

AN-1383 应用笔记

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADP1046A EEPROM 编程

作者: Navdeep Singh Dhanjal、Hossain Opal和Subodh Madiwale

简介

ADP1046A集成寄存器映射和EEPROM,并根据用户的系 统首选项,针对特定电源拓扑和应用进行了编程设置。本 应用笔记重点讨论生产线环境中对ADP1046A进行编程的 硬件和软件考虑因素。

硬件

图1显示了EEPROM编程环境下, ADP1046A的建议引脚设 置。所有元件均采用表贴封装。此外,建议采用陶瓷电容。

建议引脚设置

表1列出了图1所示元件的设置。

表1. 元件设置

元件	价值	单位	注释
VDD引脚	3.3	V	
GND ^{1,2}			电路板接地层
NC			无连接引脚,此引脚悬空
C1	0.5	μF	电容1
C2、C3	2.5	μF	电容2、电容3
R1、R2	5	kΩ	电阻1、电阻2
R3、R4	2.2	kΩ	电阻3、电阻4
R5	10	kΩ	电阻5,精度0.1%
R6、R7	10	Ω	可选电阻

1 整块电路板上应当有一个连续的接地层。

²为了避免噪声干扰,从编程器到器件的SDA、SCL和GND线路应尽量短。

Х́мс

图1. 建议引脚设置

目录

ADP1046A EEPROM 编程	1
简介	1
硬件	1
建议引脚设置	1
修订历史	2

ADP1046A EEPROM 编程	3
简介	4
硬件	4
建议引脚设置	4
使订历中	5
修订历义	

修订历史

2016年2月—修订版0:初始版

其它布局布线建议

如果ADP1046A焊接在电路板上,则表1中列出的元件应靠 近引脚,如图4所示。如果使用了座子,则将元件放置在 电路板底部靠近引脚处,如图2所示。

图2. 电路板布局

13700-103

图3. 电路板布局(底视图)

图4. 电路板布局(IC焊接在电路板上)

13700-104

软件编程

有两种方式可将寄存器设置编程至器件的EEPROM中:标准方式或替换方式。

标准EEPROM编程

如需采用标准方式将寄存器设置编程至EEPROM,请遵循 下列步骤:

- 从ADP1046A图形用户界面(GUI)生成的 ".46r" 文件或 十六进制文件中读取寄存器设置,然后通过I²C将下列 寄存器值写入相应寄存器:
 - a. 写入寄存器0x08至寄存器0x0F。
 - b. 写入寄存器0x22。
 - c. 写入寄存器0x26至寄存器0x2A。
 - d. 写入寄存器0x2C至寄存器0x37。
 - e. 写入寄存器0x3B。
 - f. 写入寄存器0x3F至寄存器0x5D。
 - g. 写入寄存器0x5F至寄存器0x7D。
- 回读写入的数值,然后将这些数值与.46r文件中的寄存 器设置进行比较,确保写操作正确执行。
- 如需解锁EEPROM,需向寄存器0x88执行重复写操作。
 首先,将0xFF写入寄存器0x88,然后立即再次将0xFF写入寄存器0x88。
- 如需将寄存器中的内容上传至EEPROM,则向寄存器 0x82执行发送命令。
- 5. 等待50 ms, 以便上传完成。
- 6. 如需锁定EEPROM,请将0x01写入寄存器0x88。

替代EEPROM编程

如需采用替代方式将电路板设置编程至EEPROM,请遵循 下列步骤并参考图5:

- 如需解锁EEPROM,需向寄存器0x88执行重复写操作。 首先,将0xFF写入寄存器0x88,然后立即再次将0xFF写 入寄存器0x88。
- 将0x02写入寄存器0x87以便擦除EEPROM页2;等待 30 ms,完成擦除操作。
- 3. 将0x0000写入寄存器0x85,以便设置地址偏移为零。
- 使用来自十六进制文件的电路板数据,通过向寄存器 0x8D执行块写入操作,从而写入EEPROM页2。
- 5. 将0x01写入寄存器0x88, 以便解锁EEPROM。

图5. 使用十六进制文件的EEPROM替代编程

电路板设置十六进制文件

十六进制文件内容如下:

注意,以下信息内嵌在文件格式中:

- 冒号之后最前面的两位数7B代表字节数。本例为123个 字节。
- 紧接着的四位数008D代表地址。
- 之后的两位数00代表记录类型。
- 之后从0102036到36个0的最终字符串代表数据。
- 最后两位数81代表校验和。

