Evaluation Board User Guide
 UG-589

Interleaved Two-Switch Forward Topology Featuring the ADP 1046A

FEATURES

Interleaved 2-switch, forward switching power supply $12 \mathrm{~V} / 25$ A regulated output from 400 V dc input Voltage feedback loop
Dynamic phase shedding
Integrated current balance between phases
$I^{2} C$ serial interface to $P C$
Software graphic user interface (GUI)
Programmable digital filters
7 PWM outputs including auxiliary PWM (for fan control)
Digital trimming
OrFET control for hot swap and redundancy
Current, voltage, and temperature sense through GUI Digital current sharing

REFERENCE DESIGN CONTENTS

The evaluation system package contains the following items:

- User Guide UG-589
- ADP1046A 300 W interleaved two-switch forward board

The USB-to- $\mathrm{I}^{2} \mathrm{C}$ dongle for serial communication (ADP1046A-USB-Z) and the software CD must be ordered separately.

CAUTION

This evaluation board uses high voltages and currents. Extreme caution must be taken especially on the primary side to ensure safety for the user. It is strongly advised to power down the evaluation board when not in use. A current-limited power supply is recommended as an input because no fuse is present on the board.

GENERAL DESCRIPTION

This evaluation board features the ADP1046A in a switching power supply application. With the evaluation board and software, the ADP1046A can be interfaced to any PC running Windows ${ }^{\star}$ 2000, Windows NT, or Windows XP via the computer's USB port. The evaluation board allows all the input and output functions of the ADP1046A to be exercised without the need for external components. The software allows control and monitoring of the ADP1046A internal registers. The board is set up for the ADP1046A to act as an isolated switching power supply with a rated load of $12 \mathrm{~V} / 25 \mathrm{~A}$ from an input voltage ranging from 350 V dc to 400 V dc.

Figure 1. Picture of Printed Circuit Board

TABLE OF CONTENTS

Features 1
Reference Design Contents 1
Caution 1
General Description 1
Revision History 2
Demo Board Specifications 3
Topology and Circuit Description 4
Advantages of Interleaving 5
Connectors 7
Settings Files and EEPROM 8
Evaluation Board 9
Equipment 9
Setup. 9
Board Settings 11
Theory of Operation 13
During Startup 13
During Steady State 13
Configuring Flag Settings 14
PWM Settings 15
Fan Control 16
Dynamic Phase Shedding and Standby Power 16
Board Evaluation and Test Data 17
Startup 17
Transformer Primary Waveform 19
Primary Current 19
Drain Voltage and Current 20
CS1 Pin Voltage and Current Balancing of Phases 20
Synchronous Rectifier Peak Inverse Voltage (PIV) 21
Output Ripple 21
Transient Voltage 22
Phase Shedding Turn-On/Off Time 25
Primary Current During Load Transient 26
Output Overcurrent Protection 27
Digital Current Sharing 27
Closed-Loop Frequency Response. 28
Efficiency 28
CS1 Linearity 28
ACSNS Linearity 29
CS2 Linearity 29
No Load Power 29
Thermal Performance 29
Evaluation Board Schematics and Artwork 30
Main Board Schematic 30
Interfaces Schematic 31
Daughter Card Schematic 32
Main Board Layout 33
Daughter Card Layout 36
Bill of Materials 38
Appendix I-Transformer Specifications 41
Appendix II—Output Inductor Specifications 42
Appendix III—Register File (ADP1046A_I2SF_032011.46r).. 43
Appendix IV—Board File (ADP1046A_I2SF_032011.46b) 46
Related Links 47

REVISION HISTORY

8/13-Revision 0: Initial Version

DEMO BOARD SPECIFICATIONS

Table 1. Target Specifications

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Vin	350	385	400	V	
Vout	10.8	12	13.2	V	
lout	0.0	25	25	A	With 300 LFM air flow
T_{A}	0	50	50	${ }^{\circ} \mathrm{C}$	Ambient temperature
Efficiency		91.5%		$\%$	Typical reading at $385 \mathrm{~V} / 25$ A load
Switching Frequency		148.8		kHz	
Output Voltage Ripple			100	mV	At 25 A load

TOPOLOGY AND CIRCUIT DESCRIPTION

This user guide describes the ADP1046A in a typical dc-to-dc switching power supply in an interleaved two-switch forward topology with synchronous rectification. Figure 75 and Figure 76 show the schematics of the main power stage and the peripheral connections, respectively. The daughter card schematic is shown in Figure 77. The circuit is designed to provide a rated load of $12 \mathrm{~V} /$ 25 A from an input voltage source of 350 V dc to 400 V dc . The ADP1046A is used to provide functions such as output voltage regulation, output overcurrent protection, primary cycle-bycycle protection, load current sharing with multiple power supplies over the share bus, and overtemperature protection.
The interleaved two-switch forward topology is essentially two two-switch forward designs running 180 degrees out of phase in parallel with each other.
The primary side consists of the input terminals (J1, J2), switches (Q1/Q2 for Phase 1, Q3/Q4 for Phase 2), the current sense transformer (T3 for Phase 1 and T4 for Phase 2) and the main power transformer (T 1 for Phase 1 and T 2 for Phase 2). The ADP1046A (U1 on the daughter card) resides on the secondary side and is powered via the USB 5 V with an ADP3303 LDO (U 2 on the daughter card) present on the same daughter card. The gate signal for the primary switches comes from the ADP1046A through the MOSFET driver (U1) and passes through pulse transformers (T5 for Phase 1 and T6 for Phase 2). Diodes (D1/D2 for Phase 1 and D3/D4 for Phase 2) are responsible for circulating the magnetizing current of the transformer through the dc source during the off period of the switch and for clamping the maximum output voltage. C 1 and C21 act as decoupling capacitors, and Y capacitors (C67, C68) reduce common-mode noise.
The secondary side power stage consists of the synchronous rectifiers (Q5 for Phase 1 and Q6 for Phase 2) and freewheeling FETs (Q7 for Phase 1 and Q9 for Phase 2). The RC series connections (R2/C2, R4/C4, R25/C22, R3/C3) act as snubbers for these FETs. The secondary-side FETs are driven by U2 and U3, which are 4 A drivers with a UVLO of 4.2 V (typical). Also present on the secondary side are the output filter inductors (L1 for Phase 1 and L2 for Phase 2) and the output capacitors (C10 and C8) placed before the OrFET (Q8, Q10). Capacitors (C15, C 16) provide high frequency decoupling to lower EMI.
The OrFETs are driven by a diode (D7) and a capacitor (C13) that form a peak detector on the switch node of the transformer.

The OrFET turn-off is through the GATE pin connected to the FET (Q14) that pulls the gate of the OrFET low, turning it off.
The output load current is sensed using resistors (R5, R8). Alternatively, they can also be replaced by using the Rds_on of the OrFETs (open R26 and R16, and short R38 and R39 with $5.5 \mathrm{k} \Omega / 0.01 \%$ Resistors R3 and R4 on the daughter card). The output voltage is sensed at VS1 and VS2 for OrFET control and Vout for output load regulation. Jumpers (J18, J20) can be used for remote sensing.

The primary current is sensed through the CS1 pin. A Zener diode (D17) protects the pin from exceeding its absolute maximum rating. A thermistor (RTD1) is placed on the secondary side between Q7 and Q9 and acts as thermal protection for the power supply. A $20 \mathrm{k} \Omega$ resistor is placed in parallel with the thermistor that allows the software GUI to read the temperature directly in degrees Celsius.

The ADP1046A also features a line feedforward functionality. The switch node on the secondary side of the transformer (T1) is filtered through an RCD filter (R56, C25, D10), and a fraction of the voltage is fed into the ACSNS pin.
Also present on the secondary side is the current sharing circuitry, flag LEDs (D11 to D12), and the communications port to the software through the $\mathrm{I}^{2} \mathrm{C}$ bus. There is a 4 -pin connector for $\mathrm{I}^{2} \mathrm{C}$ communication. This allows the PC software to communicate with the evaluation board (and with other evaluation boards through the extra 4-pin connectors) through the USB port of the PC. The user can easily change register settings on the ADP1046A and monitor the status registers. It is recommended that the USB dongle be connected directly to the PC, not via the external hub.
Instead of using an auxiliary supply, the board uses an on-board boost converter that converts the 5 V from the USB to the 12 V that powers the MOSFET drivers. Alternatively, an external 12 V connector (J6) is also present. During normal operation, the drivers are powered from the main 12 V output after the output is in regulation. The 5 V is input from the USB port and generates 3.3 V using an LDO for the ADP1046A.

