				Lī	ΓR				DESC	RIPTI	ON				D	ATE		-	APPR	OVED)
				I		I								I			ı				
enareo	d in acco	rdance	with AS	ME Y1	4 24												Ve	ndor it	em di	rawing	
	d in accoi	rdance	with AS	ME Y1	4.24												Ve	ndor it	em dı	rawing	<u> </u>
EV	d in accor	rdance	with AS	ME Y1	4.24												Ve	ndor it	em di	rawing	l
EV AGE	d in accor	rdance	with AS	ME Y1	4.24												Ve	ndor it	em di	rawing	1
EV AGE EV	d in accor	rdance	with AS	ME Y1	4.24												Ve	ndor it	em di	rawing	
EV AGE EV AGE			with AS	ME Y1	4.24												Ve	ndor it	em di	rawing	
EV AGE EV AGE	ATUS	F		ME Y1	4.24	2	3	4	5	6	7	8	9	10	11	12	Ve	ndor it	em di	rawing	
EV AGE EV AGE EV ST/F PAG	ATUS ES	F	REV		1		3	4	5	6	7	8	9				13	14	em di	rawing	
EV AGE EV AGE EV ST/F PAG	ATUS ES	F	REV	ME Y1	1 ED BY	,	3 Nguy		5	6	7	8	C	DLA OLUN	LAND IBUS,	AND OHIC	13 MARI 0 432	14 TIME 18-399	90	rawing	
EV AGE EV AGE EV ST/F PAG	ATUS ES	F	REV PAGE PR	EPARE	1 ED BY	,			5	6			C	DLA OLUN	LAND IBUS,	AND	13 MARI 0 432	14 TIME 18-399	90	rawing	
EV AGE EV AGE EV ST/F PAG MIC N/	ATUS ES	F	REV PAGE PR		1 ED BY	Phu H.	Nguy	en	5	6	TIT	LE	C http	DLA OLUN	LAND IBUS, w.land	AND OHIC	13 MARI 0 432	14 ITIME 18-399 ne.dla	90 .mil/		
EV AGE EV ST/F PAG MIC N//	ATUS ES ZA	F F	REV PAGE PR	EPARE	1 ED BY	Phu H. Phu H.		en	5	6	TITI MIC	L E	c http	DLA OLUN :://ww	LAND IBUS, w.land	AND OHIC dandm	13 MARI 0 432	14 TIME 18-399 ne.dla	90 .mil/	D, 14	1-
EV AGE EV AGE EV ST/F PAG MIC N//	ATUS ES	F F	REV PAGE PR	EPARE	1 ED BY FED BY	Phu H. Phu H.	Nguy	en en	5	6	TITI MIC BIT	L E CROC , 125	http SIRCU	DLA OLUN O://ww JIT, [LAND MBUS, w.land	AND OHIC dandm	13 MARI 9 432 naritin	14 TIME 18-399 ne.dla	eo .mil/	D, 14 LOG-	4- -TC
EV AGE EV AGE EV ST/F PAG MIC N//	ATUS ES ZA	F F	REV PAGE PR	EPARE	1 ED BY FED BY	Phu H. Phu H.	Nguy	en en	5	6	TITI MIC BIT	L E CROC , 125	http SIRCU	DLA OLUN O://ww JIT, [LAND MBUS, w.land	AND OHIC dandm	13 MARI 9 432 naritin	14 TIME 18-399 ne.dla	eo .mil/	D, 14	4- -TC
AGE EV STAGE EV STAGE MIC NA	ATUS ES ZA	F F	PAGE PR	EPARE	1 D BY F ED BY Th	Phu H. Phu H. homas	Nguy	en en	5	6	TITI MIC BIT DIG	L E CROC , 125	http SIRCU	DLA COLUN D://www JIT, [PS SI NVER	LAND IBUS, w.land DIGIT ERIA RTER	AND OHIC dandm AL-L L LV	13 MARI 0 4320 naritin	14 TIME 18-399 ne.dla	eo .mil/	D, 14 LOG-	1- -TC
AGE EV STAGE EV STAGE MIC NA	ATUS ES ZA	F F	PAGE PR CH	EPARE	1 D BY F ED BY Th	Phu H. Phu H. homas	Nguyo Nguyo s M. Ho	en en	5	6	TITI MIC BIT DIG	LE CROC , 125	http SIRCU	DLA COLUN D://www JIT, [PS SI NVER	LAND IBUS, w.land DIGIT ERIA RTER	AND OHIC dandm	13 MARI 0 4320 naritin	14 TIME 18-399 ne.dla	eo .mil/	D, 14 LOG-	1- -TO
EV AGE EV AGE EV STAFF PAG MIC NA	ATUS ES ZA	F F	PAGE PR CH	EPARE ECKEI PROVE	1 D BY F ED BY Th	Phu H. Phu H. homas	Nguyo Nguyo s M. Ho	en en ess	5	6	TITI MIC BIT DIG	LE CROC , 125	c http CIRCU 5 MSI	DLA COLUM :://ww JIT, [PS SI NVER	LAND IBUS, w.land DIGIT ERIA RTER	AND OHIC dandm AL-L L LV	13 MARI 0 4320 naritin	14 TIME 18-399 ne.dla	eo .mil/	D, 14 LOG-	1- -TC

