

AN-1354 应用笔记

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

集成式ZIF、RF至比特、LTE、广域接收机分析和测试结果

作者: Brad Brannon、Kenny Man、Nikhil Menon和Ankit Gupta

简介

本应用笔记参考了3GPP TS 36系列文件和ADI公司的多种 数据手册、特性标定报告和实验室测试结果。本文重点关 注基于集成式零中频(ZIF)、RF至比特、IC (AD9371)的多载 波广域LTE接收机的性能分析和测试结果。 图1和图2显示了用于讨论的一般假定架构。图2详细显示 了基于AD9371的通用无线接收机的结构框图。主要器件有 双工器、模拟前端(AFE)、RF表面声波(SAW)滤波器和 AD9371集成无线电IC。

图3显示了用于测试系统性能的实验室设置。

图3. 硬件测试设置框图

目录

简介1
修订历史2
接收机信号链主要器件概述3
双工器3
AFE
SAW滤波器4
AD93714
AD9371 Rx的标定性能4
预期Rx合规性5

	参考灵敏度	5
	动态范围	8
	通道内选择性	8
	窄带阻塞	10
	邻道选择性(ACS)	12
	一般带外阻塞和共存	13
	接收机交调	16
附	·录	18
	典型双工器Tx至Rx隔离	18
	参考文献	18

修订历史

2016年7月—修订版0:初始版

接收机信号链主要器件概述 ^{双工器}

双工器或隔离器的主要功能是让发射能量不进入接收机, 防止造成降敏或损害。双工器常常是接收机中成本较高的 元件之一,而且其占总重量和体积的比例也相当大。对于 频分双工(FDD)应用,没有什么双工器是完美的,总有一 部分发射(Tx)宽带噪声会渗透到接收(Rx)频段中,成为噪 声预算的一部分。如果能将较大比例的总噪声预算分配给 发射泄漏,那么双工器就可能变得更小、成本更低且重量 更轻。

在测试设置中,双工器用一个理想带通滤波器来模拟,其插入损耗为1 dB,计算折合到天线的功率时要考虑该损耗。

AFE

模拟前端(AFE)包括一个两级LNA,用来放大弱信号并使加性噪声最低,使得AD9371可以对信号进行数字化处理,并且贡献给无线电的噪声是合理的。

本文讨论并测试了两种不同AFE增益情况(20 dB和25.5 dB) 下的系统整体性能。

表1.AFE主要规	格
-----------	---

技术规格	典型值(2500 MHz)
增益	20 dB, 25.5 dB
噪声系数(NF)	0.8 dB
三阶交调截点(IIP3)	6.7 dBm(20 dB时)
输出1 dB压缩点(P1dB)	2 dBm

SAW滤波器

RF滤波器有两个用途:一是消除尽可能多的带外能量,包 括带外阻塞信号;二是进一步衰减宽带发射噪声和交调产 物,否则接收机性能会下降。若可能,应使用差分输出 SAW滤波器来匹配AD9371上的差分RF输入。另一种方法 是使用RF巴伦。利用差分架构可实现更高的偶数阶性能指 标,以及为本振(LO)、时钟、电源噪声和其他系统信号提 供更高的共模抑制。

为实现最佳带外性能,建议在两个LNA级之间插入一个RF SAW滤波器,以改善整个接收链的带外线性度性能。这样 便可降低双工器的带外抑制要求,对系统是有利的。

AD9371

AD9371是一款高集成度RF捷变收发器,提供双通道发送 器和接收器、集成式频率合成器以及数字信号处理功能。 AD9371具备多样化的高性能和低功耗组合,可满足3G/4G 微至宏BTS设备的要求,并且能用于FDD和TDD应用。 AD9371工作频率范围为300 MHz至6000 MHz,涵盖大部分 特许执照和免执照蜂窝频段。AD9371包括完整的LO和时 钟频率合成,2(Rx)或4(Tx)通道支持JESD204B兼容数字接 口,通道速度最高可达6.144 Gbps。

