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INTRODUCTION
The ADN2817/ADN2818 provide a bit error rate (BER) measure-
ment feature for estimating the actual BER of the IC. The feature 
also allows data eye jitter profiling and Q-factor estimation.  

Other capabilities offered include: 

 The ability to scan a region of the input data eye, which  
is offset from the actual sampling instant, to build up a 
pseudo bit error ratio profile. 

 The ability to apply algorithms to process this data to 
obtain an accurate estimate of the BER at the actual 
sampling instant. User processing of the data results  
in greater accuracy and flexibility. A standby mode 
conserves power. 

 Decomposition into random jitter (RJ) and deterministic 
jitter (DJ). The dual-Dirac model is used for DJ. 

 Voltage output mode provides indication of BER and eye 
opening. 

 Sample phase adjust ability. This mode is not concurrent 
with BER monitoring. 

Understanding the BER of the circuit is useful for the following 
applications: 

 BER monitoring indicates the onset of laser fading, and 
slow system degradation. 

 Margin measurement, which is the difference between 
received SNR and the SNR required to guarantee a certain  
BER, such as 1e−10. 

 Driving adaptive equalizers. 
 Sample phase adjust 
 Optimum slice threshold adjust (ADN2817 only). 
 Determination of dominant noise sources, that is, 

independent of power, proportional to √power, and 
proportional to power. 

Circuitry within the ADN2817/ADN2818 allows measurement 
of the pseudo bit error ratio at phases that are offset from the 
actual sampling instant by more than approximately 0.05 UI. 
The implementation relies on the fact that by knowing the BER 
at sampling phases offset from the ideal sampling phase, it is 
possible to extrapolate to obtain an estimate of the BER at the 
actual sampling instant. This extrapolation relies on the assump-
tion that the input jitter is composed of deterministic and 
random (Gaussian) components.  

See the References section for resources that provide further 
information on BER estimation. The implementation requires 
off-chip control and data processing to estimate the actual BER. 
Additionally, there is a lower accuracy voltage output mode, 
which does not requires user processing or I2C intervention. 
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BERMON AND SAMPLE PHASE ADJUST SPECIFICATIONS 
BERMON EXTRAPOLATION MODE 
SPECIFICATIONS 
The ADN2817/ADN2818 do not output the BER at the normal 
decision instant. It can output pseudo BER measurements to the 
left and right of the normal decision instant, from which the 
user must calculate the BER at the normal decision instant. A 
microprocessor is required to parse the data, detecting and 
removing non-Gaussian regions and using the remaining data 
for BER extrapolation. 

AVAILABLE OUTPUT MODES 
The following output modes are available:  
 Normal decision circuit (NDC) retimed data and clock  
 Sample phase adjusted retimed data and clock  
 Normal decision circuit (NDC) retimed data and half 

frequency clock 
 Sample phase adjusted retimed data and half frequency 

clock 

Table 1. BERMON Extrapolation Mode Specifications 
Parameter Conditions Min Typ Max Unit 
BERMON Extrapolation Mode I2C-controlled eye profiling     

Final Computed BER Accuracy Input BER range 1 × 10−3 to 1 × 10−12,  
input DJ < 0.4 UI,  
DJ ceiling > 1 × 10−2; asymmetry < 0.1 UI; 
requires external data processing algorithms 
to implement Q factor extrapolation 

 ±1  Decades 

Number of Bits (NumBits) Number of data bits to collect pseudo errors;  
user programmable in increment factors of  
23 over the range 218 to 239 

218  239 UI 

PBER Measurement Time   NumBits/ 
data rate 

 sec  

BER Range    5 × 10−2 BER 
Sample Phase Adjust Resolution   6  Degrees 
Sample Phase Adjust Accuracy   <6  Degrees 
Sample Phase Adjust Range With respect to normal sampling instant −0.5  +0.5 UI 
Minimum Input Signal Level Differential peak-to-peak 4   mV 
Power Increase BER enabled  160  mW 
 BER standby  77  mW 
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BERMON ANALOG VOLTAGE OUTPUT MODE 
SPECIFICATIONS 
There is also an analog voltage output mode in the ADN2817 
BER feature. The BER logic is set to operate at a single phase 
sampling point only. The reported pseudo BER (PBER) at this 
single sampling point is used to estimate the BER at the normal 
decision instant. This PBER value is decoded and then applied 
to a 6-bit DAC to provide an analog voltage output 
representative of the input BER.  