使用十六进制文件的示例

在EEPROM中存储电路板设置的格式

写入EEPROM并用于电路板设置的数据始于0x010203,而 图形用户界面(GUI)使用这些数据来检测EEPROM中的页2 是否存在有效的电路板设置数据。

在十六进制文件中,每一个电路板设置都以三字节数据表示。最前面的两个字节表示尾数,第三个字节表示指数。 例如,第一个电路板设置为输入电压48 V,以0x6000F7表示。表2可用来理解十六进制码的划分。

表2.十六进制码划分

尾数		
高位	低位	指数
0x60	0x00	0xF7

十六进制数转换为电路板设置

- 尾数 = 0x6000
- 十进制尾数 = 24,576
- 指数 = 0xF7
- 二进制补码后的指数 = -9
- 输入电压 = 24,576 × 2⁻⁹ = 48 V。

图6显示了带有电路板设置的ADP1046A GUI窗口。表3进 一步定义了这些设置,其中项目这一列表示图6中的元件 定位器编号。

图6. 含有电路板设置的ADP1046A GUI窗口

表3. 电路板设置的元件值

		尾数		
项目	电路板数值	高位	低位	指数
1	输入电压 = 48 V	0x60	0x00	0xF7
2	N1 = 6	0x60	0x00	0xF4
3	N2 = 3	0x60	0x00	0xF3
4	$R(CS2) = 11 m\Omega$	0xB0	0x00	0xF4
5	I(负载)= 8 A	0x80	0x00	0xF4
6	R1 = 11 kΩ	0xB0	0x00	0xF4
7	$R2 = 1 k\Omega$	0x80	0x00	0xF1
8	C3 = 1 μF	0x80	0x00	0xF1
9	C4 = 1 μF	0x80	0x00	0xF1
10	N1 (CS1) = 1	0x80	0x00	0xF1
11	N2 (CS1) = 100	0x64	0x00	0xF8
12	$R(CS1) = 10 \Omega$	0xA0	0x00	0xF4
13	$\text{ESR}(L1) = 6 \text{ m}\Omega$	0x60	0x00	0xF4
14	$L1 = 6 \mu H$	0x60	0x00	0xF4
15	C1 = 1500 μF	0x5D	0xC0	0xFC
16	ESR (C1) = 50 m Ω	0x64	0x00	0xF7

		尾数		
项目	电路板数值	高位	低位	指数
17	$\text{ESR}(\text{L2}) = 0 \text{ m}\Omega$	0x00	0x00	0x00
18	$L2 = 0 \ \mu H$	0x00	0x00	0x00
19	C2 = 220 μF	0x6E	0x00	0xF9
20	$\text{ESR}(\text{C2}) = 20 \text{ m}\Omega$	0xA0	0x00	0xF5
21	R(正常模式)=1.5Ω	0x60	0x00	0xF2
22	R(轻载模式)=12Ω	0x60	0x00	0xF5
23	R1和R2上的电容 = 0 μF	0x00	0x00	0x00
24	拓扑=0	0x00	0x00	0x00
25	开关/二极管=0	0x00	0x00	0x00
26	高端/低端检测(CS2)=0mΩ	0x00	0x00	0x00
27	第二个LC级 = 1(仅当安装了项目17至项目20时)	0x80	0x00	0xF1
28	CS1输入类型=0(供内部使用的默认值)	0x00	0x00	0x00
29	$R3 = 0 k\Omega$	0x00	0x00	0x00
30	$R4 = 0 k\Omega$	0x00	0x00	0x00
31	脉冲宽度调制器(PWM)主值=0 (供内部使用的默认值)	0x00	0x00	0x00
32	$C5 = 0 \ \mu F$	0x00	0x00	0x00
33	C6 = 0 μF	0x00	0x00	0x00
34	$R6 = 27 k\Omega$	0x6C	0x00	0xF6
35	R7 = 1 kΩ	0x80	0x00	0xF1

谐振模式拓扑

对于谐振模式拓扑而言(如图7所示),其余元件的设置应当 不同于表3中通用电路板的设置。谐振模式设置见表4。

表4. 谐振模式元件

项目	电路板数值
1	输入电压 = 385 V
2	N1 = 6
3	N2 = 3
4	$R (CS2) = 2.2 m\Omega$
5	l(负载)= 12.5 A
6	$R1 = 46.4 \text{ k}\Omega$
7	$R2 = 1 k\Omega$
8	C3 = 1 µF
9	$C4 = 1 \ \mu F$
10	N1 (CS1) = 1
11	N2 (CS1) = 100
12	$R(CS1) = 20 \Omega$
13	$\text{ESR}(L1) = 6 \text{ m}\Omega$
14	$L1 = 6 \mu H$
15	C1 = 680 μF
16	ESR (C1) = 50 m Ω
17	$\text{ESR}(\text{L2}) = 0 \text{ m}\Omega$
18	$L2 = 0 \mu H$
19	$C2 = 330 \mu\text{F}$