The board also has a connector for a fan capable of driving $\sim 12 \mathrm{~V} / 300 \mathrm{~mA}$ from the main 12 V output terminal. The fan is driven by the OUTAUX PWM signal and is duty cycle modulated, providing maximum speed at maximum load.

Evaluation Board User Guide

ADVANTAGES OF INTERLEAVING

The interleaved two-switch forward (I2SF) topology is popular for its ruggedness. Because the primary switches of the twoswitch forward converter are turned on and off at the same instant, this topology is free of shoot-through problems associated with other topologies such as the full bridge. With an interleaved design, care must be taken not to turn on the synchronous rectifiers (Q5 and Q7, or Q6 and Q9) while their
respective primary switches are on. Interleaving technology improves circuit efficiency, reduces current ripple generated at the output, and increases its effective ripple frequency. This allows for reduction of the output filter capacitor. The interleaving approach can also significantly reduce the input filter inductor and capacitor requirement and improve dynamic response.

Figure 2. Topology of the Interleaved Two-Switch Forward Converter

The key waveforms are illustrated in Figure 3. For the first phase of the two-switch forward converter, the operation can be simplified into three modes:

- Energy transfer stage (t_{0} to t_{1}): Both primary-side switches (QA1, QB1) and the secondary-side rectifier switch (QR1) are turned on and energy is transferred from input to output
- Transformer reset stage (t_{1} to t_{2}): In this stage, two primary-side diodes (or body diodes) conduct and apply
reversed input voltage to the transformer winding to reset the transformer, while the secondary side is freewheeling (SFW2 is on).
- Dead time stage (t_{2} to t_{3}): When the transformer is completely reset, the converter goes to the dead time stage with no current in the primary side, while the secondary-side current continues to freewheel.

The second phase operates in a similar pattern but with a 180° phase shift in the PWMs.

CONNECTORS

Table 2 lists the connectors on the board.
Table 2. Board Connectors

Connector	Evaluation Board Function
J1/J2	$+400 \mathrm{~V} /-400$ V input
$\mathrm{J} 3 / \mathrm{J} 4$	$+12 \mathrm{~V} /-12 \mathrm{~V}$ output
J 6	External 12 V
J19	Fan connector
J10	I $^{2} \mathrm{C}$ connector
J7	Digital share bus
J5	Daughter card connector

Figure 4. ${ }^{2}$ C Connector (Pin 1 on Left)

The pinout of the USB dongle is shown in Table 3.
Table 3. $\mathrm{I}^{2} \mathrm{C}$ Connector Pin Descriptions

Pin No.	Evaluation Board Function
1	5 V
2	SCL
3	SDA
4	Ground

SETTINGS FILES AND EEPROM

The ADP1046A communicates with the GUI software using the $I^{2} \mathrm{C}$ bus.
The register settings (having extension .46r) and the board settings (having extension .46b) are two files that are associated with the ADP1046A software (see Appendix III—Register File (ADP1046A_I2SF_032011.46r) and Appendix IV—Board File (ADP1046A_I2SF_032011.46b)). The register settings file contains information such as the overvoltage and overcurrent limits, soft start timing, and PWM settings that govern the functionality of the part. The ADP1046A stores all settings in the EEPROM.
The EEPROM on the ADP1046A does not contain any information about the board, such as current sense resistor, output inductor, and capacitor values. This information is stored in a board setup file (extension .46b) and is necessary for the GUI to display the correct information in the Monitor window as well as the Filter Settings window (not shown). The entire status of the power supply, such as the ORFET and enable/disable
of the synchronous rectifiers, primary current, output voltage, and output current, can thus be digitally monitored and controlled using software only. Always make sure that the correct board file is loaded for the board currently in use.
Each ADP1046A chip has trim registers for the temperature, input current, output voltage, output current, and ACSNS. These can be configured during production and are not overwritten whenever a new register settings file is loaded. This is done to retain the trimming of all the ADCs for that corresponding environmental and circuit condition (for example, component tolerances and thermal drift). A guided wizard called the Auto Trim can be used to trim the previously mentioned quantities of the trim registers (for example, temperature, input current, output voltage) so that the measurement value matches the values displayed in the GUI, which allows ease of control through the software. Click Voltage Settings or CS2 Settings in the Setup window (see Figure 9) to access the Auto Trim wizard.

す
高
\exists
Figure 5. ADP1046A and GUI Interaction

EVALUATION BOARD

EQUIPMENT

- DC power supply (350 V to $400 \mathrm{~V}, 400 \mathrm{~W}$)
- Electronic load ($25 \mathrm{~A} / 300 \mathrm{~W}$)
- Oscilloscope with differential probes
- PC with ADP1046A GUI installed
- Precision digital voltmeters (HP34401or equivalent) for measuring dc voltage

SETUP

Do not connect the USB cable to the evaluation board until the software has finished installing.

1. Install the ADP1046A software by inserting the installation CD. The software setup starts automatically, and a guided
process installs the software as well as the drivers for the USB-to- $\mathrm{I}^{2} \mathrm{C}$ adapter, which allows communication of the GUI with the IC.
2. Insert the daughter card into Connector J5, as shown in Figure 6.
3. Ensure that the PSON switch (SW1 on schematic; see Figure 76) is turned to the off position. It is located on the bottom left half of the board.
4. Connect one end of the USB dongle to the board and the other end to the USB port on the PC using the USB-to- $\mathrm{I}^{2} \mathrm{C}$ interface dongle. The white LED, D21, should turn on.

Figure 6. Printed Circuit Board with Daughter Card
5. The software should report that the ADP1046A has been located on the board. Click Finish to proceed to the main software interface setup window (see Figure 9). The serial number shown next to the checkbox (see Figure 7) indicates the USB dongle serial number. The windows also displays the device $\mathrm{I}^{2} \mathrm{C}$ address.

Figure 7. ADP1046A Address of 0×50 in the GUI
7. Click the Store Board Settings to EEPROM icon (see Figure 8), and select the ADP1046A_I2SF_B_xxx.46b file. This file contains all the board information, including the values of the shunt and voltage dividers. Note that all board setting files have an extension of .46 b .

Figure 8. Scan for ADP1046A Now Icon
6. If the software does not detect the part, it enters simulation mode. Ensure that the connecter is connected to J10 (on the main board) or J7 (on the daughter card). Click the Scan Now icon (see Figure 8).

Figure 9. Main Setup Window of the ADP1046A GUI
8. The original register configuration is stored in the ADP1046A_I2SF_B_xxxx.46r register file. (Note that all register files have an extension of .46r.) The file can be loaded using the second icon from the left in Figure 10. The IC on the board is preprogrammed, and this step is optional.
9. Connect a dc power source (385 V dc nominal, current limit to $\sim 1 \mathrm{~A}$) and an electronic load set to 1 A at the output.
10. Connect a voltmeter at the TP37 and TP38 test points. Ensure that the differential probes are used and that the ground of the probes are isolated if oscilloscope measurements are made on the primary side of the transformer.
11. Turn the PSON switch (SW1 on schematic; see Figure 76) to the on position. Then click the dashboard settings icon ($2^{\text {nd }}$ icon from the left in Figure 8), and turn on the software via PSON.
The board should now be operational and ready for evaluation. The output should read 12 V dc.
12. Click the Monitor tab and then the Flags and Readings button (not shown) to load the entire state of the power supply unit (PSU) in a single user-friendly window (see Figure 11).
13. After successful startup and the board is in a steady state condition, LEDs on the board provide the status of the board. All the LEDs turn on, indicating that there are no faults detected, such as overvoltage or overcurrent. In case of a fault, the PGOOD1 or PGOOD2 LED turns off, indicating that a flag has tripped due to an out of bounds condition. The Flags and Readings window displays the appropriate state of the PSU.