AD9371 Rx的标定性能

下面几节中的分析基于表2所示的特性标定数据,可用于 估计系统性能。

表2. AD9371 Rx的标定性能

技术规格	典型值(2500 MHz)
噪声系数(最大增益时)	12 dB
二阶交调截点(IIP2)	63 dBm
三阶交调截点(IIP3)	22 dBm
镜像抑制	75 dB
内部LO相位噪声	
10 kHz时	–95 dBc/Hz
100 kHz时	–100 dBc/Hz
1 MHz时	–123 dBc/Hz
10 MHz时	<-140 dBc/Hz

预期Rx合规性

分析

图7显示了广域基站收发台(BTS)中LTE要求的参考灵敏度 水平(RSL)。5 MHz载波带宽(BW)的广域BTS RSL相当于 -168 dBm/Hz信号密度。

采用FRC A1-3参考测量通道和MCS-4调制编码方案,预期 吞吐率为95%,信噪比(SNR)约为-1 dB,具体数值取决于链 路条件和特定IP方案的能力。为满足技术规格的RSL要求, 可能的最高总系统噪声系数为7 dB (-168 dBm/Hz - (-1 dB) - (-174 dBm/Hz) = 7dB)。所有基站供应商都希望实现优于 3GPP要求的RSL,因此,典型系统噪声系数为2 dB至3 dB, 其允许实现5 dB至4 dB的裕量。

图8所示为典型的简化框图。在AD9371频段中心,它提供 1.8 dB的折合到天线的总系统噪声系数,典型情况下频段边 缘的噪声系数为2.0 dB,最差情况下频段边缘的噪声系数为 2.5 dB。这样,当设计目标是2.5 dB典型噪声系数和3 dB最 差噪声系数时,留给其他因素的裕量约为0.5 dB。

在FDD系统中,Rx噪声由接收机噪声系数和泄漏至Rx频段的Tx辐射决定。Tx辐射可以是噪声、失真或兼而有之,具体取决于工作频段的Tx到Rx频率分隔和信号带宽。发射机辐射水平取决于Tx功率、发射机的线性度和噪声,以及双工器的Tx端口到天线端口到Rx端口抑制。

在中高Tx功率应用中,数字预失真(DPD)是必要的,要求 发射机具有宽合成带宽,这意味着在双工器之前不能对Tx 噪声进行很大的滤波。例如,对于基于AD9371的发射机, 假设倒退12 dB, AD9371输出端的带内噪声为-151 dBm/Hz, 输出功率为-5 dBm rms。如果天线的输出功率为4载波46 dBm (每载波10 W),则总增益为51 dB,功率放大器(PA)输出噪声 为-99 dBm/Hz。

邻道泄漏比(ACLR)为60 dB时,对于4载波天线输出的46 dBm 总发射功率,落入Rx频段的PA失真为-87 dBm/Hz。加上 AD9371 Tx热噪声,3 MHz BW LTE的Rx频段中的总Tx噪声 加失真功率密度为-86.7 dBm/Hz,这远远超过-174 dBm/Hz 噪底,因此必须由双工器抑制该噪声。

图9显示了计算得到的双工器抑制与容许的系统噪声系数 降幅的关系,后者是由Tx噪声和失真引起的——假设接收 机具有2dB噪声系数,这是宏BTS接收机的典型规格。

	REFERENCE	REFERENCE	RESOURCE
ALLOCATED	SENSITIVITY	SENSITIVITY	BLOCKS/
DVV	WIDE AREA	LOCAL AREA	SUBCARRIERS
1.4MHz	–106.8dBm	–98.8dBm	6RB/72C
3MHz	–103.0dBm	–95.0dBm	15RB/180C
5MHz	–101.5dBm	–93.5dBm	25RB/300C
10MHz	–101.5dBm	–93.5dBm	25RB/300C
15MHz	–101.5dBm	–93.5dBm	25RB/300C
20MHz	–101.5dBm	–93.5dBm	25RB/300C
1RB = 12 CARRIERS			
POWER PER CARRIER	–126dBm	–118.1dBm	
THERMAL NOISE IS -132.2dBm/CARRIER			

图7. 位于所分配带宽的LTE分配资源块(RB)

