
AN-1322
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADuCM320 Code Execution Speed
By Eckart Hartmann

Rev. 0 | Page 1 of 3

INTRODUCTION
The ADuCM320 contains an ARM® Cortex®-M3 processor and
integrated flash and RAM for code and data. To increase the
execution speed of the central processing unit (CPU), the
ADuCM320 also includes a cache with various modes of
operation. This application note presents the modes that are of
interest for user applications. This application note does not
cover the specific features of the ARM Cortex-M3. Consult the
documentation provided by ARM for these specific features.

The basic CPU clock speed is 80 MHz. In normal mode, the
ADuCM320 executes from the 64-bit wide flash, fetching 64 bits of
instruction code per four clock cycles. If a 64-bit fetch contains
four 16-bit instructions, the CPU can execute these four
instructions in four clock cycles, resulting in an effective speed
of 80 million CPU instructions per second (raw MIPS). If,
however, a 64-bit fetch contains two 32-bit instructions, the
CPU can only execute these two instructions in four clock
cycles because it must wait for the next fetch to complete before
it can continue. In this case, the effective execution speed is 40
MIPS. For a mixture of 16-bit and 32-bit instructions, the
effective speed is somewhere between these numbers, and for
typical code, it is around 60 MIPS.

Multiply and divide instructions and memory access
instructions take more than one CPU clock cycle to execute
and, in this case, the 64-bit look ahead buffer, which is included
in the ADuCM320, has time to fill and speed up subsequent
instructions. The details of this scenario are very complex,
depending on the exact instruction sequences and on the 16-bit
alignments. It is advised to ignore these details and to accept
them as an extra safety margin. Interaction with data RAM in
this mode is very efficient because the RAM is on a different
bus and can work in parallel with the flash.

To increase execution speed, a cache is provided and is enabled
by default. After the code has executed and is in the cache, it
runs at 80 MIPS, regardless of the instruction size. As new code
is executed, old code is overwritten and the code that is no
longer in the cache runs again at the slower speed. For typical
code, however, an effective speed of between 70 MIPS and 80 MIPS
is achieved.

In some systems, higher execution speed can be achieved by
placing critical code in the RAM and executing from there,
because RAM is typically much faster than flash. However, on
the ADuCM320, executing from the RAM is actually slower
than executing from the flash, even without cache.

For the fastest execution, an L1 cache mode is provided. In L1
cache mode, half of the existing RAM is placed in a mode where
it is connected to the CPU instruction bus so that code can
execute from it at full speed (80 MIPS). A minor disadvantage is
that L1 cache mode reduces the RAM available for data. Note
that, when executing from L1 cache, C language data must not
be in the L1 area of the RAM to avoid contention between the
buses. For both the code in flash and the code in L1 cache, use
the non L1 area of the RAM for C language variables and data.
Use the spare capacity of the L1 area of the RAM for bulk or
seldom used data. The details of using the spare capacity of the
L1 area must be analyzed on a case by case basis.

This application note describes the implementation of the
methods described in the preceding paragraphs. Note, however,
that the methods described are those that make use of typical
compiler tools to handle most of the complications. Other methods
are possible, but make it difficult for the code generated by the
compiler tools to determine where functions and variables are
located. Therefore, such methods are not recommended.

CACHED MODE
Cached mode is the default mode and is used for most code.
The basic settings of the compiler tools assume this mode, and
no special setup is required. The performance details are as
described in the Example Project section. Note, however, that
the improved performance is only applicable for the particular
code in the cache at the time of execution.

UNCACHED MODE
If it is important to have consistent (though slower) execution
speed, disable the cache mode.

The instruction cache is switched off by the following code:

pADI_FEE_CACHEKEY = 0xf123f456;

pADI_FEE_CACHESETUP = 0x0;

The instruction cache is switched on by the following code:

pADI_FEE_CACHEKEY = 0xf123f456;

pADI_FEE_CACHESETUP = 0x2;

It is not advised to repeatedly switch cached mode on and off,
unless very careful control of timing is required by the
application.

http://www.analog.com/aducm320?doc=an-1322.pdf
http://www.analog.com/aducm320?doc=an-1322.pdf
http://www.analog.com/aducm320?doc=an-1322.pdf
http://www.analog.com/aducm320?doc=an-1322.pdf
http://www.analog.com/aducm320?doc=an-1322.pdf
http://www.analog.com/aducm320?doc=an-1322.pdf
http://www.analog.com
http://www.analog.com

AN-1322 Application Note

Rev. 0 | Page 2 of 3

L1 CACHE MODE
L1 cache mode is not easy to set up and needs careful attention
to detail. First, the programmer must identify which functions
are time critical and must place these functions in separate files
from the files for the other code. Only the essential functions
are included, because any code placed in RAM reduces the
RAM available for variables and data. After the code is written,
set up the tools.