Table 4. List of LEDs on the Evaluation Board

LED	Description
D23 (Red)	PGOOD1 signal (active low)
D24 (Red)	PGOOD2 signal (active low)
D15 (Red)	Indicates OrFET is turned on
D12 (White)	12 V from auxiliary boost

BOARD SETTINGS

The board settings can be accessed from the main setup window (see Figure 9).

Figure 10. Different Icons on Dashboard for Loading and Saving . $46 r$ and .46 Files

Figure 11. Flags and Readings Window in GUI Showing the Entire Status of the PSU at Full Load

THEORY OF OPERATION

DURING STARTUP

The following steps briefly describe the start-up procedure of the ADP1046A and the power supply and operation of the state machine for the preprogrammed set of registers that are included in the design kit.

1. After VDD $(3.3 \mathrm{~V})$ is applied to the ADP1046A, it takes approximately $20 \mu \mathrm{~s}$ for VCORE to reach 2.5 V . The digital core is now activated and the contents of the registers are downloaded in the EEPROM. The ADP1046A is now ready for operation.
2. PSON is applied. The power supply begins the programmed soft start ramp of 80 ms only when the logical AND of hardware and software PSON is true (programmable).
3. Because the soft start from precharge setting is active, the output voltage is sensed before the soft start ramp begins. Depending on the output voltage level of the effective soft start, the ramp is reduced by the proportional amount.
4. The OrFET power-on is dependent on the voltage difference of VS1 and VS2. If the PSU is standalone, the OrFET gate turns on at the beginning of the soft start ramp when VS1 - VS2 is less than or equal to the programmed threshold in the GUI (see the OrFET Settings window in the GUI, which is accessed by clicking OrFET Settings in Figure 9). The output regulation is from VS3, and the normal filter is in operation.
If the PSU is starting into a live bus already at 12 V , the OrFET turns on only at the end of the soft start ramp when the internal (or local) output voltage (VS1) climbs close to the regulation point and VS1 - VS2 is greater than the programmed threshold (threshold being a negative value ranging from -384 mV to 0 mV). Prior to this, the soft start
filter is active, and the regulation/feedback path is through VS1. When the OrFET turns on (GATE pin signal is toggled), the feedback path is through VS3 and the compensation filter changes to normal mode or light load filter (depending on the load and light load threshold) in a time determined by the filter transitioning speed (programmable 1 to 32 switching cycles).
5. The PSU is now running in a steady state and, depending on the load condition, one or both phases are active (second phase is on when the load current is greater than 14 A). PGOOD1 and PGOOD2 turn on after the programmed debounce.
6. If a fault is activated during the soft start or steady state, the corresponding flag is set and the programmed action is taken, such as PSU disable and reenable after 1 sec , SR power-off, OrFET disable, and OUTAUX disable.

DURING STEADY STATE

The MOSFET drivers are powered using the auxiliary boost converter from the main 12 V when the output is in regulation before PSON is applied.
The second phase is turned on only when the load current increases greater than 14 A . An asynchronous current detection on CS2 averages the load current every $75 \mu \mathrm{~s}$, and the part exits light load mode.
If a fault such as a undervoltage protection (UVP), overvoltage protection (OVP), CS2 overcurrent protection (OCP), or CS1 OCP occurs, the programmed action such as disable OrFET or disable PWMs takes place after the debounce period. If the PSU shuts down, the soft start ramp is initiated after the programmed delay.

CONFIGURING FLAG SETTINGS

When a flag is triggered, the ADP1046A state machine waits for a programmable length of debounce time before taking any action. The response to each flag can be programmed individually. Click Setup and then Flag Settings (see Figure 9) to configure the flags.

The Flag Settings window shows all the fault flags (if any) and the readings on one page (see Figure 12). The Get First Flag button (see Figure 11), which can be accessed by clicking the Monitor tab, determines the first flag that was set in case of a fault event.

Figure 12. Flag Settings Window—Fault Configurations

PWM SETTINGS

The ADP1046A has a fully programmable PWM setup that controls seven PWMs. Due to this flexibility, the IC can function in several different topologies, such as any isolated buck derived topology, push-pull, and flyback.
The integrated volt-second balance feature is used as a current balancer of the two phases of the interleaved two-switch forward design. In other power conversion circuits such as full bridge, this feature can be used to eliminate the dc blocking capacitor.

Each PWM edge can be moved in 5 ns steps to achieve the appropriate dead time needed, and the maximum modulation limit sets the maximum duty cycle. This is displayed in Figure 13.

Click the Monitor tab and then PWM \& SR Settings to access the PWM settings

Table 5. PWMs and Their Corresponding Switching Element

PWM	Switching Element Being Controlled
OUTA	Phase 1 primary switches
OUTB	Phase 1 synchronous rectifier
OUTC	Phase 1 freewheeling
OUTD	Phase 2 primary switches
SR1	Phase 2 synchronous rectifier
SR2	Phase 2 freewheeling
OUTAUX	Fan control

Figure 13. PWM Settings Window in the GUI

Figure 14. Fan Connection to Cool Heat Sink, Transformers, and Inductors

FAN CONTROL

The OUTAUX PWM is used to control an external fan connected to Connector J19. The average speed of the fan depends on the load. The PWM input to the fan is duty cycle modulated and is programmed with the main PWM output in a manner that provides the maximum speed at maximum load and vice versa. Note that the fan is not included in the kit.

DYNAMIC PHASE SHEDDING AND STANDBY POWER

Dynamic phase shedding is achieved using the light load feature of the ADP1046A. This setting is programmed to activate within $75 \mu \mathrm{~s}$ of detecting the output current via the CS2+ and

CS2- pins. The IC is programmed to enter dual phase mode at 60% of the full load current and automatically turns off the PWMs for the second phase when the load current is less than approximately 54% of the full load current.
Using an external microcontroller to communicate to the IC, the ADP1046A can also disable the synchronous rectifiers and save more power at no load by entering the pulse skipping mode, where the entire PWM pulse is skipped if the required duty cycle is less than the programmed value.

BOARD EVALUATION AND TEST DATA

STARTUP

Figure 15. Startup at 350 V DC, No Load
Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Blue Trace: Load Current, 10 A/div, $10 \mathrm{~ms} / \mathrm{div}$

Figure 16. Startup at 350 V DC, 25 A Load (1 A/ $\mu \mathrm{s}$ Slew Rate)
Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Blue Trace: Load Current, 10 A/div, $10 \mathrm{~ms} / \mathrm{div}$

Figure 17. Startup at 385 V DC, No Load Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Blue Trace: Load Current, 10 A/div, $10 \mathrm{~ms} /$ div

Figure 18. Startup at 385 V DC, 25 A Load (1 A/ $\mu \mathrm{s}$ Slew Rate)
Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Blue Trace: Load Current, $10 \mathrm{~A} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$

Figure 19. Startup at 350 V DC, Load (1 A/ $\mu \mathrm{s}$ Slew Rate)
Yellow Trace: Phase 1 Drain Voltage on Q2, $100 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Red Trace: Phase 2 Drain Voltage on Q4, $100 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$
Blue Trace: Load Current, 10 A/div, $10 \mathrm{~ms} /$ div Cursor Showing Phase 2 Enabled at 15 A

Figure 20. Startup at 385 V DC, Load (1 A/ $\mu \mathrm{s}$ Slew Rate) Yellow Trace: Phase 1 Drain Voltage on Q2, $100 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Red Trace: Phase 2 Drain Voltage on Q4, $100 \mathrm{~V} / \mathrm{div}, 10 \mathrm{~ms} / \mathrm{div}$ Blue Trace: Load Current, 10 A/div, $10 \mathrm{~ms} /$ div Cursor Showing Phase 2 Enabled at 15 A

Figure 21. Synchronous Rectifier During Startup at No Load Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$
Blue Trace: Phase 1 Synchronous Rectifier (OUTC), 5 V/div, $20 \mathrm{~ms} / \mathrm{div}$ Red Trace: Phase 2 Synchronous Rectifier (SR1), 5 V/div, $20 \mathrm{~ms} / \mathrm{div}$ Yellow Trace: Load Current, 10 A/div, $20 \mathrm{~ms} / \mathrm{div}$