如果希望噪声系数降幅为0.1 dB,则需要104 dB双工器Tx至 Rx隔离,这很难达到,而且成本昂贵。如果允许0.5 dB的噪 声系数降幅(这会妨碍许多改善接收机整体噪声性能的工 作),则双工器Tx至Rx隔离要求为94 dBc,降低大约10 dB。 这比0.1 dB降幅情况要好,但仍难以实现,性价比不高。为 了以合理的系统成本实现有竞争力的接收机RSL性能,可 能需要利用Tx噪声和失真消除功能来降低双工器或天线滤 波器的Tx至Rx隔离要求。

当Tx失真产物(远高于噪声)扩展到接收频段时,情况更为 困难(参见图11)。如果传输的信号带宽为B,则三阶失真产 物会扩展到偏离Tx信号中心的1.5B频率。五阶失真产物会 扩展到偏离Tx信号中心的2.5B频率。如果这些失真频段与 Rx通道重叠,接收机就会脱敏,除非对失真产物进行充分 滤波。

图10显示了发射机失真产物带宽与3GPP频段的Rx至Tx分隔的关系。蓝色钻石标记是3GPP带宽相对于双工间距的散 点图。红线和绿线显示了三阶和五阶失真频段的范围,其 与信号带宽有关。红线或绿线下方的蓝色钻石标记表示该 频段中的接收机被Tx失真产物脱敏。请注意,大多数蓝色 钻石标记落在红线或蓝线下方,表明大部分3GPP频段被 Tx失真脱敏,这对双工器提出了严峻要求。

表3.参考灵敏度分析

技术规格	5 MHz估计值	1.4 MHz估计值	
可实现噪声系数	2.81 dB	2.81 dB	
RSL	-105.7 dBm/25 RBs	-111.8 dBm/6 RBs	
IIP3	–0.55 dBm	–0.55 dBm	
IIP2	+40 dBm	+40 dBm	
P1dB	-33.5 dBm(最大增益)	-33.5 dBm(最大增益)	

测试结果

本节概述实验室测量结果。请注意,ADL5240放大器代替 了第二级LNA,因此,AFE NF比模型略差。灵敏度信息通 过对实测SNR进行外推而获得。噪声系数或灵敏度未考虑 Tx泄漏。

图12. AFE增益为2时的WCDAM和LTE实测RSL

分析性能与实测性能之比较

测得的系统噪声系数接近于分析结果(最大值为0.5 dB)。分 析和测量得到的系统噪声系数均达到3 dB目标要求。

动态范围

分析

关于动态范围测试,如3GPP TS 36.104文件所示,基于 MCS-9施加一个-70.2 dBm的5 MHz期望信号。加性白色高 斯噪声(AWGN)干扰信号为-82.5 dBm。在10 dB的SNR处, MCS-9具有一个95%吞吐率转折点。如果其他影响因素引 起的SNR降幅不大于2.3 dB,动态范围性能要求即得到满足。 期望信号是优势信号,因此,大部分合理的实施方案不会 造成自阻塞影响。这更多地是属于基带规格,而不是无线 电规格,因此不会挑战接收机性能。对于窄带信号,信号 和干扰之间的关系大致相同。因此,不同频谱分配上的性 能保持不变。

测试结果

未测试动态范围, 仅做过分析。

通道内选择性

分析

对于广域BTS,测试一个5 MHz E-UTRA信号的通道内选 择性,利用一个-100 dBm的15资源块(RB)信号(MSC-4)和 -81 dBm的相邻10 RB干扰来填满剩余的5 MHz E-UTRA通道。

-100 dBm的5 MHz E-UTRA信号的期望RB功率水平为-100 dBm -10×log(15 RB)=-111.8 dBm/RB, 千扰RB功率水平为-81 dBm -10×log(10 RB)=-91 dBm/RB。

如前所述, MSC-4信号具有约-1 dB的转折SNR, 低于此值 吞吐率会降至95%以下。 尽管干扰信号非常接近,但其绝对功率以及二者之间的功 率差异均不足以对无线电构成挑战。镜像抑制、IIP2和 IIP3等典型无线电性能规格对此测试的性能无贡献,因为 干扰信号功率非常低。

LO近载波相位噪声对RB的影响第二大,仅次于DC。100 Hz 到360 kHz范围的LO相位噪声与干扰RB之间的倒易混频产物 落在期望RB中。AD9371内置LO的积分相位噪声(相位抖 动)约为-33 dBc,其贡献为-91 dBm+(-33)=-124 dBm,最接 近的期望RB(仅次于DC)的SNR约为-111.8 dBm - (-124 dBm) = 12.2 dB。

