
 AN-765
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/326-8703 • www.analog.com

INTRODUCTION
The ADuC702x has four external interrupts which are con-
figurable only as level triggered and active low. Therefore
measuring a short pulse using the external interrupts would
require some combination of external glue logic.

This application note describes a method to allow the
measurement of a short pulse duration (a few milliseconds)
using timer1 and the PLA. This technique does not require
any external digital logic.

CONCEPT
The PLA (programmable logic array) can be described
as glue logic; its function is to remove the requirement
for simple external logic. It consists of 16 elements, each
element containing a two-input lockup table that can be
configured to generate any logic function based on one
or two inputs.

The PLA can be routed to the internal interrupt system and
has two dedicated interrupt bits in the interrupt controller.

Timer1 is a general-purpose timer with extra features,
such as a capture event mode. Timer1 capture register
(T1CAP) can be triggered by a selected interrupt source.
This feature can be used to determine the start of an event
with more accuracy than if a timer was triggered upon
entry to the ISR. The capture event feature is used in this
application note.

HARDWARE CONSIDERATION
Any of the GPIO available as PLA input can be used to
measure the pulse. This method uses two elements to
utilize two interrupt sources, as shown in Figure 1.

ELMT
X

ELMT
Y

PLA
INPUT

PIN
PLAIRQ0

PLAIRQ1

Figure 1. PLA Configuration

The pulse is passed through element x. The output of
element x is configured to trigger PLAIRQ0 when its
input goes high.

Measuring Duration of a Short Pulse on the ADuC702x Family
by Aude Richard

Output of element x is fed back to element y, configured
as a “not” gate. The output of element y is configured to
trigger PLAIRQ1 when the input signal goes back low.

SOFTWARE
Everything is done in the interrupt service routine, as
shown in Figure 2.

START

PLAIRQ0?

PLAIRQ1?

PLAIRQ0 ISR
START TIMER1

DISABLE PLAIRQ0
ENABLE PLAIRQ1

PLAIRQ1 ISR
READ T1CAP

DISABLE PLAIRQ1
STOP TIMER1

ENABLE PLAIRQ0

YES

NO

YES

NO

Figure 2. Flowchart

Timer1 is started in PLAIRQ0 ISR. PLAIRQ0 is disabled
to ensure the ISR cannot be re-entered and PLAIRQ1
is enabled.

In the PLAIRQ1 ISR, the value captured automatically by
timer1 is read in T1CAP. PLAIRQ1 is disabled to ensure the
ISR cannot be re-entered and the PLAIRQ0 is re-enabled
to allow a new measurement. Timer1 also needs to be
stopped and reset.

See the source code provided.

LIMITATION AND PRECISION
PLAIRQ0 interrupt introduces a delay to start timer1.
Interrupt latency on the ADuC702x is between 5 and 50
processor cycles, which corresponds to just over 1.1 s in
the example (using a continuous 45 MHz processor clock).
Therefore, this method should only be used for pulses in
the millisecond range and greater.

REV. 0

http://www.analog.com

A
N

05
31

9–
0–

2/
05

(0
)

–2–
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

 AN-765

#include<aduc7020.h>

long pulse;

void My_IRQ_Function(void); // IRQ Function Prototype

int main (void) {

 IRQ = My_IRQ_Function; // Specify Interrupt Service Routine

 PLAELM0 = 0x0035; // pass
 PLAELM1 = 0x0047; // not
 PLAIRQ = 0x1110; //

 IRQEN = 0x080000; // enable PLA IRQ0

 while (1){
 }
}

/**/
/* */
/* Interrupt Service Routine */
/* */
/**/

void My_IRQ_Function()
{
 if ((IRQSTA & PLA_IRQ0_BIT) == 0x00080000) // PLAIRQ0
 {
 T1CON = 0x32180; // start Timer1. capture PLAIRQ1
 IRQCLR = 0x80000; // disable PLA IRQ0
 IRQEN = 0x00100000; // enable PLA IRQ1
 }
 if ((IRQSTA & PLA_IRQ1_BIT) == 0x00100000) // PLAIRQ1
 {
 pulse = T1CAP; // read the capture event
 IRQCLR = 0x00100000; // disable PLA IRQ1
 IRQEN = 0x80000; // enable PLA IRQ0
 T1LD = 0x00; // to reset timer1
 T1CON = 0xC0; // reset timer1
 T1CON = 0; // stop timer1
 }
 return ;
}

REV. 0

	INTRODUCTION
	CONCEPT
	HARDWARE CONSIDERATION
	SOFTWARE
	LIMITATION AND PRECISION