Figure 22. Synchronous Rectifier During Startup at 25 A Load Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$
Blue Trace: Phase 1 Synchronous Rectifier (OUTC), 5 V/div, $20 \mathrm{~ms} / \mathrm{div}$ Red Trace: Phase 2 Synchronous Rectifier (SR1)

Turning On at 15 A, $5 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$ Yellow Trace: Load Current, $10 \mathrm{~A} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$

Evaluation Board User Guide

TRANSFORMER PRIMARY WAVEFORM

Figure 23. Transformer Primary Waveform at 25 A Load, 350 V DC Red Trace: Voltage Across T1 Primary (Phase 1), $200 \mathrm{~V} /$ div, $2 \mu \mathrm{~s} / \mathrm{div}$ Yellow Trace: Voltage Across T2 (Phase 2), 200 V/div, $2 \mu \mathrm{~s} / \mathrm{div}$

Figure 24. Transformer Primary Waveform at 25 A Load, 400 V DC Red Trace: Voltage Across T1 Primary (Phase 1), 200 V/div, 2 us/div Yellow Trace: Voltage Across $T 2$ (Phase 2), $200 \mathrm{~V} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$

PRIMARY CURRENT

Figure 25. Input RMS Current at 25 A Load, 350 V DC Yellow Trace: Primary Current, 1 A/div, $20 \mathrm{~ms} / \mathrm{div}$ Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$

Figure 26. Input RMS Current at 25 A Load, 385 V DC Yellow Trace: Primary Current, 1 A/div, $20 \mathrm{~ms} /$ div Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$

DRAIN VOLTAGE AND CURRENT

Figure 27. Drain Voltage at 25 A Load, 385 V DC Red and Green Trace: Primary MOSFET Drain Voltage Across Q2 and Q4, $100 \mathrm{~V} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$
Yellow Trace: CS1 Pin Voltage, $1 \mathrm{~V} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$

CS1 PIN VOLTAGE AND CURRENT BALANCING OF PHASES

Figure 28. CS1 Pin Voltage at 25 A Load, 350 V DC, Current Balancing Enabled Blue Trace: Voltage at CS1, $500 \mathrm{mV} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$

Figure 29. CS1 Pin Voltage at 25 A Load, 350 V DC, Current Balancing Disabled
Blue Trace: Voltage at CS1, $500 \mathrm{mV} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$

Figure 30. CS1 Pin Voltage at 25 A Load, 385 V DC, Current Balancing Enabled
Blue Trace: Voltage at CS1, $500 \mathrm{mV} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$

Figure 31. CS1 Pin Voltage at 25 A Load, 385 V DC, Current Balancing Disabled
Blue Trace: Voltage at CS1, $500 \mathrm{mV} / \mathrm{div}, 2 \mu \mathrm{~s} / \mathrm{div}$

UG-589

SYNCHRONOUS RECTIFIER PEAK INVERSE VOLTAGE (PIV)

Figure 32. Synchronous Rectifier and Freewheeling MOSFET PIV at 25 A Load, 350 V DC
Blue Trace: Synchronous Rectifier, $10 \mathrm{~V} / \mathrm{div}, 500 \mathrm{~ns} /$ div Red Trace: Freewheeling FET Voltage, 20 V/div, $500 \mathrm{~ns} / \mathrm{div}$

Figure 33. Synchronous Rectifier and Freewheeling MOSFET PIV at 25 A Load, 385 V DC
Blue Trace: Synchronous Rectifier, $10 \mathrm{~V} / \mathrm{div}, 500 \mathrm{~ns} /$ div Red Trace: Freewheeling FET Voltage, 20 V/div, $500 \mathrm{~ns} / \mathrm{div}$

OUTPUT RIPPLE

Figure 34. Output Voltage at C65 (AC-Coupled),
350 V DC, 25 A, $50 \mathrm{mV} / \mathrm{div}, 5 \mu \mathrm{~s} / \mathrm{div}$, High Frequency Component

Figure 35. Output Voltage at C65 (AC-Coupled),
350 V DC, 25 A, 50 mV/div, 2 ms/div, Low Frequency Component

Figure 36. Output Voltage at C65 (AC-Coupled),
385 V DC, 25 A, $50 \mathrm{mV} / \mathrm{div}, 5$ s/div, High Frequency Component

Figure 37. Output Voltage at C65 (AC-Coupled), 385 V DC, 25 A, $50 \mathrm{mV} /$ div, $2 \mathrm{~ms} /$ div, Low Frequency Component

Figure 38. Output Voltage at 2700μ F Capacitor C10 (AC-Coupled), 385 V DC, 25 A, $100 \mathrm{mV} / \mathrm{div}, 5 \mu \mathrm{~s} / \mathrm{div}$, High Frequency Component

TRANSIENT VOLTAGE

Load Step of 0\% to 25\%

Figure 39. Output Voltage Transient, 25\% to 0\% Load, 385 V DC, One Phase Only
Yellow Trace: Load Current, 5 A/div, $500 \mu \mathrm{~s} / \mathrm{div}$ Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 500 \mu \mathrm{~s} / \mathrm{div}$

Figure 40. Output Voltage Transient, 25\% to 0\% Load, 385 V DC, Both Phases Active Yellow Trace: Load Current, 5 A/div, $500 \mu \mathrm{~s} /$ div Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 500 \mu \mathrm{~s} / \mathrm{div}$

Figure 41. Output Voltage Transient, 0\% to 25\% Load, 385 V DC, One Phase Only
Yellow Trace: Load Current, 5 A/div, 500 us/div Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 500 \mu \mathrm{~s} / \mathrm{div}$

Figure 42. Output Voltage Transient, 0\% to 25\% Load,
385 V DC, Both Phases Active
Yellow Trace: Load Current, 5 A/div, $500 \mu \mathrm{~s} /$ div
Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 500 \mu \mathrm{~s} / \mathrm{div}$

Load Step of 25\% to 50\%

Figure 43. Output Voltage Transient, 25\% to 50\% Load, 385 V DC, One Phase Only
Yellow Trace: Load Current, 5 A/div, 200 us/div
Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 200 \mu \mathrm{~s} / \mathrm{div}$

Figure 44. Output Voltage Transient, 25\% to 50\% Load,
385 V DC, Both Phases Active Yellow Trace: Load Current, 5 A/div, $200 \mu \mathrm{~s} /$ div Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 200 \mu \mathrm{~s} / \mathrm{div}$

Figure 45. Output Voltage Transient, 50\% to 25\% Load, 385 V DC, One Phase Only
Yellow Trace: Load Current, 5 A/div, $200 \mu \mathrm{~s} /$ div Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 200 \mu \mathrm{~s} / \mathrm{div}$

Figure 46. Output Voltage Transient, 50\% to 25\% Load, 385 V DC, Both Phases Active
Yellow Trace: Load Current, 5 A/div, $200 \mu \mathrm{~s} / \mathrm{div}$ Green Trace: Output Voltage (AC-Coupled), 100 mV/div, $200 \mu \mathrm{~s} / \mathrm{div}$

Load Step of 50\% to 75\%

Figure 47. Output Voltage Transient, 50\% to 75\% Load, 385 V DC, One Phase Only
Yellow Trace: Load Current, 5 A/div, $1 \mathrm{~ms} /$ div Green Trace: Output Voltage (AC-Coupled), $200 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~ms} / \mathrm{div}$

Figure 48. Output Voltage Transient, 50\% to 75\% Load 385 V DC, Both Phases Active Yellow Trace: Load Current, 5 A/div, $200 \mu \mathrm{~s} /$ div Green Trace: Output Voltage (AC-Coupled), 100 mV/div, $200 \mu \mathrm{~s} / \mathrm{div}$

Figure 49. Output Voltage Transient, 75\% to 50\% Load, 385 V DC, One Phase Only
Yellow Trace: Load Current, 5 A/div, $1 \mathrm{~ms} /$ div Green Trace: Output Voltage (AC-Coupled), $200 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~ms} / \mathrm{div}$

Figure 50. Output Voltage Transient, 75\% to 50\% Load, 385 V DC, Both Phases Active
Yellow Trace: Load Current, 5 A/div, $200 \mu \mathrm{~s} /$ div Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 200 \mu \mathrm{~s} / \mathrm{div}$

