peaks in this region.

Figure 6. Spurious emission 930 MHz – 1000 MHz. The transmit frequency is 923.2 MHz.

Figure 7. Spurious emission 1000 MHz – 5000 MHz. Transmit frequency is 923.2 MHz.

Table 1: Adjacent channel leakage power. TX of modulated carrier at the center frequency 923.2 MHz as well as at the highest and lowest frequencies utilized by the device, 923.2 MHz +/- 96 kHz. The regulator limit is -15 dBm.

Channel	Energy [dBm]	Measurement Conditions	
Lower Adjacent Channel (922.9 MHz – 923.1 MHz)	-45.6	TX modulated carrier (AT\$CB=-1,1) at 923.2 MHz, RBW=1 kHz, VBW = 3 kHz, detector RMS	
Upper Adjacent Channel (923.3 MHz – 923.5 MHz)	-45.7	TX modulated carrier (AT\$CB=-1,1) at 923.2 MHz, RBW=1 kHz, VBW = 3 kHz, detector RMS	
Lower Adjacent Channel (922.9 MHz – 923.1 MHz)	-35.4	TX modulated carrier (AT\$CB=-1,1) at 922.24 MHz, RBW=1 kHz, VBW = 3 kHz, detector RMS	
Upper Adjacent Channel (923.3 MHz – 923.5 MHz)	-34.7	TX modulated carrier (AT\$CB=-1,1) at 923.296 MHz, RBW=1 kHz, VBW = 3 kHz, detector RMS	

Reducing spurious emissions

The spectrum of the AX–SFJK / AX–SFJK–API (evaluation kit DVK–SFJK–1–GEVK v1.0, PCB marked F143–MINI–DVK–ARIB REV 1.0) contains a spurious peak 48 MHz above the carrier frequency, at 971.2 MHz. The power of this spur is close to the regulatory limit of –55dBm, according to Figure 6. In typical applications this spur is suppressed be the limited bandwidth of the antenna.

However, if necessary, this peak can be reduced by increasing the filtering action of filter stage adjacent to the antenna (see Figure 8). This is a low pass filter with a notch around 1230 MHz. The parallel tank LF1 \parallel CF3 determines the position of the notch. The capacitors CF1 and CF2 determine the steepness and depth of the notch. It is recommended to adjust the values of CF1 and CF2.

Change	Measured reduction of spur at 971.2 MHz	Measured reduction of TX power at 923.2 MHz
CF1, CF2 4 pF \rightarrow 4.7 pF	1.5 dB	0.25 dB
CF1, CF2 4 pF → 5.6 pF	3 dB	0.5 dB

Figure 8. Low pass filter used in evaluation kit DVK–SFJK–1–GEVK v1.0. (PCB marked F143–MINI–DVK–ARIB REV 1.0).

References <u>ARIB STD-T108 English Translation</u>

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and tesification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and d

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative