

Engineer-to-Engineer Note EE-396

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms

Contributed by Punarva Katte Rev 1 – January 3, 2017

Copyright 2017, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The ADSP-CM41x family of mixed-signal control processors provides an on-chip MATH accelerator unit,

which can be used to offload most of the common transcendental functions such as ex, sin(x), cos(x).

atan2(y/x), etc., from the Cortex-M4F core. The accelerator is tightly coupled to the Cortex-M4F core and

is within the core clock domain. The unit is operated with a simple and flexible store-load mechanism by

storing operands to registers and reading results from other registers.

Clarke and Park transformations are matrices of transformation to convert the current/voltage system of any

ac-machine from one base to another. The Clarke transform converts a three-phase system into a two-phase

system in a stationary frame. The Park transform converts a two-phase system from a stationary frame to a

rotating frame. By changing the reference frame, it is possible to considerably simplify the complexity of

the mathematical machine model. These techniques are invaluable tools in the digital control of ac-

machines.

The purpose of this EE-note is to introduce users to the MATH accelerator unit and techniques that may be

used to reduce the computation time of mathematical calculations, such as the Clarke and Park transforms.

MATH Accelerator Unit

The MATH unit provides accelerated functions such as reciprocal, square root, trigonometric functions,

exponential functions, and their inverses. It also provides accelerated functions to convert between

rectangular and polar coordinates. Most operations by this tightly-coupled accelerator complete in a

deterministic number of core clock cycles, faster than the Cortex-M4F core could accomplish the same task.

Table 1 provides the cycles taken to execute each of the functions using the MATH unit. The two columns,

Full Domain and Normal Domain, correspond to different ranges of input to the function. Refer to the

ADSP-CM41x Hardware Reference Manual[1] for more details.

The MATH unit provides an easy-to-use function calculator for general programming operations. Its

operands, results, and functions adhere to the IEEE 754-2008 Single-Precision Floating-Point Arithmetic

Standard[2]. In general, results returned are accurate to within a standard relative error of 23.5 bits compared

to the infinitely precise mathematical result.

http://www.analog.com/processors

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 2 of 6

Function Full Domain Normal Domain

adi_recipf(x) or 1/x 9 cycles 9 cycles

adi_sqrtf(x) or √x 9 cycles 9 cycles

adi_expf(x) or ex 9 cycles 9 cycles

adi_exp2f(x) or 2x 8 cycles 8 cycles

adi_log2f(x) 10 cycles 10 cycles

adi_lnf(x) 11 cycles 11 cycles

adi_sinf(x) x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles

adi_cosf(x) x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles

adi_tanf(x) x = [−∞, +∞]: 20 cycles x = (-8,+8): 13 cycles

adi_asinf(x) |x| ≤0.5: 11 cycles

0.5< |x| ≤0.75: 12 cycles

0.75< |x| ≤1: 15 cycles

adi_acosf(x) |x| ≤0.5: 12 cycles

0.5< |x| ≤0.75: 13 cycles

0.75< |x| ≤1: 14 cycles (and 15 cycles for negative x)

adi_atanf(x) |x| ≤0.00325: 8 cycles

|x| >0.00325: 20 cycles

adi_atan2f (x,y) x: [−∞, +∞]

y: [−∞, +∞]: 22 cycles

adi_hypotf(x,y) or √(x2 + y2) |x| ≤0.00325: 10 cycles

|x| >0.00325: 22 cycles

adi_rtopf(x,y) x: [−∞, +∞]

y: [−∞, +∞]: 33 cycles

adi_ptorf(r,a) r:[0,+∞]

a:(−∞, +∞): 20 cycles

r:[0,+∞]

a:(−8, +8): 15 cycles

Table 1. Core Clock Cycles taken by MATH Unit Operations

Note:

1. adi_tanf requires an additional 8 cycles if the input operand (after normalizing by 2π) falls in the range

(
𝜋

4
,
3𝜋

4
) 𝑜𝑟 (−

3𝜋

4
, −

𝜋

4
)

2. Cycle counts do not include latencies associated with loading and storing from/to the MATH accelerator

registers. With code optimization, it is possible to achieve a MMR latency of:

a. 4-5 cycles, for single-operand functions.

b. 6 cycles, for double-operand, single-output functions like adi_atan2f and adi_hypotf.

c. 7 cycles, for double-operand, double-output functions like adi_rtopf and adi_ptorf.