Load Step of 75\% to 100\%

Figure 51. Output Voltage Transient, 75\% to 100\% Load, 385 V DC, Both Phases Active
Yellow Trace: Load Current, 10 A/div, $1 \mathrm{~ms} / \mathrm{div}$
Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~ms} / \mathrm{div}$

Figure 52. Output Voltage Transient, 100\% to 75\% Load, 385 V DC, Both Phases Active Yellow Trace: Load Current, 10A/div, $1 \mathrm{~ms} /$ div Green Trace: Output Voltage (AC-Coupled), $100 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~ms} / \mathrm{div}$

PHASE SHEDDING TURN-ON/OFF TIME

Figure 53. Synchronous Rectifier PWM Turn-On Time During Load Step 10 A to 20 A Load
Blue Trace: Load Current, 10 A/div, $100 \mu \mathrm{~s} /$ div Green and Red Trace: Phase 2 Synchronous Rectifier and Freewheel PWMs (SR1 and SR2), $100 \mu \mathrm{~s} / \mathrm{div}$

Figure 54. Synchronous Rectifier PWM Turn-On Time During Load Step 20 A to 10 A Load, Blue Trace: Load Current, 10 A/div, 100 $\mathrm{s} /$ div Green and Red Trace: Phase 2 Synchronous Rectifier and Freewheel PWMs (SR1 and SR2), $100 \mu \mathrm{~s} / \mathrm{div}$

PRIMARY CURRENT DURING LOAD TRANSIENT 10 A to 20 A Load Step

Figure 55. Input Current During Load Step of 10 A to 20 A Yellow Trace: Load Current, 5 A/div, $10 \mathrm{~ms} /$ div
Red Trace: Voltage at CS1 Pin, $500 \mathrm{mV} / \mathrm{div}(20 \mu \mathrm{~s} / \mathrm{div}$ Zoomed In)

Figure 56. Input Current During Load Step of 10 A to 20 A Showing Steady Balancing of Both Phases; Yellow Trace: Load Current, 5 A/div, $10 \mathrm{~ms} / \mathrm{div}$ Red Trace: Voltage at CS1 Pin, $500 \mathrm{mV} / \mathrm{div}$ ($20 \mu \mathrm{~s} /$ div Zoomed In)

Figure 57. Input Current During Load Step of 10 A to 20 A Showing Steady Balancing of Both Phases; Yellow Trace: Load Current, 5 A/div, $10 \mathrm{~ms} / \mathrm{div}$ Red Trace: Voltage at CS1 Pin, $500 \mathrm{mV} / \mathrm{div}$ ($20 \mu \mathrm{~s} /$ div Zoomed In)

20 A to 10 A Load Step

Figure 58. Input Current During Load Step of 20 A to 10 A Showing Steady Balancing of Both Phases, Yellow Trace: Load Current, 5 A/div, $5 \mathrm{~ms} / \mathrm{div}$ Red trace: Voltage at CS1 Pin, $500 \mathrm{mV} / \mathrm{div}, 5 \mathrm{~ms} / \mathrm{div}$

Figure 59. Input Current During Load Step of 20 A to 10 A Showing Fade-Out of Phase 2 Yellow Trace: Load Current, 5 A/div, $5 \mathrm{~ms} /$ div Red Trace: Voltage at CS1 Pin, $500 \mathrm{mV} / \mathrm{div}$ ($50 \mu \mathrm{~s} / \mathrm{div}$ Zoomed In)

OUTPUT OVERCURRENT PROTECTION

Figure 60. Output Short-Circuit Protection, 130 ms Debounce on CS2, Response Set to Disable PSU and Reenable After 1 sec , Yellow Trace: Load Current, 20 A/div, $500 \mathrm{~ms} / \mathrm{div}$ Green Trace: Output Voltage, 5 V/div, $500 \mathrm{~ms} / \mathrm{div}$

Figure 61. Output Short-Circuit Protection, 9.8 ms Debounce on CS2, Response Set to Disable PSU and Reenable After 1 sec , Yellow Trace: Load Current, 20 A/div, $500 \mathrm{~ms} / \mathrm{div}$ Green Trace: Output Voltage, 5 V/div, $500 \mathrm{~ms} / \mathrm{div}$

DIGITAL CURRENT SHARING

Figure 62. OrFET Turn-On
Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$ Red Trace: GATE Signal Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$

Figure 63. OrFET Turn-On in Live Bus Green Trace: Output Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$ Red Trace: GATE Signal Voltage, $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$

Figure 64. Digital Current Sharing with Load Step of 25 A, 42 A, 25 A Red and Yellow Traces: Output Currents of PSU1 and PSU2, 10 A/div, $500 \mathrm{~ms} / \mathrm{div}$ Green and Blue Traces: SHAREo Pins of PSU1 and PSU2, $5 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} / \mathrm{div}$

CLOSED-LOOP FREQUENCY RESPONSE

A network analyzer (AP200) was used to test the bode plots of the system. Jumper J18 was replaced by a 20Ω resistor, and a continuous noise signal of 400 mV was injected into the VS3+ pin before the voltage divider (R10 and R11 on daughter card). The operating condition was 385 V dc input and a load condition of 25 A .

Figure 65. Bode Plots, 25 A Load, 385 V DC
Crossover Frequency $=7.36 \mathrm{kHz}$

$$
\text { Phase Margin }=62.8^{\circ}
$$

Gain Margin $=17 \mathrm{~dB}$

EFFICIENCY

Figure 66. Efficiency vs. VIN

Figure 67. Efficiency vs. Load

Figure 68. Efficiency vs. Load (with and Without Light Load Mode)

CS1 LINEARITY

Figure 69. CS1 Linearity

ACSNS LINEARITY

Figure 70. ACSNS Linearity vs. Load
CS2 LINEARITY

Figure 71. CS2 Linearity vs. Load

NO LOAD POWER

Figure 72. No Load Power

Figure 73. Output Voltage Regulation vs. Load Current
THERMAL PERFORMANCE

Figure 74. Thermal Performance at 385 V DC Input, 12 V, 25 A Output Load, No Air Flow, Soaking Time of 60 Minutes