基带信号链的1/f噪声(0 Hz至数十kHz)的贡献可能比LO相位 噪声还多。为消除1/f噪声,AD9371采用一个数字陷波滤 波器。该陷波滤波器带宽是可编程的;带宽越宽,可消除 的1/f噪声范围也越宽,这对电平较低的信号会很有帮助。 陷波滤波器也会截断一部分信号能量;因此,对于电平较 高的信号,较宽的陷波滤波器可能会降低SNR。可以选择 最佳陷波滤波器带宽来实现小信号和大信号条件下的性能 平衡。

测试一个1.4 MHz E-UTRA信号的通道内选择性,利用一个 -98.9 dBm的3 RB信号(MSC-4)和-79 dBm的相邻3 RB来填满 剩余的E-UTRA通道。约束条件与之前相同,所需性能如 表4和表5所示。与较宽带宽配置一样,没有一项要求是 AD9371难以满足的。

在表5中,实验室测得的ICS性能数据非常接近于每个重要参数的分析性能。

表4.-81 dBm、10 RB通道内选择性分析

	基于特性标定数据的5 MHz预测贡献(在15个期望RB中)		
影响因素	20 dB AFE增益时(dBm)	25.5 dB AFE增益时(dBm)	
热噪声	-107.1	-107.7	
IIP3	-246	-237	
镜像抑制	–151	-151	
IIP2	-206	-200	
LO近载波相位噪声	-114.7	-114.7	
陷波滤波器(×100 Hz陷波带宽)	-145	-145	
总计	-106.4	-106.9	

表5. 测试结果和分析性能与实测性能之比较

灵敏度	20 dB AFE增益(dBm)	25.5 dB AFE增益(dBm)
从实测EVM数据外推得到的-1 dB SNR时的灵敏度	-107.4	-107.9
标准RSL规格	-101.5	-101.5
-1 dB SNR时的预测灵敏度	-108.0	-108.5

窄带阻塞

分析

与"参考灵敏度"部分一样,期望信号为5 MHz宽MCS-4 通道。广域BTS有6 dB的宽裕度,因此要求的灵敏度为 -95.5 dBm。干扰信号为-49 dBm的单个RB,出现在TS 36.141 文件所示方程给出的偏移频率。

这是从窄带阻塞信号中心到期望信号通道边缘的偏移,如 图17所示。由于此信号较大,接收机易受镜像抑制和相位 噪声等常见因素影响。输入灵敏度要求为-95.5 dBm和-1 dB SNR,整个通道容许的总影响为-94.5 dBm,相当于13 dB 的噪声系数(-161 dBm/Hz)。

对于镜像抑制,产生的侵扰源可能会影响期望信号,也可 能不影响。假设会影响,则有两种可能性。一种是镜像刚 好完全落在一个期望资源块上。另一种可能性是镜像落在 两个相邻资源块上。本文假定镜像刚好完全落在一个资源 块上,但应注意,其影响可能涉及两个相邻资源块。此 外,总吞吐率是基于所有RB,而非仅仅受影响的RB;因 此,这代表最差情况。对于70 dBc镜像抑制,-49 dBm阻塞 产生的影响为-49 dBm-70 dB = -119 dBm。

当阻塞频率相对于期望信号偏移最小时,相位噪声影响最大。对于1.4 MHz载波带宽,偏移为400 kHz至1.5 MHz的相位噪声会影响期望信号的SNR。对于5 MHz载波带宽,偏移介于600 kHz到5.1 MHz之间的相位噪声会影响SNR。在400 kHz至1.5 MHz范围内,AD9371内置LO的积分相位噪声约为-59 dBc,在600 kHz到5.1 MHz范围内约为-61 dBc。这对于1.4 MHz和3 MHz载波带宽会贡献大约-108.7 dBm,对于5 MHz载波带宽会贡献-110 dBm。