This mode of operation is selected by bringing the BERMODE 
pin low. The DAC is current mode output. The user reads a 
voltage on the VBER pin that is a linear function of Log(BER), 
in the range of 1e−3 to 1e−9. This voltage is guaranteed to 
saturate when the input BER is above ~1e−3. 

A 6-bit code word representative of the output BER can also be 
accessed over the I2C. 
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Figure 1. Analog BER Output Voltage Characteristics

 

Table 2. Analog Voltage Output Mode Specifications 
Parameter Conditions Min Typ Max Unit 
BERMON Voltage Output Mode Analog voltage output     

BER Accuracy Input BER range 1 × 10−3 to 1 × 10−9, 
input DJ = 0 UI, DJ ceiling > 1 × 10−2;  
asymmetry = 0 UI; BER is read as a voltage on 
the VBER pin, when the BER mode pin = VEE 

 ±1  Decades 

 Input BER range 1 × 10−3 to 1 × 10−9,  
input DJ = 0.2 UI, DJ ceiling > 1 × 10−2;  
asymmetry = 0 UI; BER is read as a voltage on 
the VBER pin, when the BER mode pin = VEE 

 +1/−2  Decades 

NumBits Number of data bits to collect pseudo errors  227  UI 
Measurement Time 2.5 Gbps  0.054  sec 
 1 Gbps  0.134  sec 
 155 Mbps  0.865  sec 
 10 Mbps  1.34  sec 
VBER Voltage Range  Via 3 kΩ resistor to VEE 0.1  0.9 V 
Minimum Input Signal Level Differential peak-to-peak 4   mV 
Power Increase BER voltage mode  160  mW 

 

SAMPLE PHASE ADJUST SPECIFICATIONS 

Table 3. Sample Phase Adjust Specifications 
Parameter Conditions Min Typ Max Unit 
Sample Phase Adjust Mode       

Sample Phase Adjust Step Size Monotonic  6  Degrees 
Sample Phase Adjust Accuracy   <6  Degrees 
Sample Phase Adjust Range With respect to normal sampling instant −0.5  +0.5 UI 
Power Increase   160  mW 
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A REVIEW OF BER EXTRAPOLATION THEORY
CHARACTERISTICS OF BIT ERRORS 
Bit errors occur when a data edge and clock edge are sufficiently 
displaced from their ideal locations. This causes the retiming flip-
flop in the ADN2817/ADN2818 CDR to sample the data signal  
at a location in time where the wrong polarity of bits is sampled. 
Displacement of the clock and data edges has many underlying 
mechanisms, including VCO phase noise, electrical receiver noise, 
pattern dependent causes (such as ISI and capacitor droop), and 
crosstalk. These jitter mechanisms are conveniently described with 
statistical distributions, which describe the statistical behavior of 
the displacement of the data edges. Knowledge of statistical 
characteristics of the data edges, combined with those of the 
retiming clock edges can be used to determine the BER of the 
receiver. 

A common model for the received data edge statistics consists 
of a region of bounded deterministic jitter (DJ) existing around 
the mean data transition locations (known as the UI bounda-
ries), plus a region of unbounded random jitter (RJ), extending 
from the edge of the DJ region, towards the center of the data 
eye. The RJ of the retiming clock is usually considered to be 
summed in with the random jitter of the data eye. The DJ can 
be modeled as a dual-Dirac delta function, and the RJ is model-
ed by a normal/Gaussian distribution. For further information, 
refer to the Agilent Technologies white paper and the Fibre 
Channel publication listed in the References section. Figure 2 
shows a jittered data eye, along with probability density functions 
for the left and right data edge timing. A common method for 
representing the distribution is with a bathtub curve.  

Figure 3 gives an example of a bathtub curve. This curve shows 
the cumulative probability of data edge occurrence as a function 
of time from the UI boundaries. One way to interpret this curve 
is to ideally sample the data eye at any given location in time. 
You could then determine the probability of sampling the 
wrong data bit by reading the corresponding probability from 
the y-axis, as this represents the probability that the data edge 
will occur either too early or too late for the sampling clock. 

Additionally, if you were to assume a data transition density of 
0.5, the bit error rate would be half this probability value. 