EVALUATION BOARD SCHEMATICS AND ARTWORK

MAIN BOARD SCHEMATIC

Figure 75. Schematic—Power Stage
Rev. $0 \mid$ Page 30 of 48

INTERFACES SCHEMATIC

Figure 76. Schematic—Interfaces

DAUGHTER CARD SCHEMATIC

MAIN BOARD LAYOUT

Figure 78. Layout, Top Silkscreen, 6.5 in $\times 5$ in

Figure 79. Layout, First Layer, 6.5 in $\times 5$ in

Figure 80. Layout, Second Layer, 6.5 in $\times 5$ in

Figure 81. Layout, Third Layer, 6.5 in $\times 5$ in

Figure 82. Layout, Bottom Layer, 6.5 in $\times 5$ in

Figure 83. Layout, Bottom Layer Silkscreen, 6.5 in $\times 5$ in

DAUGHTER CARD LAYOUT

Figure 84. Top Layer, 1.5 in $\times 1.08$ in

Figure 85. Ground Layer, 1.5 in $\times 1.08$ in

Evaluation Board User Guide

Figure 86. Power Layer, 1.5 in $\times 1.08$ in

Figure 87. Bottom Layer, 1.5 in $\times 1.08$ in

BILL OF MATERIALS

Table 6. Main Board

Qty	Reference Designator	Description	Manufacturer	Mfg Part No	Package
2	C1, C21	Capacitor metal polypro, $0.22 \mu \mathrm{~F}, 630 \mathrm{~V}, 3 \%$	Panasonic	ECW-F6224HL	Polypropylene
4	C2, C3, C4, C22	SMD capacitor ceramic, $3300 \mathrm{pF}, 100 \mathrm{~V}$, 10\%, X7R	AVX Corp	12101C332KAT2A	1210
7	$\begin{aligned} & \text { C5, C6, C15, C16, C18, } \\ & \text { C26, C27 } \end{aligned}$	Capacitor ceramic $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \pm 20 \%$, X5R	Panasonic	ECJ-4YB1E106M	1210
1	C8	Capacitor $1000 \mu \mathrm{~F}, 16 \mathrm{~V}, \pm 20 \%$, elect KZE red	United Chemicon	EKZE160ELL 102 MJ 20 S	Radial can
3	C9, C13, C29	Capacitor ceramic $1 \mu \mathrm{~F}, 25 \mathrm{~V}, \pm 10 \%$, X 7 R	Murata	GCM21BR71E105KA56L	0805
1	C10	Capacitor $2700 \mu \mathrm{~F}, 16 \mathrm{~V}, \pm 20 \%$, elect KZE radial	United Chemicon	EKZE160ELL272MK30S	Radial can
2	C12, C17	SMD Capacitor ceramic, $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, X7R	Murata	GRM21BR71H104KA01L	0805
1	C14	DNI			
1	C19	Capacitor ceramic $1000 \mathrm{pF}, 100 \mathrm{~V}, \pm 20 \%$, X2Y	Johnson	101X18N102MV4E	1206
1	C20	SMD capacitor $1000 \mathrm{pF}, 10 \%, 100 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$	AVR	08051C102KAT2A	0805
4	C23, C24, C32, C30	Capacitor ceramic $100 \mathrm{nF}, 50 \mathrm{~V}, 10 \%$, X7R	Murata	GRM21BR71H104KA01L	0805
1	C25	Capacitor ceramic $2200 \mathrm{pF}, 50 \mathrm{~V}, 10 \%$, X7R	AVX Corp	08055C222KAT2A	0805
2	C28, C31	Capacitor ceramic $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, X7R	Murata	GRM21BR71H104KA01L	0805
3	C33, C34, C35	Capacitor ceramic $33 \mathrm{pF}, 50 \mathrm{~V}, \pm 5 \%$, NP0	Panasonic	ECJ-2VC1H330J	0805
3	C36, C39, C40	Capacitor ceramic $4.7 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, X5R	TDK	C3225X7R1E475K	1210
3	C37, C45, C49	Capacitor ceramic $33 \mathrm{pF}, 50 \mathrm{~V}, \pm 5 \%$, NP0	Panasonic	ECJ-2VC1H330J	0805
1	C65	Capacitor ceramic $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \pm 20 \%$, X5R	Panasonic	ECJ-4YB1E106M	1210
1	C66	Capacitor ceramic $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \pm 20 \%$, X5R	Panasonic	ECJ-4YB1E106M	1210
2	C67, C68	Capacitor ceramic $2200 \mathrm{pF}, 500 \mathrm{~V}$ c	Vishay	VY1222M47Y5UQ63V0	VY1
4	D1 to D4	SMD diode fast REC, $1 \mathrm{~A}, 600 \mathrm{~V}$	Any	ES1J-TP	DO214AC
1	D6	Diode Zener $16 \mathrm{~V}, 1 \mathrm{~W}, 5 \%$	Diodes, Inc	SMAZ16-13-F	MSB-403
3	D7, D10, D16	SMD diode switch, $100 \mathrm{~V}, 400 \mathrm{~mW}$	Diodes, Inc	1N4148W-7-F	SOD123
3	D8, D9, D14	SMD diode super fast $200 \mathrm{~V}, 1 \mathrm{~A}$	Diodes, Inc	MURS120-13-F	DO-2144AA
1	D11	SMD diode Schottky $30 \mathrm{~V}, 1 \mathrm{~A}$	Micro Commercial	MBRX130-TP	SOD-123
1	D12	SMD diode Schottky $10 \mathrm{~V}, 570 \mathrm{~mW}$, DNI	Diodes, Inc	ZLLS410TA	SOD323
1	D17	SMD diode Zener $2.5 \mathrm{~V}, 500 \mathrm{~mW}$	On Semi	MMSZ5222BT1G	MSB-403
1	D21	SMD LED white clear	Lumex Opto	SML-LX1206UWW-TR	1206
1	D22	SMD LED green clear	Chicago lighting	CMD15-21VGC/TR8	1206
3	D23, D24, D15	SMD LED super red clear	Chicago lighting	CMD15-21SRC/TR8	1206
7	D25 to D31	SMD diode switch $100 \mathrm{~V}, 400 \mathrm{~mW}$	Diodes, Inc	1N4148W-7-F	SOD123
1	F1	Holder PC fuse 5 mm low profile	Keystone	4527	Fuseholder
4	J1 to J4	Connector jack banana UNINS panel MOU	Emerson	108-0740-001	Banana jack
1	J5	Connector RECEPT 30-position, 0.100 vertical dual	TE Connectivity	1-534206-5	F-socket-dual
2	J6, J7	Connector header 2-position, 3.96 mm vertical tin	Molex	09-65-2028	
1	J10	```Connector header 4-position SGL PCB 30GOLD```	FCl	69167-104HLF	Header male
3	J16 to J18	Connector header breakaway, 0.100 , 2-position STR	TE Connectivity	4-102973-0-01	Header
1	J19	Connector header 2-position, 3.96 mm vertical tin	Molex	09-65-2028	
3	J20 to J22	Connector header breakaway, 0.100, 2-position straight	TE Connectivity	4-102973-0-01	Header
2	L1, L2	Inductor $10 \mu \mathrm{H}$	Precision Inc	019-7129-00R-Proto02	901
1	L3	Power inductor $33 \mu \mathrm{H}, 0.42 \mathrm{~A}$	Coilcraft	VLCF4018T-330MR42-2	SMT
4	Q1 to Q4	MOSFET N-channel $500 \mathrm{~V}, 12 \mathrm{~A}$	ST Microelectronics	STP12NM50	TO-220

Evaluation Board User Guide

Qty	Reference Designator	Description	Manufacturer	Mfg Part No	Package
4	Q5 to Q7, Q9	MOSFET N-channel 100 V, 120 A	International Rectifier	IRFB4310ZPBF-ND	TO-220
3	Q8, Q10	SMD MOSFET N-channel 20 V , 60 A	Vishay	SIR440DP-T1-GE3	8-SOIC
1	Q11	DNI			
1	Q13	MOSFET N-channel $50 \mathrm{~V}, 220 \mathrm{~mA}$	Fairchild	BSS138	SOT-23
1	Q14	SMD MOSFET N-channel 100 V , 170 mA	Diodes, Inc	BSS123-7-F	SOT23
1	RTD1	Thermistor NTC $100 \mathrm{k} \Omega, 5 \%$ RAD	EPCOS	B57891M0104J000	B57891
2	R1, R5	SMD resistor $0.003 \Omega, 2 \mathrm{~W}, 1 \%$	Stackpole Electronics, Inc	CSNL2512FT3L00	2512
3	R2, R3, R4	SMD resistor $10.0 \Omega, 3 / 4 \mathrm{~W}, 5 \%$	Stackpole Electronics, Inc	RMCF2010JT10R0	2010
1	R5	SMD resistor $0.003 \Omega, 2 \mathrm{~W}, 1 \%$	Stackpole Electronics, Inc	CSNL2512FT3L00	2512
2	R6, R7	Resistor $0.0 \Omega, 1 / 4 \mathrm{~W}, \mathrm{SMD}$	Any	Any	1206
1	R8	DNI	DNI	DNI	2512
2	R9, R10	Resistor $0.0 \Omega, 1 / 4 \mathrm{~W}, \mathrm{SMD}$	Any	Any	1206
1	R11	SMD resistor $500.0 \Omega, 5 \%$	Any	Any	
2	R13, R18	SMD resistor $22.0 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	0805
4	R16, R17, R26, R30	SMD resistor $0.0 \Omega, 1 / 8 \mathrm{~W}, 5 \%$	Any	Any	0805
5	R19 to R22, R15	SMD resistor $1.00 \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	
2	R23, R27	SMD resistor $20.0 \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	0805
1	R25	SMD resistor $10.0 \Omega, 3 / 4 \mathrm{~W}, 5 \%$	Any	Any	2010
1	R29				
4	R31, R32, R33, R36	SMD resistor $2.20 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	0805
1	R35	Resistor $12.0 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \% \mathrm{SMD}$	Any	Any	0805
2	R37, R58	SMD resistor $10.0 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	0805
13	$\begin{aligned} & \text { R30, R38 to R47, R52, } \\ & \text { R53 } \end{aligned}$	SMD resistor $0.0 \Omega, 1 / 8 \mathrm{~W}, 5 \%$	Any	Any	0805
1	R48	SMD resistor $1.00 \Omega, 1 / 8 \mathrm{~W}, 1 \% 0805$	Any	Any	0805
2	R56, R57	SMD resistor $100 \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	0805
3	R60, R61, R80	Resistor $100 \Omega, 1 / 8 \mathrm{~W}, 1 \%$ SMD	Any	Any	0805
1	R62	SMD resistor $100 \Omega, 1 / 8 \mathrm{~W}, 1 \%$	Any	Any	0805
1	SW1	SW slide SPDT $30 \mathrm{~V}, 0.2 \mathrm{~A} \mathrm{PC} \mathrm{mount}$	E-Switch	EG1218	Slide-Sw
3	TP1 to TP3	Test point PC mini 0.040"D red	Keystone	5010	TP-70
7	TP5 to TP11	Test point PC mini 0.040"D red	Keystone	5010	TP-70
3	TP13 to TP15	Test point PC mini 0.040"D red	Keystone	5010	TP-70
4	TP17, TP18, TP21 to T22	Test point PC mini 0.040"D red	Keystone	5010	TP-70
6	TP24, TP25, TP27 to T30	Test point PC mini 0.040"D red	Keystone	5010	TP-70
2	TP37, TP38	Test point PC mini 0.040"D red	Keystone	5010	TP-70
2	T1, T2	Power switch mode transformers	Precision Inc	0197140-00R	ETD29
2	T3, T4	Current sensor	Coilcraft	CST1-050LB	CST1
2	T5, T6	Transformer gate drive	Coilcraft	DA2320-ALB	DA2320
3	U1, U2, U3	High speed dual 4 A MOSFET driver	Analog Devices	ADP3654A	8-lead SOIC
1	U4	IC multiconfiguration 12 V, 0.2 A	Analog Devices	ADP1111ARZ-12	8-lead SOIC