The MATH unit is operated using stores and loads for operands and results. All hardware synchronization

is handled automatically. Refer to the Math Programming Model in the ADSP-CM41x Hardware

Reference Manual for a guide to optimal usage of the MATH functions using C or assembly.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 3 of 6

FPMarkTM

Similar to Coremark, Dhrystone, Whetstone, etc., FPMark[3] is an EEMBC benchmark used to evaluate

embedded processors or processing units. Unlike other benchmarks, it is used to evaluate the floating-point

computation capability of a processor. The FPMark suite consists of algorithms like Fast Fourier Transform,

Horner’s Method, Linear Algebra, ArcTan, Neural Net, Black Scholes, Enhanced Livermore Loops, LU

Decomposition, and Ray Tracer.

Both the Cortex-M4F core and the ADSP-CM41x MATH unit can perform floating-point operations.

Hence, FPMark is a good benchmark to compare the performance between the two. Table 2 shows the

performance improvement (in %) when using the MATH unit as compared to the Cortex-M4F core, for

each algorithm.

FPMark Algorithm
Performance

Improvement

ArcTan None

Black Scholes 24.68%

Horner’s Method None

Linear Algebra None

Enhanced Livermore Loops 15.44%

Neural Net 22.08%

Table 1. Performance Comparison Between Cortex-M4F Core and ADSP-CM41x MATH Unit

Clarke and Park Transforms

A significant breakthrough in the analysis of three-phase ac machines was the development of the Reference

Frame Theory[4]. These techniques are invaluable for analysis, simulation and digital control (like current,

torque and flux) of AC machines. Over the years, many different reference frames have been proposed for

the analysis of ac machines, with the most commonly used being the Stationary Reference Frame and the

Rotor Reference Frame.

Clarke Transform (Three-Phase to Two-Phase)

Three-phase ac machines are conventionally modeled using phase variable notation, though it is possible to

transform the system to an equivalent two-phase representation. The transformation from three-phase to

two-phase quantities is written in matrix form as Equation 1:

[
𝑖𝑠𝛼(𝑡)
𝑖𝑠𝛽(𝑡)

] =
2

3
[
1 cos (𝛾) cos (2𝛾)
0 sin (𝛾) sin (2𝛾)

] [

𝑖𝑠𝐴(𝑡)
𝑖𝑠𝐵(𝑡)
𝑖𝑠𝐶(𝑡)

]

 γ is the separation between axes of the three-phase machine, which is conventionally
2𝜋

3
.

 isA, isB and isC are three-phase stator currents.

 isα and isβ are two-phase stator currents.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 4 of 6

Note that the transformation is equally valid for the voltages and flux linkages.

Substituting 𝛾 =
2𝜋

3
, this becomes Equation 2:

 𝑖𝑠𝛼 =

1

3
(2𝑖𝑠𝐴 − 𝑖𝑠𝐵 − 𝑖𝑠𝐶)

𝑖𝑠𝛽 =
1

√3
(𝑖𝑠𝐵 − 𝑖𝑠𝐶)

}

In a balanced three-phase ac-machine, 𝑖𝑠𝐴 + 𝑖𝑠𝐵 + 𝑖𝑠𝐶 = 0, which simplifies to Equation 3:

 𝑖𝑠𝛼 = 𝑖𝑠𝐴

𝑖𝑠𝛽 =
1

√3
(𝑖𝑠𝐴 + 2𝑖𝑠𝐵)

 }

Park/Inverse Park Transform (Vector Rotation)

In the analysis of electrical machines, it is generally necessary to adopt a common reference frame for both

the rotor and the stator. For this reason, a second transformation, known as a vector rotation, is formulated

that rotates space vector quantities through a known angle. The transformation can be written in matrix form

as Equation 4:

[
𝑖𝑠𝑑
𝑖𝑠𝑞
] = [

cos (𝜃) sin (𝜃)
−sin (𝜃) cos (𝜃)

] [
𝑖𝑠𝛼
𝑖𝑠𝛽
]

 θ is the angle of rotor from stator.

 isd and isq are direct and quadrature axis components of the current space vector, respectively.

This transformation is referred to as the Inverse Park Transformation.

Similarly, the transformation used to rotate from rotor frame to stator frame is the Park Transformation,

and the matrix form of this transform is shown in Equation 5:

[
𝑖𝑠𝛼
𝑖𝑠𝛽
] = [

cos (𝜃) −sin (𝜃)
sin (𝜃) cos (𝜃)

] [
𝑖𝑠𝑑
𝑖𝑠𝑞
]

The elimination of position dependency from the machine electrical variables is the main advantage of

vector rotation.