REVISIONS

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance quad, 14-bit, 125 MSPS serial LVDS 1.8 V analog-to-digital converter microcircuit, with an operating temperature range of -55°C to +125°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

V62/13627	-	<u>01</u> 	X T	투
Drawing		Device type	Case outline	Lead finish
number		(See 1.2.1)	(See 1.2.2)	(See 1.2.3)

1.2.1 Device type(s).

Device type	<u>Generic</u>	Circuit function				
01	AD9253-EP	Quad, 14-bit, 125 MSPS serial LVDS 1.8 V analog-to-digital converter				

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Χ	48	JEDEC MO-220-WKKD	Lead Lead Frame Chip Scale Package

1.2.3 <u>Lead finishes</u>. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>			
Α	Hot solder dip			
В	Tin-lead plate			
С	Gold plate			
D	Palladium			
E	Gold flash palladium			
Z	Other			

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

AVDD to AGND	-0.3 V to +2.0 V
DRVDD to AGND	-0.3 V to +2.0 V
Digital outputs (D0±x, D1±x, DCO+, DCO-, FCO+, FCO-) to AGND	-0.3 V to +2.0 V
CLK+, CLK- to AGND	
VIN+x, VIN-x to AGND	-0.3 V to +2.0 V
SCLK/DTP, SDIO/OLM, CSB to AGND	-0.3 V to +2.0 V
SYNC, PDWN to AGND	-0.3 V to +2.0 V
RBIAS to AGND	-0.3 V to +2.0 V
VREF, SENSE to AGND	-0.3 V to +2.0 V
Operating temperature range (Ambient)	-55°C to +125°C
Maximum junction temperature	150°C
Lead temperature (Soldering, 10 sec)	300°C
Storage temperature range (Ambient)	-65°C to 150°C

1.5 Thermal characteristics.

Thermal resistance

Case outline	Air flow velocity (m/sec)	θ _{JA} <u>2</u> /	Ψυτ	Ψлв	θ _{JC} TOP	θ _{ЈС} воттом	Unit
Case X	0.0	20.3	0.10	5.9	6.1	1.0	°C/W
	1.0	17.6	0.16	N/A <u>3</u> /	N/A <u>3</u> /	N/A <u>3</u> /	°C/W
	2.5	16.5	0.20	N/A <u>3</u> /	N/A <u>3</u> /	N/A <u>3</u> /	°C/W

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201-2107).

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 3

Stresses above those listed under "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those beyond indicated in the operational section of this specifications is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

 $[\]underline{2}/$ θ_{JA} for a 4-layer printed circuit board (PCB) with solid ground plane (simulated). Exposed pad soldered to PCB.

 $[\]frac{1}{3}$ / N/A = not applicable.

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
 - 3.5 Diagrams.
 - 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
 - 3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
 - 3.5.3 <u>Terminal function description</u>. The Terminal function description shall be as shown in figure 3.
 - 3.5.4 Functional block diagram. The functional block diagram shall be as shown in figure 4.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.		
COLUMBUS, OHIO	A	16236	V62/13627		
		REV	PAGE 4		