项目 电路板数值

- 20 ESR (C2) = 20 m Ω
- 21 R(正常模式), 负载 = 3.84 Ω
- 22 R(轻载模式),负载=24Ω
- 23 R1和R2上的电容=0(1=是, 0=否)
- 25 开关/二极管=0(0=开关,1=二极管)
- 26 高端/低端检测(CS2)=0(1=高端检测, 0=低端检测)
- 27 第二个LC级 = 1(1 = 是, 0 = 否)
- 28 CS1输入类型=0(1=交流,0=直流)
- $R3 = 0 \ k\Omega$
- $30 \qquad R4 = 0 \ k\Omega$
- 31 脉冲宽度调制器主值=0(0=OUTA, 1=OUTB, 2=OUTC, 3=OUTD, 4=SR1, 5=SR2, 6=OUTAUX)
 - $C5 = 0 \,\mu\text{F}$
- 32 C5 = 0 μF
 33 C6 = 0 μF
- 34 R6 = 27 kΩ
- 35 R7 = 1 kΩ
- 36 C7 = 0.009 μF
- 37 L3 = 70 μH
- 38 Lm = 400 μH
- 39 ResF = 108 kHz
- 40 R8 = 145 mΩ
- 41 R9 = 10 mΩ

图7. 含有电路板设置的ADP1046A GUI窗口(用于谐振模式)

相移、全桥拓扑

对于相移、全桥拓扑(如图8所示),其余元件的设置要求既 不同于通用电路板设置(表3),又不同于谐振模式设置(表 4)。相移、全桥设置如表5所示。

表5. 相移全桥元件

项目	电路板数值
1	输入电压 = 385 V
2	N1 = 6
3	N2 = 3
4	$R (CS2) = 2.2 m\Omega$
5	I(负载)= 12.5 A
6	$R1 = 46.4 \text{ k}\Omega$
7	$R2 = 1 k\Omega$
8	C3 = 1 µF
9	C4 = 1 μF
10	N1 (CS1) = 1
11	N2 (CS1) = 100
12	$R(CS1) = 20 \Omega$
13	$\text{ESR}(L1) = 6 \text{ m}\Omega$
14	$L1 = 6 \mu H$
15	C1 = 680 μF
16	$\text{ESR}(\text{C1}) = 50 \text{ m}\Omega$
17	$\text{ESR}(\text{L2}) = 0 \text{ m}\Omega$
18	$L2 = 0 \mu H$

项目 电路板数值

- 19 C2 = 330 μF
- 20 ESR (C2) = $20 \text{ m}\Omega$
- 21 R(正常模式), 负载 = 3.84 Ω
- 22 R(轻载模式),负载=24Ω
- 23 R1和R2上的电容 = 0(1 = 是, 0 = 否)
- 25 开关/二极管=0(0=开关,1=二极管)
- 26 | 高端/低端检测(CS2) = 0(1 = 高端检测, 0 = 低端检测)
- 27 第二个LC级 = 1(1 = 是, 0 = 否)
- 28 CS1输入类型=0(1=交流,0=直流)
- $R3 = 0 k\Omega$
- $30 \qquad R4 = 0 \ k\Omega$
- 31 PWM主值=0(0=OUTA, 1=OUTB, 2=OUTC,
 - 3 = OUTD, 4 = SR1, 5 = SR2, 6 = OUTAUX)
- 32 C5 = 0 μF
- 33 C6 = 0 μF
 34 R6 = 27 kΩ
- $R7 = 1 k\Omega$
- 36 $C7 = 0.009 \,\mu\text{F}$
- 37 L3 = 70 μH
- . 38 Lm = 400 μH
- 39 ResF = 108 kHz
- 40 R8 = 145 m Ω
- 40 R9 = 10 m Ω

图8. 含有电路板设置的ADP1046A GUI窗口(用于相移、全桥拓扑)

ANALOG

DEVICES

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN13700sc-0-2/16(0)

www.analog.com

Rev. 0 | Page 8 of 8