最接近侵扰源的RB受近载波相位噪声的影响最大。从NB 阻塞中心到期望RB的频率偏移为400 kHz至580 kHz(1.4 MHz 带宽)或600 kHz至780 kHz(5 MHz带宽)。在400 kHz到580 kHz 的频率偏移范围内,积分相位噪声约为-62 dBc。 积分相位噪声的贡献约为-111 dBm/RB(1.4 MHz载波带宽) 或-113 dBm/RB(5 MHz载波带宽)。期望信号电平(比RSL高 6 dB)为-108.7 dBm/RB(1.4 MHz带宽)或-109.5 dBm/RB (5 MHz BW),因此,对于最接近侵扰源的RB(NB阻塞RB), 受相位噪声限制的SNR约为3 dB(1.4 MHz带宽)或3.8 dB(5 MHz 带宽),比-1 dB高。对于远离侵扰源的那些期望RB,SNR随 着相位噪声的改善和频率偏移的提高而改善。

表6. –49 dBm窄带阻塞的相位噪声贡献分析

	LTE载波带宽	
AD9371内置LO相位噪声影响	1.4 MHz	5 MHz
从阻塞中心到受影响的期望RB的最小频率偏移	400 kHz	600 kHz
LO/时钟近载波相位噪声引起的所有已分配RB上的倒易产物	–108.7 dBm/15 RB	–110 dBm/25 RB
LO/时钟近载波相位噪声引起的最接近RB上的倒易产物	–111.7 dBm/RB	–113.3 dBm/RB

表7.-49 dBm窄带阻塞分析

	基于特性标定数据的5 MHz预测贡献(在15个期望RB中)		
影响因素	20 dB AFE增益时(dBm)	25.5 dB AFE增益时(dBm)	
热噪声	-105.07	-105.53	
IIP3	不适用	不适用	
镜像抑制	-119	-119	
IIP2	不适用	不适用	
LO近载波相位噪声	-108.72	-110	
总计	-103.4	-104	

表8.分析性能与实测性能之比较

灵敏度	20 dB AFE增益(dBm)	25.5 dB AFE增益(dBm)
RSL	-106.7	-107.3
预测灵敏度		
–1 dB SNR	-104.4	-105
从实测EVM数据外推得到的-1 dB SNR时的灵敏度	-106.1	-106.5
标准RSL规格	-101.5	-101.5

邻道选择性(ACS)

与"动态范围"部分一样,期望信号为5 MHz宽MCS-4 通道。广域BTS有6 dB的宽裕度,因此要求的灵敏度为 -95.5 dBm。干扰信号为-52 dBm,由一个5 MHz E-UTRA 信号组成,其从侵扰源中心到期望信号边缘的偏移为 2.5025 MHz。同窄带阻塞一样,信号电平相当大。此外, 侵扰源带宽相对于该间隔是很宽的,活动RB和侵扰源之间 仅存在约0.5 MHz的间距,表明侵扰源子载波之间的交调项 可能会侵害期望信号。因此,除镜像抑制和相位噪声外, 还必须考虑邻道泄漏和交调。输入灵敏度要求为-95.5 dBm 和-1 dB SNR,整个通道容许的总影响为-94.5 dBm,相当 于12 dB的噪声系数(-162 dBm/Hz)。

对于镜像抑制,假定镜像刚好完全落在期望信号上,不 过这要取决于确切的频率规划,实际情况不一定如此。 -52 dBm阻塞信号对期望信号的贡献是每载波-52 dBm-70 dB = -122 dBm。 侵扰源子载波之间的交调产物的子项落在期望子载波 中。折合到天线的IIP3约为+1.7 dBm(20 dB AFE增益上)或 -2.9 dBm(25.5 dB AFE增益时)。不考虑扩频效应,在20 dB AFE增益时,三阶交调失真(IM3)产物约为2×(-52 dBm-3 dB -1.7 dBm)+(-52 dBm-3 dB)=-168.4 dBm/RB,远低于镜 像影响。

给定5 MHz带宽侵扰源时,相位噪声影响可利用最接近的期 望RB的SNR来计算。500 kHz到5 MHz的积分相位噪声约为 -60 dBc,侵扰源功率水平为-52 dBm - 10 × log(25 RBs) = -66 dBm/RB;这对最接近的期望RB贡献的倒易混频产物为 -60 dBc - 66 dBm/RB = -126 dBm。在6 dB降敏时,期望RB 的功率水平为-95.5 dBm - 10 × log(25 RBs) = -109.5 dBm/RB。