Table 7. Daughter Card

Qty	Reference	Part Description	Manufacture	Mfg Part No	Package
1	C5	Capacitor ceramic $1.0 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, X7R	Murata	GRM32RR71H105KA01L	1210
1	C6	Capacitor ceramic $330 \mathrm{pF}, 10 \%, 100 \mathrm{~V}$, X7R	AVX	08051C331KAT2A	0805
3	C8, C11, C14	Capacitor ceramic $0.1 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$	AVX	08055C104KAT2A	0805
2	C10, C13	Capacitor ceramic $100 \mathrm{pF}, 10 \%, 100 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$			0805
1	C12	Capacitor ceramic $4.7 \mu \mathrm{~F}, \pm 10 \%, 10 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$	TY	LMK212B7475KG-T	0805
1	C15	Capacitor ceramic 1000 pF, 10\%, 100V, X7R	TDK	C2012X7R1A475M	0805
2	D1, D2	Diode SW $150 \mathrm{~mA}, 100 \mathrm{~V}, 1 \mathrm{~N} 4148$	Micro Commercial	1N4448W-TP	SOD-123
1	D6	LED super red clear $75 \mathrm{~mA}, 1.7 \mathrm{~V}$, SMD	Chicago Lighting	CMD15-21SRC/TR8	1206
1	J1	Connector header female 30-position 0.1" DL tin, CON30	Sullins Connector	PPTC152LFBN-RC	Fmal Socket
1	J7	Connector header 4-position SGL PCB 30 gold, HEADER4X1	FCl	69167-104HLF	Header 4POS
1	R1	Resistor $27.0 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%$, SMD	Any	Any	0805
1	R2	Resistor $1.00 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$, SMD	Any	Any	0805
2	R3, R4	Resistor $4.99 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 0.1 \%, \pm 25 \mathrm{ppm}$, SMD	Any	Any	0805
3	R5, R7, R10	Resistor $11.0 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, \pm 25 \mathrm{ppm}$, SMD	Any	Any	0805
3	R6, R8, R11	Resistor $1.00 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, \pm 25 \mathrm{ppm}$, SMD	Any	Any	0805
1	R13	Resistor $0.0 \Omega, 1 / 8 \mathrm{~W}, 5 \%$, SMD	Any	Any	0805
6	$\begin{aligned} & \text { R14, R15, R24, R29, } \\ & \text { R32, R33 } \end{aligned}$	Resistor $2.20 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}$, SMD	Any	Any	0805
2	R19, R20	Resistor $10 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 0.1 \%$, SMD	Any	Any	0805
1	R21	Resistor $5.10 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, \mathrm{SMD}$	Any	Any	0805
1	U1	ADP1046A secondary side power supply controller	Analog Devices	ADP1046A	32-lead LFCSP
1	U2	ADP3303 IC LDO linear regulator $200 \mathrm{~mA}, 3.3 \mathrm{~V}$	Analog Devices	ADP3303ARZ-3.3	SOIC-8
9	$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 7, \\ & \mathrm{C} 9, \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 18 \end{aligned}$	DNI			

APPENDIX I—TRANSFORMER SPECIFICATIONS

Table 8. Transformer Specifications

Parameter	Min	Typ Max	Unit	Notes
Core and Bobbin				ETD 29 horizontal, 3F3 or equivalent
Primary Inductance		4.25	mH	Pin 1 and Pin 3
Leakage Inductance		7	$\mu \mathrm{H}$	Pin 1 and Pin 3 with all other windings shorted
Resonant Frequency	850		kHz	Pin 1 and Pin 3 with all other windings open

Figure 88. Transformer Electrical Diagram

Figure 89. Transformer Construction Diagram

Figure 90. Transformer Bobbin Diagram

APPENDIX II—OUTPUT INDUCTOR SPECIFICATIONS

Figure 91. Output Inductor Electrical Diagram
Table 9. Output Inductor Specifications

Parameter	Min	Typ	Max	Unit	Notes
Core					77351A7, KooIMu, Magnetics, Inc.
Permeability $\left(\mu_{0}\right)$	60				
Inductance	6.5	10	16	$\mu \mathrm{H}$	Maximum at no load, typical at full load
DC Resistance		10		$\mathrm{~m} \Omega$	

APPENDIX III—REGISTER FILE (ADP1046A_I2SF_032011.46R)

Table 10.

Register Address	Programmed Setting	Name
0x0	0x00	Fault Register 1
0x1	0x00	Fault Register 2
0x2	0x00	Fault Register 3
0×3	0x01	Fault Register 4
0×4	0x00	Latched Fault Register 1
0x5	0x00	Latched Fault Register 2
0×6	0x00	Latched Fault Register 3
0x7	0x61	Latched Fault Register 4
0x8	0x03	Fault Configuration Register 1
0x9	0x33	Fault Configuration Register 2
0xA	0x30	Fault Configuration Register 3
0xB	0x03	Fault Configuration Register 4
0xC	0x20	Fault Configuration Register 5
0xD	0x80	Fault Configuration Register 6
0xE	0x45	Flag configuration
0xF	0×23	Soft start flag blank
0×10	0x00	First Flag ID
0×11	0xE6	RTD current settings
0×12	0x00	HF ADC reading
0×13	0x3AFC	CS1 value
0×14	0xC7EC	ACSNS value
0×15	0xA0BC	VS1 voltage value
0×16	0xA098	VS2 voltage value
0×17	0xA000	VS3 voltage value
0×18	0x5644	CS2 value
0×19	0x00	CS2 \times VS3 value
$0 \times 1 \mathrm{~A}$	0x5C34	RTD temperature value
$0 \times 1 \mathrm{~B}$	0x00	Read temperature
$0 \times 1 \mathrm{C}$	0x00	RTD offset trim MSB
$0 \times 1 \mathrm{D}$	0x00	Share bus value
$0 \times 1 \mathrm{E}$	0x54	Modulation value
$0 \times 1 \mathrm{~F}$	0x00	Line impedance value
0×20	0x07	RTD offset trim setting (LSB)
0×21	0x84	CS1 gain trim
0×22	$0 \times A D$	CS1 accurate OCP limit
0×23	0x00	CS2 gain trim
0×24	0x00	CS2 analog offset trim
0×25	0x00	CS2 digital offset trim
0×26	0x6B	CS2 accurate OCP limit
0×27	0xE3	CS1/CS2 fast OCP settings
0×28	0x46	Volt-second balance gain setting
0×29	0x04	Share bus bandwidth
$0 \times 2 \mathrm{~A}$	0xF1	Share bus setting
$0 \times 2 \mathrm{~B}$	0x82	Temperature gain trim
$0 \times 2 \mathrm{C}$	0x82	PSON/soft start settings
0x2D	0x5A	PGOOD debounce and pin polarity setting
$0 \times 2 \mathrm{E}$	0x26	Modulation limit
$0 \times 2 \mathrm{~F}$	0xA0	OTP threshold
0×30	0x1C	OrFET
0x31	$0 \times A 0$	VS3 voltage setting