TABLE I. Electrical performance characteristics. 1/

Test <u>2</u> /	Test conditions	Temp	Limits			Unit
	<u>3</u> /		Min	Тур	Max	
DO	SPECIFICATIONS	_				
Resolution			14			Bits
Accuracy		_				
No missing codes		Full	G	uarantee	d	
Offset error		Full	-0.8	-0.3	+0.1	% FSR
Offset matching		Full	-0.6	+0.2	+0.6	% FSF
Gain error		Full	-12	-3	+2	% FSF
Gain matching		Full		1.1	1.6	% FSF
Differential Nonlinearity (DNL)		Full	-0.8		+1.9	LSB
Differential Norminearity (DNE)		25°C		±0.8		LSB
Integral Nonlinearity (INL)		Full	-4.5		+4.5	LSB
mogramonimeanty (mic)		25°C		±2.0		LSB
Temperature drift						
Offset error		Full		±2		ppm/°C
Gain error		Full		±50		ppm/°C
Internal voltage reference						
Output voltage (1 V Mode)		Full	0.98	1.0	1.02	V
Load regulation at 1.0 mA (V _{REF} = 1 V)		Full	0.00	2		mV
Input resistance		Full		7.5		kΩ
Input referred noise				1 10		1
V _{REF} = 1.0 V		25°C		0.94		LSB rm
Analog inputs						
Differential input voltage (V _{REF} = 1 V)		Full		2		V p-p
Common mode voltage		Full		0.9		V
Differential input resistance				5.2		kΩ
Differential input capacitance		Full		3.5		pF
Power supply			ı	1 0.0		J 6.
AVDD		Full	1.7	1.8	1.9	V
DRVDD		Full	1.7	1.8	1.9	V
I _{AVDD} <u>4</u> /		Full		183	205	mA
I _{DRVDD} (ANSI-644 mode) <u>4</u> /		Full		61	63	mA
I _{DRVDD} (Reduce range mode) 4/		25°C		53		mA
Total power consumption			<u> </u>		1	
DC input		Full		403		mW
Sine wave input (Four channels including output drivers ANSI 644 mode)		Full		440	480	mW
Sine wave input (Four channels including output drivers reduced range mode)		25°C		425		mW
Power down mode		Full		2		mW
Standby mode 5/		Full		235		mW

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13627	
		REV	PAGE 5	

TABLE I. $\underline{\text{Electrical performance characteristics}}$ - Continued. $\underline{1}/$

Test <u>2</u> /	Test conditions	Temp		Limits		Unit
	<u>3</u> /		Min	Тур	Max	
	AC SPECIFICATIONS					
Signal to Noise Ratio (SNR)				75.0		IDEO
f _{IN} = 9.7 MHz		25°C		75.3		dBFS
f _{IN} = 30.5 MHz		25°C		75.2		
f _{IN} = 70 MHz		Full	72	74.1		_
f _{IN} = 140 MHz		25°C		72.2		_
f _{IN} = 200 MHz		25°C		70.7		
Signal to Noise And Distortion ratio (SINAD)		0500		75.0		4DEC
f _{IN} = 9.7 MHz		25°C		75.2		dBFS
f _{IN} = 30.5 MHz		25°C		75.1		
f _{IN} = 70 MHz		Full	71.7	74.0		_
f _{IN} = 140 MHz		25°C		71.9		<u> </u>
f _{IN} = 200 MHz		25°C		70.4		
Effective Number Of Bits (ENOB)		1		400	1	
$f_{IN} = 9.7 \text{ MHz}$		25°C		12.2		Bits
f _{IN} = 30.5 MHz		25°C		12.2		
f _{IN} = 70 MHz		Full		12.0		
f _{IN} = 140 MHz		25°C		11.7		
f _{IN} = 200 MHz		25°C		11.4		
Spurious Free Dynamic Range (SFDR)				T	1	1
$f_{IN} = 9.7 \text{ MHz}$		25°C		98		dBc
$f_{IN} = 30.5 \text{ MHz}$		25°C		92		
$f_{IN} = 70 \text{ MHz}$		Full	76	90		
$f_{IN} = 140 \text{ MHz}$		25°C		85		
$f_{IN} = 200 \text{ MHz}$		25°C		83		
Worst Harmonic (Second or Third)						
$f_{IN} = 9.7 \text{ MHz}$		25°C		-98		dBc
$f_{IN} = 30.5 \text{ MHz}$		25°C		-92		
$f_{IN} = 70 \text{ MHz}$		Full		-90	-76	
$f_{IN} = 140 \text{ MHz}$		25°C		-85		
f _{IN} = 200 MHz		25°C		-83		
Worst other Harmonic (Excluding Second or Th	ird)		•			
$f_{IN} = 9.7 \text{ MHz}$		25°C		-101		dBFS
f _{IN} = 30.5 MHz		25°C		-100		
f _{IN} = 70 MHz		Full		-95	-83	
f _{IN} = 140 MHz		25°C		-96		
f _{IN} = 200 MHz		25°C		-92		
Two tone Intermodulation Distortion (IMD) -AN1	and AND2 = -7.0 dBFS	•	•			•
$f_{IN1} = 70.5 \text{ MHz}, f_{IN2} = 72.5 \text{ MHz}$		25°C		86		dBc
Crosstalk 6/		Full		-95		dB
Crosstalk (Overrange condition) 7/		25°C		-89		dB
Power Supply Rejection Ratio (SPRR) 8/	•	•	•		•	•
AVDD		25°C		48		dB
DRVDD		25°C		75		dB
Analog input bandwidth, Full power		25°C		650		MHz
See footnote at end of table	•			•		

