
AN-755
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/326-8703 • www.analog.com

INTRODUCTION
This document shows how the checksum for the
ADM1060 is calculated, and the locations that the
checksum information is then stored in EEPROM at the
preprogramming stage. Using this information, it is then
possible to extract the data from the preprogrammed
device and cross-reference the checksum data with the
master .fac file, and also verify that the device has not
been modified since preprogramming.

The ADM1060 has a 512 byte EEPROM split into two
equal blocks. The first 256 locations (F8 Block) contain
all the configuration data for the ADM1060; the second
F9 block is for user data.

����
������

����
������

������ ������

������ ������

������ ������

������

������

�������
�������������

������

�������
���� ����������

������

������

������� ��������

Figure 1. ADM1060 EEPROM Structure

The checksums for each of these blocks are saved in a
locked page of the 0xF8 block. There are three check-
sums of significance.

EEPROM Checksum Information for the ADM1060
by Marcus O’Sullivan

1. Configuration File (.fac file) 16-Bit Checksum

 This is only a partial checksum of the 0xF8 EEPROM
bitmap. Locations such as factory calibration and sta-
tus registers are excluded. Therefore, the checksum
remains the same for all parts programmed with the
same configuration. This checksum is listed at the top
of the .fac file. Since this checksum is 16 bits and the
EEPROM locations are only 8 bits, to store it on each
device we must split it into MSB and LSB. The check-
sum is stored in the following locations:

 0xF8FE (MSB) and 0xF8FF (LSB)

 This checksum could be used to verify that the
correct program was selected to program the device.

 This checksum is calculated from the .fac file as follows:

 Add the data in locations “from 0xF800 to 0xF890
inclusive,” then add this to the sum of the data in
the following locations “from 0xF898 to 0xF89C in-
clusive,” then add this to the sum of the data in the
following locations “from 0xF8A0 to 0xF8D7 inclu-
sive.” Now invert (bitwise complement) this number
then “AND” (&) the result with 0xFFFF.

 For example:

 checksum = (~(sum of locations: “0xF800 -> 0xF890”
+ “0xF898 -> 0xF89C” + “0xF8A0 -> 0xF8D7”)) &
0xFFFF

REV. 0

http://www.analog.com

A
N

05
20

9–
0–

11
/0

4(
0)

–2–

AN-755

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

2. Full Configuration EEPROM 8-Bit Checksum

 This is an 8-bit checksum of the full configuration
0xF8 EEPROM (excluding the last 32 bytes of locked
factory locations). This checksum may be unique for
each individual part programmed with the same con-
figuration due to the fact that all calibration data will
be included in the checksum calculation. This check-
sum is stored in the following location:

 0xF8F3

 This checksum could be used to verify that no
configuration data has changed since the device
was programmed.

 This checksum is calculated as follows:

 Add the data in locations “from 0xF800 to 0xF8D7
inclusive,” then invert (bitwise complement) this num-
ber then “AND” (&) the result with 0xFF.

 For example:

 checksum = (~(sum of locations: “0xF800 ->
0xF8D7”)) & 0xFF

3. User Scratchpad EEPROM 8-Bit Checksum

 This is an 8 -bit checksum of the full user 0xF9
EEPROM.

 This checksum is stored in the following location:

 0xF8F5

 This checksum is calculated as follows:

 Add the data in locations “from 0xF900 to 0xF9FF
inclusive,” then invert (bitwise complement) this num-
ber, then “AND” (&) the result with 0xFF.

 For example:

 checksum = (~(sum of locations: “0xF900 -> 0xF9FF”))
& 0xFF

REV. 0

	INTRODUCTION