如果期望信号的中心接近DC,对邻道的IIP2响应便可能干扰位于DC的期望信号。系统IIP2约为44 dBm(20 dB AFE增益时)或38.5 dBm(25.5 dB AFE增益时)。阻塞水平为-52 dBm时,其贡献为-142.5 dBm IM2,远小于镜像影响。

表9.-52 dBm邻道选择性分析

	基于特性标定数据的5 MHz预测贡献(在15个期望RB中)		
影响因素	20 dB AFE增益时(dBm)	25.5 dB AFE增益时(dBm)	
热噪声	-104.9	-105.4	
IIP3	-168.4	-159	
镜像抑制	-122	-122	
IIP2	-148	-142	
LO近载波相位噪声(内置LO)	-111.3	-111.3	
总计	-104	-104.3	

表10.分析性能与实测性能之比较

灵敏度	20 dB AFE增益(dBm)	25.5 dB AFE增益(dBm)
-52 dBm ACS阻塞水平时的预测灵敏度	-106	-106.5
-52 dBm ACS阻塞水平时的实测灵敏度	-106.6	-107.3
实测RSL	-106.7	-107.3

一般带外阻塞和共存 一般带外阻塞

LTE的一般阻塞要求是应能承受带外一定距离的-15 dBm连 续波(CW)信号音。这可以是10 MHz和20 MHz之间的任何 地方(视频段而定),从1 MHz扩展到12.750 GHz。在共存情 况中,阻塞水平为16 dBm。

AD9371内部架构提供如下抑制:在相对于带通边缘的 200 MHz偏移时约为20 dB,在500 MHz偏移时超过40 dB, 在超远端频段时超过50 dB,这已超出内置Σ-Δ ADC的第一 奈奎斯特区(-614.4 MHz至+614.4 MHz)。

AD9371内部架构部分地决定了双工器或时分双工(TDD)天 线滤波器的性能,以及其他RF滤波器的性能。双工器和其 他滤波器对此信号的总抑制把阻塞降至一个不会破坏接收 机性能的水平。这种降低对一般阻塞是很重要的,不过对 带外信号可能相当大的共存情况更为重要。如果没有适当 的滤波,这些信号可能会从多方面破坏接收机性能。首 先,前端(LNA和其他RF放大器)的线性度会受到影响。其 次,带外信号可能混叠到ADC中,表现为带内阻塞信号。 带外信号还可能会使ADC过驱。最后,带内信号可能会使 接收机性能降敏。

对于IF采样架构,必须对这些带外信号进行充分滤波,将 其降低到等于或低于热噪声的水平,防止接收机降敏过 多。例如,在2dB系统噪声系数时,为实现RSL要求,总 滤波必须等于或高于+16dBm-(2dB-174dBm/Hz+10×log (4.5 MHz))=122dB,这相当于3dB降敏。

在IF采样接收机中,RF和IF均会进行滤波,从而实现所需 的滤波要求。具体说来,这要求混频器之前有一个RF滤波 器,用以防止LO另一端的信号和噪声与期望的混频器镜像 一同出现在带内。对于ZIF架构,其在理论上没有带外镜 像,不过在芯片上,如前所述,AD9371对高阶镜像(超出 第一奈奎斯特频率范围)提供有限抑制(>50 dB)。因此,可以 让该RF滤波器更靠近天线,从而改善系统整体的带外保 护,尤其是第二级LNA,以此提高无线电的整体带外线性 度。当滤波器靠近天线时,噪声系数可能有不到1/10 dB的 降低。图20为降敏相对于频率的扫描图。在超远带外处, 限制来自LNA线性度,而不是来自与其他现象相关的噪声 (如相位噪声或转换器噪底)。在第一LNA和第二LNA之间 使用一个RF滤波器可减少带外线性度问题,改善系统整体 性能,降低此限制的影响。对于IF采样架构,两个LNA 级之间不能插入一个RF滤波器,否则对噪声系数的影响会 更大。