JITTERED
DATA EYE

PDF (LEFT) PDF (RIGHT)

0UI 1UI

0
70

6
4-

0
02

 
Figure 2. Probability Density Functions of a Jittered Data Eye 
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Figure 3. Example Input Jitter Statistics/Bathtub Curve for a Data Eye 

Depending on the system application, the bathtub curve as shown 
in Figure 3 may be too simplistic. Due to pattern run length 
effects, the region of deterministic jitter may be inadequately 
described by a double delta function, with a probability of error 
of 0.25, as illustrated in Figure 3. Figure 4 illustrates a data 
characteristic where the bounded DJ region has a BER that 
reduces from 0.25 to ~1e−3. This lower limit is known as the 
DJ ceiling.  
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Figure 4. Example Input Jitter Statistics/Bathtub Curve Showing a Low DJ Ceiling 
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In certain data communication specifications, a jitter type 
known as bounded, uncorrelated, random jitter (or bounded 
Gaussian jitter) is defined. Although this jitter displays a 
Gaussian distribution, it is bounded in the maximum phase 
over which it exists. The problem with these jitter distributions 
is in distinguishing the non-Gaussian regions from the 
Gaussian regions. BER extrapolation techniques rely on 
extrapolating the BER characteristic for a known Gaussian 
region, out to the normal decision instant. 

The goal is to be able to determine the eye statistics (bathtub 
curve) of the received data on the ADN2817. This information 
allows the user to determine: 

 The BER of the CDR 

 If the CDR is sampling at the optimum location 

 How to adjust the sampling point of the CDR to achieve 
the lowest BER 

THE RELATIONSHIP BETWEEN EYE DIAGRAM 
STATISTICS, BER, AND Q FACTOR 
A sample input data eye diagram and its associated jitter 
cumulative distribution function (CDF) are illustrated in Figure 
5. Bit errors occur when a data edge and the clock edge are 
displaced by jitter, which causes the retiming flip-flop in the 
phase detector to sample the data signal at a location in time 
where the wrong polarity of bit is sampled.  

The data transition probability density functions (PDFs) for the 
left and right data edges are composed of a bounded deterministic 
jitter region plus an unbounded random jitter region that has a 
Gaussian (normal) distribution. Referring to Figure 5, the 
probability of a bit error is determined by the probability of the 
left-most data edge occurring to the right of the sampling 
instant, plus the probability of the right-most data edge occur-
ring to the left of the sampling instant. This can be found by 
integrating the Gaussian tails of the left and right PDFs from 
the sampling instant to infinity, as  

 


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t PDFrt PDFlBER
2
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2
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 (1) 

where tS is the sampling instant and the factor of 1/2 accounts 
for a transition density of 0.5. 

The integral terms are the cumulative distribution functions 
and for Gaussian PDFs these can be evaluated using the 
complimentary error function 
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For further details, see Appendix A: Summary of Jitter Statistics 
Theory, or see Montgomery and Runger in the References 
section. For any sampling instant in the Gaussian region of the 
distribution function the BER can be predicted using  
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Equation 2 assumes equiprobable bits and a transition density 
of 0.5, where the decision threshold is the time between the 
beginning of the Gaussian region and the sampling instant, and 
σ represents the standard deviation of the Gaussian region. For 
example, if the sampling instant is at T/2 then the BER can be 
predicted using 
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which becomes 
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Figure 5. Asymmetric CDFs with DJ, Nonoptimum Threshold Setting 
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For example, if the BER is measured to the left of the minimum, 
the BER is dominated by the left-most distribution and is thus 
given by  
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With this definition, it is evident that the Q factor at any 
sampling instant in the RJ region can be determined from a 
measurement of the BER, or, alternatively, that the BER at  
any sampling instant in the RJ region can be estimated if the  
Q factor is known. The Q factor is representative of the signal 
(data period) to noise (jitter) ratio at that sampling instant, and 
the concept of Q factor only applies to the region of Gaussian 
jitter. The relationship between Q factor and BER is defined by 
the complimentary error function (erfc), and, in practice, can 
be obtained from lookup tables or a polynomial. 