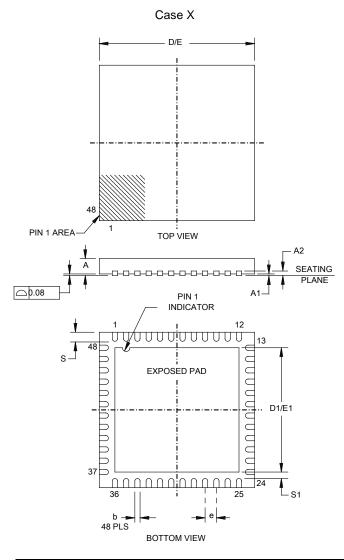
DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 6

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Test <u>2</u> /	Test conditions	Temp		Limits		Unit
	<u>3</u> /		Min	Тур	Max	
	DIGITAL SPECIF	ICATIONS				
Clock inputs (CLK+, CLK-)			T.			
Logic compliance			CMOS	S/LVDS/L	VPECL	
Differential input voltage 9/		Full	0.2		3.6	V p-p
Input voltage range		Full	AGND - 0.2		AGND + 0.2	V
Input common mode voltage		Full		0.9		V
Input resistance (Differential)		25°C		15		kΩ
Input capacitance		25°C		4		pF
Logic inputs (PDWN, SYNC, SCLK)						
Logic 1 voltage		Full	1.2		AVDD + 0.2	V
Logic 0 voltage		Full	0		0.8	V
Input resistance		25°C		30		kΩ
Input capacitance		25°C		2		pF
Logic input (CSB)						
Logic 1 voltage		Full	1.2		AVDD + 0.2	V
Logic 0 voltage		Full	0		0.8	V
Input resistance		25°C		26		kΩ
Input capacitance		25°C		2		pF
Logic input (SDIO/OLM)						
Logic 1 voltage		Full	1.2		AVDD + 0.2	V
Logic 0 voltage		Full	0		0.8	V
Input resistance		25°C		26		kΩ
Input capacitance		25°C		5		pF
Logic output (SDIO/OLM) 10/						
Logic 1 voltage ($I_{OH} = 800 \mu A$)		Full		1.79		V
Logic 0 voltage (I _{OL} = 50 μA)		Full			0.05	V
Digital outputs (D0±x, D1±x), ANSI-644	1					
Logic compliance				LVDS		
Differential output voltage (V _{OD})		Full	290	345	400	mV
Output offset voltage (Vos)		Full	1.15	1.25	1.35	V
Output coding (Default)			Two	s comple	ment	
Digital outputs (D0±x, D1±x), low power	er, reduced signal option	1	1			
Logic compliance				LVDS	T	
Differential output voltage (V _{OD})		Full	160	200	230	mV
Output offset voltage (Vos)		Full	1.15	1.25	1.35	V
Output coding (Default)			Two	s comple	ment	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/13627
COLUMBUS, OHIO	A	16236	
		REV	PAGE 7