如图20所示,紧挨目标频段的带外阻塞信号非常难以滤 波。紧挨目标频段的带外阻塞信号包括发射泄漏和不相关 的信号源。提高双工器的复杂度会有帮助,但无法以一定 的成本彻底解决这些问题。同样, SAW滤波器也不能完全 消除这些信号。典型IF采样架构必须支持整个频段上可 能高达-35 dBm的信号,该信号可能是从带外信号源混叠 而来。必须利用IF滤波器将这些阻塞信号衰减到放大器和 ADC的总杂散水平以下,防止其破坏接收机。其他信号也 必须进行滤波,包括LO泄漏和不需要的混频器镜像。结 果通常是需要一个高阶IF滤波器,其插入损耗约为6 dB至 12 dB, 取决于转换响应的要求。ZIF架构几乎消除了上述 所有问题。采用ZIF架构时,主要信号是目标信号及其产 物。这些产物通常是通过各种模拟和数字技术来消解。片 内AAF滤波器和用来对信号进行数字化处理的Σ-Δ调制器 一般具有低通特性,因此,带外信号自然会被Σ-Δ转换器 的信号传递函数抑制。加之以高采样速率,采用Σ-Δ转换 器的ZIF架构对带外成分的承受能力便更高(尤其是在超远 频段处),滤波负担也更轻。图20突出显示了这种情况,接 收机降敏所需的输入电平被提高到目标频段之外。总之, 带外降敏的容差要高于带内降敏的容差。

在采用流水线式ADC的传统IF采样架构中,滤波器必须同时处理近载波带外阻塞和超远端阻塞,故而插入损耗和成本非常高。相比之下,AD9371对超远端阻塞具有良好的抑制能力,因此,RF滤波器可以针对近载波抑制进行优化。

LTE-TDD的特殊带外阻塞

LTE-TDD运营商可能要求这样的带外容差:对于期望信号 频率偏移,它能承受较小阻塞信号(小于标准带外阻塞情况)的某种阻塞功率水平(高于带内阻塞功率水平),例如: 相对于期望频段边缘偏移5 MHz的-35 dBm阻塞水平。由 于过渡带(5 MHz)相对于通带频率过小,即使腔式滤波器也 不能以合理的成本完成任务。因此,该情况几乎与带内阻 塞情形相同。

AFE增益为20 dB且天线至LNA输入损耗为2 dB时, AD9371 自动增益控制(AGC)功能开始降低此电平时的信号增益。 考虑到一个5 MHz LTE信号的峰均比(PAR)约为7.2 dB,则 AD9371的峰值输入功率约为-35 dBm - 2 dB + 20 dB + 7.2 dB = -10 dBm。在-13 dBm ADC等效满量程功率和3 dB AGC裕 量时, AD9371内必须使用-10 dBm - (-13 dBm - 3 dB) = 6 dB 的衰减,导致有效噪声系数降低。

阻塞水平较高,故而相位噪声是一个问题。在这种特殊情况下,镜像不是问题。对于DC附近的载波,IM2可能是一个问题。

影响因素如表11所示。

表11. –35 d	3m带外	阻塞分析
------------	------	------

影响因素	20 dB AFE增益(dBm)	25.5 dB AFE增益(dBm)	
热噪声	-103.4	-103.2	
IM3	-124.6	-125	
镜像	不适用	不适用	
相位噪声	-107	-107	
IM2	-126	-126.5	
总计	-101.8	101.7	

表12.分析性能与实测性能之比较

一般带内阻塞测试	20 dB AFE 增益(dBm)	25.5 dB AFE 增益(dBm)
-35 dBm带内阻塞水平时的预测	-102.8	-102.7
灵敏度		
-35 dBm带内阻塞水平时的实测	-101.5	-101.5
灵敏度		
实测RSL	-104.5	-104.9

共存

在共存Tx频率,共存容差有+16 dBm CW阻塞,这就决定了 给定LNA压缩时在共存频段的双工器/天线滤波器抑制。 LNA第一级和第二级之间的级间RF滤波器能够提高AFE的 带外线性度,故而有助于降低双工器(FDD系统)或天线滤 波器(TDD系统)在共存频段的抑制要求。例如,将RF滤波 器放在两个LNA级之间可以改善整个接收机的带外线性 度,使其从9 dBm/IIP3和-5 dBm/P1dB提高到17 dBm/IIP3 和3.5 dBm/P1dB,这与把RF滤波器放在AFE输出端相比要好 大约8 dB到10 dB,与IF接收机相比要好大约12 dB到15 dB。 将带外杂散降至不会使接收机饱和的水平,是RF滤波的责任。剩余未滤波的信号会影响接收机总噪声系数,如"参考灵敏度"部分所述。因此,RF NF越低,对共存所产生噪声项的容差就越高。