Transform Implementation on ADSP-CM41x Devices

Equation 2 and Equation 3 (Clarke Transform), Equation 4 (Inverse Park Transform), and Equation 5 (Park

Transform) are implemented on the ADSP-CM41x device using simple C code as a part of one of two

implementations:

 the math.h library, which runs on the Cortex-M4F core

 the ADSP-CM41x MATH Unit Accelerator

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 5 of 6

Both are run with code in SRAM or flash memory, and the number of core cycles required can be measured.

Table 3 shows the performance of each function averaged over 128 samples of input data, using both the

Cortex-M4F core and the ADSP-CM41x MATH unit, with code in SRAM or flash memory.

Motor Control Kernels
Clarke Transform

Clarke

Transform

(Balanced)

Park Transform
Inverse Park

Transform

SRAM Flash SRAM Flash SRAM Flash SRAM Flash

Cortex-M4F using math.h
(Core cycles / 128)

21.078 21.141 13.055 13.102 200.547 239.156 201.547 239.380

MATH
Accelerator

Core cycles
/ 128

21.078 21.141 13.055 13.102 35.055 35.078 35.055 35.078

ns 87.826 88.086 54.395 54.590 146.061 146.160 146.061 146.160

Table 2. Performance of Motor Control Functions

 The results in Table 3 were obtained using a core clock of 240 MHz and a system

clock of 96 MHz with random values chosen for the input currents and theta.

Along with measuring the performance, the code also compares the accuracy of output currents with the

standard implementation (with same set of inputs).

Techniques for Optimal Use of the MATH Unit

This section describes some optimization techniques for getting the best performance out of the MATH unit.

adi_math.h

When developing a C/C++-based project using the MATH unit functions, include the adi_math.h header

file that is included in the ADSP-CM419F EZ-KIT® Board Support Package. This file defines the MATH

unit operations as inline functions, and including it will directly replace the corresponding math.h library

functions so that the code need not be changed when moving across platforms. An example is shown in

Listing 1.

#define sinf(x) adi_sinf(x)

inline

float32_t adi_sinf (float32_t x) {pADI_MATH0->SINF = x; return pADI_MATH0->RES1;}

Listing 1. sinf() implementation in adi_math.h

With the appropriate compiler optimizations, the inline functions are disassembled to the most optimal

assembly instructions, as described in the Math Assembler Programming Model in the hardware reference

manual.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 6 of 6

Compiler Optimization

The IAR tools provide four levels of compiler optimization – none, low, medium, and high - and seven

different optimization techniques – common subexpression elimination, loop unrolling, function inlining,

code motion, type-based alias analysis, static clustering, and instruction scheduling. For efficient use of the

adi_math.h library, choose the high (with speed) optimization level and enable at least the common

subexpression elimination and function inlining optimization techniques.

Code Interleaving

The MATH unit does not require the Cortex-M4F core to remain idle while it performs calculations. To

optimize code for performance, it is useful to move unrelated code between the operand-store and the result-

load operations. In this manner, the effective time of a function call is eliminated (except for the MMR

read/write latency). Refer to the Math Programming Model in the hardware reference manual for a guide

for interleaving code with MATH unit operations.

References

[1] ADSP-CM41x Mixed-Signal Control Processor with ARM Cortex-M4/M0 and 16-bit ADCs Hardware Reference Manual.

Rev 0.2, May 2016. Analog Devices, Inc.

[2] IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2008). August 29, 2008. IEEE Computer Society (Sponsored

by the Microprocessor Standards Committee).

[3] EEMBC® FPMarkTM: The Embedded Industry’s First Standardized Floating-Point Benchmark Suite. August, 2013. The

Embedded Microprocessor Benchmark Consortium.

[4] ADSP-21990: Reference Frame Conversions (AN21990-11). January 2002. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – January 3rd, 2017

by Punarva Katte

Initial Release

	Introduction
	MATH Accelerator Unit
	FPMarkTM
	Clarke and Park Transforms
	Clarke Transform (Three-Phase to Two-Pha
	Park/Inverse Park Transform (Vector Rota

	Transform Implementation on ADSP-CM41x D

	Techniques for Optimal Use of the MATH U
	adi_math.h
	Compiler Optimization
	Code Interleaving

	References
	Document History