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/


Test <u>2</u> / <u>11</u> /	Test conditions	Temp		Limits		Unit
	<u>3</u> /		Min	Тур	Max	
	SWITCHI	NG SPECI	FICATIONS			
Clock						
Input clock rate		Full	10		1000	MHz
Conversion rate		Full	10		125	MSPS
Clock Pulse Width High (t _{EH})		Full		4.00		ns
Clock Pulse Width Low (t _{EL})		Full		4.00		ns
Output parameters <u>12</u> /						
Propagation Delay (tpb)		Full		2.3		ns
Rise Time (t _R) (20% to 80%)		Full		300		ps
Fall Time (t _F) (20% to 80%)		Full		300		ps
FCO Propagation Delay (trco)		Full	1.5	2.3	3.1	ns
DCO Propagation Delay (t _{CPD}) <u>13</u> /		Full		t _{FCO} + (t _{SAMPLE} /16)		ns
DCO-to-Data Delay (t _{DATA}) <u>13</u> /		Full	(t _{SAMPLE} /16) - 300	(t _{SAMPLE} /16)	$(t_{SAMPLE}/16) + 300$	ops
DCO-to-FCO Delay (t _{FRAME}) <u>13</u> /		Full	(t _{SAMPLE} /16) - 300	(t _{SAMPLE} /16)	$(t_{SAMPLE}/16) + 300$	ps
Lane Delay (tld)				90		ps
Data to Data Skew (tdata-max - tdata-min)		Full		±50	±200	ps
Wake-Up Time (Standby)		25°C		250		ns
Wake-Up Time (Power-Down) 14/		25°C		375		μs
Pipeline Latency		Full		16		Clock cycles
Aperture						
Aperture Delay (t _A)		25°C		1		ns
Aperture Uncertainty (Jitter, t _J)		25°C		135		fs ms
Out-of-Range Recovery Time		25°C		1		Clock cycles

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13627	
		REV	PAGE 8	

TABLE I. Electrical performance characteristics - Continued. 1/

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- See the AN-835 manufacturer's application note. Understanding high speed ADC testing and evaluation, for definitions and for details on how these tests were completed.
- 3/ AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = -1.0 dBFS, unless otherwise noted.
- 4/ Measured with a low input frequency, full scale sine wave of all four channels.
- 5/ It can be controlled via the SPI.
- 6/ Crosstalk is measured at 70 MHz with an -1.0 dBFS analog input on one channel and no input on the adjacent channel.
- 7/ The over range condition is specified with 3 dB of the full-scale input range.
- 8/ PSRR is measured by injecting a sinusoidal signal at 10 MHz to the power supply pin and measuring the output spur on the FFT. PSRR is calculated as the ratio of the amplitudes of the spur voltage over the pin voltage, expressed in decibels.
- 9/ This is specified for LVDS and LVPECL only.
- 10/ This is specified for 13 SDIO/OLM pins sharing the same connection.
- 11/ Measured on standard FR-4 material.
- 12/ Can be adjusted via the SPI. The conversion rate is the clock rate after the divider.
- $\frac{13}{t_{SAMPLE}}$ to is based on the number of bits in two LVDS data lanes. $t_{SAMPLE} = 1/f_{S}$.
- 14/ Wake-up time is defined as the time required to return to normal operation from power-down mode.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 9

Dimensions					
Symbol	Millimeters		Symbol	Milli	meters
	Min	Max		Min	Max
Α	0.70	0.80	D1/E1	5.55	5.65
A1		0.05	е	0.50) BSC
A2	0.20	REF	S	0.35	0.45
b	0.18	0.30	S1	0.20	
D/E	6.90	7.10			_

NOTES:

- All linear dimensions are in millimeters.
 Falls within JEDEC STANDARDS MO-220-WKKD.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 10

Case outline X

Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	VIN+D	48	VIN+C
2	VIN-D	47	VIN-C
3	AVDD	46	AVDD
4	AVDD	45	AVDD
5	CLK-	44	SYNC
6	CLK+	43	VCM
7	AVDD	42	VREF
8	DRVDD	41	SENSE
9	D1-D	40	RBIAS
10	D1+D	39	AVDD
11	D0-D	38	VIN-B
12	D0+D	37	VIN+B
13	D1-C	36	VIN+A
14	D1+C	35	VIN-A
15	D0-C	34	AVDD
16	D0+C	33	PDWN
17	DCO-	32	CSB
18	DCO+	31	SDIO/OLM
19	FCO-	30	SCLK/DTP
20	FCO+	29	DRVDD
21	D1-B	28	D0+A
22	D1+B	27	D0-A
23	D0-B	26	D1+A
24	D0+B	25	D1-A

NOTE:

 The exposed thermal PAD on the bottom of the package provides the analog ground for the part, this exposed PAD must be connected to ground for proper operation.