Register Address	Programmed Setting	Name
0x32	0x5A	VS1 overvoltage limit
0×33	0x0B	VS3 overvoltage limit
0x34	0x28	VS1 undervoltage limit
0x35	0xFF	Line impedance limit
0x36	0x07	Load line impedance
0×37	0xDD	Fast OVP comparator settings
0×38	0x00	VS1 trim
0x39	0x00	VS2 trim
$0 \times 3 \mathrm{~A}$	0x00	VS3 trim
0x3B	0x45	Light load disable setting
0x3C	0x00	Silicon revision ID
0x3D	0x00	Manufacturer ID
0x3E	0x00	Device ID
0x3F	0x9B	OUTAUX switching frequency setting
0×40	0x1B	PWM switching frequency setting
0×41	0x00	PWM1 positive edge timing
0x42	0x01	PWM1 positive edge setting
0x43	0x00	PWM1 negative edge timing
0x44	0x18	PWM1 negative edge setting
0x45	0x00	PWM2 positive edge timing
0x46	0x00	PWM2 positive edge setting
0×47	0x00	PWM2 negative edge timing
0x48	0x18	PWM2 negative edge setting
0x49	0x02	PWM3 positive edge timing
$0 \times 4 \mathrm{~A}$	0x88	PWM3 positive edge setting
0x4B	0x51	PWM3 negative edge timing
0×4C	$0 \times C 0$	PWM3 negative edge setting
0x4D	$0 \times 2 \mathrm{~A}$	PWM4 positive edge timing
0x4E	0×10	PWM4 positive edge setting
0x4F	$0 \times 2 \mathrm{~A}$	PWM4 negative edge timing
0x50	0×18	PWM4 negative edge setting
0x51	$0 \times 2 \mathrm{~A}$	SR1 positive edge timing
0x52	0x00	SR1 positive edge setting
0×53	$0 \times 2 \mathrm{~A}$	SR1 negative edge timing
0x54	0x18	SR1 falling edge setting
0x55	0x2C	SR2 rising edge Timing
0x56	0x88	SR2 rising edge setting
0×57	0x27	SR2 falling edge timing
0×58	0x80	SR2 falling edge setting
0×59	0x00	PWM OUTAUX rising edge timing
$0 \times 5 \mathrm{~A}$	0x00	PWM OUTAUX rising edge setting
0x5B	0x0A	PWM OUTAUX falling edge timing
0x5C	0x08	PWM OUTAUX falling edge setting
0x5D	0x00	PWM and SRx pin disable setting
0x5E	$0 \times 7 \mathrm{~F}$	ACSNS gain trim
0x5F	0xD2	Soft start and output voltage slew rate setting
0x60	0x22	Normal mode digital filter LF gain setting
0×61	0xF2	Normal mode digital filter zero setting
0x62	0xCA	Normal mode digital filter pole setting
0x63	0x3D	Normal mode digital filter HF gain setting
0x64	0x22	Light load digital filter LF gain setting
0x65	0xF2	Light load digital filter zero setting
0x66	$0 \times C A$	Light load digital filter pole setting

Register Address	Programmed Setting	Name
0x67	0x3D	Light load digital filter HF gain setting
0x68	0×07	Adaptive dead time threshold
0×69	0x88	Dead Time 1
$0 \times 6 \mathrm{~A}$	0x88	Dead Time 2
$0 \times 6 \mathrm{~B}$	0x88	Dead Time 3
$0 \times 6 \mathrm{C}$	0x88	Dead Time 4
0x6D	0x88	Dead Time 5
$0 \times 6 \mathrm{E}$	0x88	Dead Time 6
$0 \times 6 \mathrm{~F}$	0x88	Dead Time 7
0x70	0x00	Dead time configuration
0×71	0x22	Soft start digital filter LF gain setting
0×72	0xF2	Soft start digital filter zero setting
0×73	0xCA	Soft start digital filter pole setting
0×74	0x3D	Soft start digital filter HF gain setting
0×75	0x04	Voltage line feedforward settings
0×76	0x30	Volt-second balance OUTA/OUTB settings
0×77	0×02	Volt-second balance OUTC/OUTD settings
0×78	0x00	Volt-second balance SR1/SR2 Settings
0x79	0x00	SR delay compensation
$0 \times 7 \mathrm{~A}$	0x0F	Filter transitions
$0 \times 7 \mathrm{~B}$	0x1F	PGOOD1 masking register
0x7C	0x60	PGOOD2 masking register
0x7D	0x34	Light load mode threshold settings
0x7E	0x00	Reserved
0x7F	0x00	GO byte

APPENDIX IV—BOARD FILE (ADP1046A_I2SF_032011.46B)

Input Voltage $=385 \mathrm{~V}$
$\mathrm{N} 1=44$
$\mathrm{N} 2=4$
$\mathrm{R}(\mathrm{CS} 2)=1.75 \mathrm{mOhm} \quad / *$ use 0.85 mOhm for high side sensing with OrFET RDS_ON
I (load) $=25 \mathrm{~A}$
R1 = 11 KOhm
R2 = 1 KOhm
$\mathrm{C} 3=1 \mathrm{uF}$
$\mathrm{C} 4=1 \mathrm{uF}$
N1 (CS1) $=1$
N2 (CS1) $=50$
$R(C S 1)=20$ 0hm
ESR (L1) = 8 mOhm
L1 = 10 uH
$\mathrm{C} 1=2700 \mathrm{uF}$
$\operatorname{ESR}(\mathrm{C} 1)=16 \mathrm{mOhm}$
ESR (L2) = 10 mOhm
$\mathrm{L} 2=0 \mathrm{uH}$
$\mathrm{C} 2=1000 \mathrm{uF}$
ESR (C2) = 23 mOhm
R (Normal-Mode) (Load) $=0.48$ Ohm
R (Light-Load-Mode) (Load) $=2$ Ohm
Cap Across R1 \& R2 = 0 " (1 = Yes: $0=$ No)"
Topology = 3 (0 = Full Bridge: 1 = Half Bridge: 2 = Two Switch Forward: 3 = Interleaved Two Switch Forward: 4 = Active Clamp Forward: 5 = Resonant Mode: 6 = Custom)
Switches / Diodes = 0 (0 = Switches: 1 = Diodes)
High Side / Low Side Sense (CS2) = 0 (1 = High-Side: 0 = Low-Side Sense)
Second LC Stage = 1 ($1=$ Yes: $0=$ No)
CS1 Input Type = 0 (1 = AC: $0=\mathrm{DC})$
R3 = 0 KOhm
R4 = 0 KOhm
PWM Main = 0 (0 = OUTA: $1=$ OUTB: $2=$ OUTC: 3 = OUTD: $4=$ SR1: $5=$ SR2: $6=$ OUTAUX)
$\mathrm{C} 5=0 \mathrm{uF}$
C6 = 0 uF
R6 = 27 KOhm
R7 = 1 KOhm
Evaluation Board User Guide UG-589

RELATED LINKS

Resource	Description
ADP3654	Product Page, High Speed, Dual, 4 A MOSFET Driver
ADP1111	Product Page, Micropower, Step-Up/Step-Down SW Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
ADP1046A	Product Page, High Speed Converter Evaluation Platform (FPGA-based data capture kit)
ADP3303	Product Page, High Accuracy anyCAP 200 mA Low Dropout Linear Regulator

NOTES

$1^{2} C$ refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution
 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILTY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECTTO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILTTY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILTY FROM ANY AND ALL CAUSES SHALL BE LIMITED TOTHE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.
w w w. analog.com