Procedure for Keil μVision4

To set up the Keil μVision4 tools, follow these steps:

1. Click Project/Options for Target ‘Target 1’ to open the
window shown in Figure 1. Select IRAM1 and set its start
and size to 0x20004000 and 0x4000, respectively. This is
the range for non L1 RAM. Select IRAM2 and set its start
and size to 0x10000000 and 0x4000, respectively. This is
the range for the L1 RAM. Leave IROM1 unchanged to hold
the bulk of the code in flash.

12
61

0-
00

1

Figure 1. Selecting Memory Ranges

2. Place the code into IRAM2. In the Project tab, right click
the file to be placed in L1 cache. In the window that opens,
click the top item (Options for File ‘RamCache.s’). In the
resulting window shown in Figure 2, select IRAM2
[0x10000000-0x10003FFF] for Code / Const. For Zero
Initialized Data, select IRAM1 [0x20004000-0x20007FFF]
or leave as <default> to allow the linker to choose the
range. In the same window, choose the range for Other
Data or leave as <default> to allow the linker to choose the
range. For each additional file destined for L1 cache, repeat
this procedure to define the Code / Const, Zero
Initialized Data, and Other Data, but make sure none of
the chosen ranges overlap with each other.

12
61

0-
00

2

Figure 2. Assigning Memory Ranges

3. Put the code into L1 cache. In Step 2, the code was placed
into IRAM2. The compiler first places the code in flash and
then, during startup, before reaching the main function,
main(), there is hidden code that copies the code to the L1
cache area. Unfortunately, at this stage, the L1 cache is not
enabled and writing to 0x10000000 causes an exception,
which is not acceptable. Therefore, the start-up file must be
modified at the beginning of the start-up code to select the
L1 cache mode. Modify the start-up file by adding the
indented code shown.

Reset_Handler PROC

EXPORT Reset_Handler [WEAK]

IMPORT __main

 movw r1, #0x8104

 movt r1, #0x4002

 movw r0, #0x0000

 movt r0, #0x5129

 str r0, [r1]

LDR R0, = __main

BX R0

ENDP

After following Step 1 through Step 3, the critical code is in L1
cache for fastest execution and all code uses the correct entry
points for all functions; the location for all variables and other
data and execution is as intended.

Be careful not to combine incompatible start-up code and
memory map settings because this can cause the device to be
locked out from debugging. If lock out does occur, use the
application MDIOWSD.exe to erase the offending code and
download other nonoffending code.

Application Note AN-1322

Rev. 0 | Page 3 of 3

Example Project

An example project is provided with the QuickStart development
system at C:\ADuCM320V1.0\code\ADuCM320\examples\
Cache\Cache.uvproj. The main code of this example switches
from cached mode to uncached mode and then to L1 cache
mode. Each mode runs an identical short piece of test code
twice with a narrow marker at the start of each test code and a
wider marker at the end of each test code. The oscilloscope
screenshot in Figure 3 shows how the execution times vary for
the short tests running in the different modes.

MAIN
EXECUTION
SWITCHING
CACHE ON

MAIN EXECUTION
FROM CACHE TO

ADVANCE TO
NEXT TEST

MAIN EXECUTION TO
SWITCH OFF CACHE
AND TO ADVANCE

TO NEXT TEST

MAIN EXECUTION
WITH CACHE OFF
TO ADVANCE TO

NEXT TEST

TEST
EXECUTION
WITH CACHE

ON BUT EMPTY
(1150ns)

TEST
EXECUTION

FROM CACHE
(600ns)

TEST EXECUTION
WITH CACHE OFF

(1150ns)

TEST EXECUTION
FROM L1 CACHE

(600ns)

12
61

0-
00

3

Figure 3. Example Oscilloscope Screenshot

©2014 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN12610-0-12/14(0)

http://www.analog.com

	INTRODUCTION
	CACHED MODE
	UNCACHED MODE
	L1 CACHE MODE
	Procedure for Keil µVision4
	Example Project