在图20中,3 dB降敏约为-27 dBm至-25 dBm。在粉色区域 (1500 MHz至2000 MHz和2700 MHz至3000 MHz)中,降敏 水平远低于3 dB(0.5 dB至1 dB),除非将AFE驱动到非常接 近其P1dB的水平。因此,真正的3 dB降敏阻塞水平受AFE 压缩限制。

接收机交调

进行了窄带和宽带两种交调测试。两种情况下,同本应用 笔记其他地方一样,期望信号允许6 dB降敏。

宽带交调性能

在宽带交调测试中, CW信号与通道边缘相距7.5 MHz,

E-UTRA 5 MHz信号中心与其相距17.5 MHz。二者均为 -52 dBm。产生的交调项之一刚好落在期望通道之上。除交 调问题外,还必须考虑镜像抑制和相位噪声。由于这是一 个ZIF实施方案,期望信号中心频率也可以位于DC或其附 近。因此,还必须考虑IIP2。

表13. 宽带交调性能分析

影响因素	20 dB AFE增益时	25.5 dB AFE增益时
热噪声	–104.9 dBm	–105.4 dBm
IM3	–159.4 dBm	–150.2 dBm
镜像	–122 dBm	-122 dBm
相位噪声	–127.5 dBm	–127.5 dBm
IM2	–148 dBm	–142.5 dBm
总计	–104.8 dBm	–105.3 dBm
有效噪声系数	2.5 dB	2.1 dB

表14.分析性能与实测性能之比较

宽带交调测试(–52 dBm 5M LTE和–52 dBm CW信号音)	20 dB AFE增益(dB)	25.5 dB AFE增益(dB)
预测噪声系数	2.5	2.1
实测噪声系数	2.2	1.7
无阻塞的实测噪声系数	2.1	1.6

窄带交调性能

在窄带交调测试中,CW信号与通道边缘相距360 kHz, E-UTRA 5 MHz信号的一个RB的中心与其相距700 kHz。两 个信号均为-52 dBm。产生的交调项之一落在一个或多个期 望RB之上。交调、镜像抑制和相位噪声等影响因素都必须 考虑。由于这是一个ZIF实施方案,期望信号中心频率也可以位于DC或其附近。因此,必须考虑IIP2。对于每种情况,假定产生的损害落在单个RB上。预期结果如表15所示。AD9371性能完全在要求范围内。

图23. 窄带交调测试的期望信号和阻塞位置

表15. 窄带交调分析

影响因素	20 dB AFE增益	25.5 dB AFE增益
热噪声	–104.9 dBm	–105.4 dBm
IM3	–159.4 dBm	–150.2 dBm
镜像	–122 dBm	–122 dBm
相位噪声	–111.3 dBm	–111.3 dBm
IM2	–148 dBm	–142.5 dBm
总计	–104 dBm	–104.3 dBm
有效噪声系数	3.4 dB	3 dB

表16.分析性能与实测性能之比较

窄带交调测试(–52 dBm 1 RB LTE和–52 dBm CW信号音)	20dB AFE增益(dB)	25.5dB AFE增益(dB)
预测噪声系数	3.4	3
实测噪声系数	3.0	2.6
无阻塞的实测噪声系数	2.1	1.6

图24. 窄带交调测试的有效系统噪声系数与输入功率的关系

3GPP TS 36.104 3GPP TS 36.942 3GPP TS 36.141 AD9371数据手册 ADL5240数据手册 MGA-638P8数据手册 MGA-16316数据手册 Harri Holma和Antti Toskala。针对UMTS的WCDMA: HSPA演进和LTE。Wiley & Sons, 2010年。

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN13042sc-0-7/16(0)

www.analog.com

Rev. 0 | Page 18 of 18