FIGURE 2. <u>Terminal connections</u>

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/13627	
		REV	PAGE 11	

Case outline X

Pin No.	Mnemonic	Description
0	AGND,	Analog Ground, Exposed Pad. The exposed thermal pad on the bottom of the package provides the
0	Exposed Pad	analog ground for the part. This exposed pad must be connected to ground for proper operation.
1	VIN+D	ADC D Analog Input True.
2	VIN-D	ADC D Analog Input Complement.
3, 4, 7, 34, 39, 45, 46	AVDD	1.8 V Analog Supply Pins.
5, 6	CLK-, CLK+	Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.
8, 29	DRVDD	Digital Output Driver Supply.
9	D1-D	Channel D Digital Output 1 Complement.
10	D1+D	Channel D Digital Output 1 True.
11	D0-D	Channel D Digital Output 0 Complement.
12	D0+D	Channel D Digital Output 0 True.
13	D1-C	Channel C Digital Output 1 Complement.
14	D1+C	Channel C Digital Output 1 True.
15	D0-C	Channel C Digital Output 0 Complement.
16	D0+C	Channel C Digital Output 0 True.
17	DCO-	Data Clock Output Complement.
18	DCO+	Data Clock Output True.
19	FCO-	Frame Clock Output Complement.
20	FCO+	Frame Clock Output True.
21	D1-B	Channel B Digital Output 1 Complement.
22	D1+B	Channel B Digital Output 1 True.
23	D0-B	Channel B Digital Output 0 Complement.
24	D0+B	Channel B Digital Output 0 True.
25	D1-A	Channel A Digital Output 1 Complement.
26	D1+A	Channel A Digital Output 1 True.
27	D0-A	Channel A Digital Output 0 Complement.
28	D0+A	Channel A Digital Output 0 True.
30	SCLK/DTP	SPI Clock Input/Digital Test Pattern.
31	SDIO/OLM	SPI Data Input and Output Bidirectional SPI Data/Output Lane Mode.
32	CSB	SPI Chip Select Bar. Active low enable; 30 kΩ internal pull-up.
		Digital Input, 30 kΩ Internal Pull-Down.
33	PDWN	PDWN high = power-down device.
		PDWN low = run device, normal operation.
35	VIN-A	ADC A Analog Input Complement.
36	VIN+A	ADC A Analog Input True.
37	VIN+B	ADC B Analog Input True.
38	VIN-B	ADC B Analog Input Complement.
40	RBIAS	Sets Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.
41	SENSE	Reference Mode Selection.
42	VREF	Voltage Reference Input and Output.
43	VCM	Analog Input Common-Mode Voltage.
44	SYNC	Digital Input. SYNC input to clock divider.
47	VIN-C	ADC C Analog Input Complement.
48	VIN+C	ADC C Analog Input True.

FIGURE 3. Terminal function description.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 12

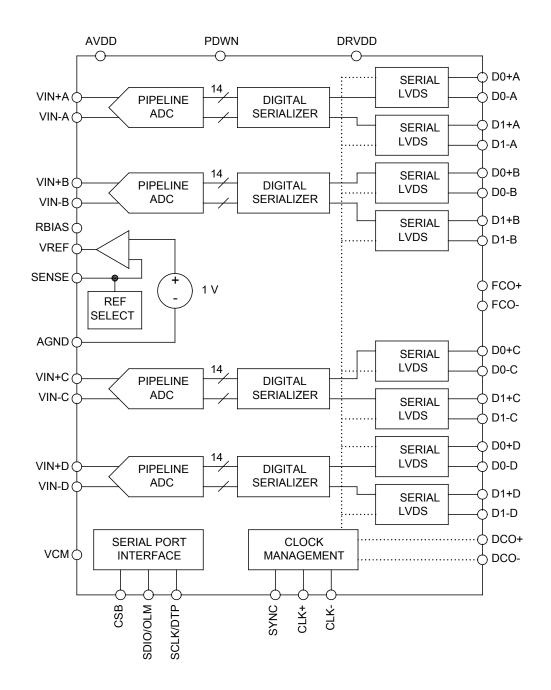


FIGURE 4. Functional block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 13

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

- 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Transport media	Vendor part number
V00/40007.04VF		Tray, 260	AD9253TCPZ-125EP
V62/13627-01XE	24355	Tape and reel	AD9253TCPZR7-125EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices 1 Technology Way P.O. Box 9106

Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/13627
		REV	PAGE 14