Therefore, if the BER is known at any sampling instant away 
from the minimum BER, the Q factor can be determined at that 
sampling instant. Additionally, if the sampling instant is known 
then, from Equation 3, the σ of the Gaussian distribution can be 
calculated. 
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Figure 6. Relationship Between the BER and the Q Factor 

Table 4. BER vs. Q Factor 
BER  Q  ΔQ  ΔQ%  
1e−1  1.28    
1e−2  2.32  1.04  81  
1e−3  3.09  0.77  33  
1e−4  3.72  0.63  20  
1e−5  4.26  0.54  15  
1e−6  4.75  0.49  11  
1e−7  5.2  0.45  9.4  
1e−8  5.61  0.41  7.9  
1e−9  6  0.39  6.9  
1e−10  6.36  0.36  6  
1e−11  6.71  0.35  5.5  
1e−12  7.03  0.32  4.8  

OUTLINE OF BER MONITOR STRATEGY 
The BER monitor strategy is a four-step process. 

1. Degrade the BER in an offset decision circuit (ODC) by 
sampling away from the normal decision instant (see 
Figure 7). 

2. By ensuring that the sampling clock in the offset decision 
circuit is sufficiently far from the normal sampling clock, 
the BER in the offset decision circuit is much higher than 
that in the normal decision circuit (NDC). The data pat-
tern in the offset decision circuit is compared with the data 
in the normal decision circuit. The number of bits received 
differently is a very good measure of the error rate of the 
offset decision circuit at the programmed phase offset. This 
error rate is referred to as the pseudo BER (PBER). This 
gives pairs of PBER and phase data.  

3. This data is parsed to extract only the data that is in the 
Gaussian region. 

4. By knowing the PBER at some offset decision instants,  
Q factors can be calculated at those instants. Some checks 
for non-Gaussian data can also be performed. The Q factor 
is then linearly extrapolated to determine the Q factor at 
the normal decision instant. From these extrapolated  
Q factor values, the BER at the normal decision instant  
is calculated. Similar methods are being incorporated into 
certain test standards (TIA/EIA OF-STP8 and FC MJSQ) 
and are used in BER test equipment.

 



AN-941 Preliminary Technical Data
 

Rev. PrA | Page 8 of 29 

COUNTER
#ERRORS

COUNTER
#BITS

CLK0
D

CK

Q
CLK1

OFFSET DECISION
CIRCUIT (ODC)

CLOCK
RECOVERY UNIT

D

CK

Q
CLK0

NORMAL DECISION
CIRCUIT (NDC)

INPUT
DATA

P
R

O
G

R
A

M
M

A
B

L
E

P
H

A
S

E
 S

H
IF

T
E

R

CLK0 IS THE NORMAL RECOVERED
DATA RETIMING CLOCK.
CLK1 IS A PHASE SHIFTED
VERSION OF CLK0.

07
06

4-
00

7

 
Figure 7. BER Monitor Architecture Showing Two Decision Circuits 
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Figure 8. Cumulative Distribution Functions (CDFs) of Input Jitter for Input BERs of ~1e−3, and ~1e−1 

CHARACTERISTICS OF PSEUDO-BER DATA FROM 
OFFSET DECISION CIRCUIT 
Definition of Pseudo BER 

The pseudo BER data that is reported from the chip is actually 
the difference between the BER at the normal decision instant 
and the BER at the offset decision instant. This is illustrated in 
Figure 8. This shows the CDFs of the input jitter for typical 
input BERs of ~1e−3 and ~1e−1. The normal sampling instant  
t0 (at 0 UI) and the offset sampling instant t1 (at −0.1 UI, for 
example) are also shown. Data edges that cross to the right of t1 
are counted as pseudo errors, unless they also cross to the right 
of t0. 

The BER monitor circuitry measures the PBER at the offset 
decision instant, t1. Mathematically, the PBER measurement  
is given as 

  
 


1 0t t PDFPDFPBER 5.0  (5) 

Provided that the actual bit error rate at t1 is at least, say, ten 
times greater than that at t0, then the first term is much larger 
than the second term and thus the PBER at sample point t1 is 
approximately given by 

 



1t PDFPBER 5.0  (6) 

This is the equation for the BER at t1 from Equation 1, assuming 
that the BER at t1 is dominated by one side of the distribution 
only. The integral in Equation 6 is exactly the complementary 
error function (erfc) used in Equation 4. Thus, using a duplicate 
decision channel allows one to accurately estimate the BER 
CDF at sample points offset from the normal decision instant. 
Knowing that the distribution is Gaussian and has data points 
on that distribution is what allows one to extrapolate to estimate 
the BER at the normal decision instant. The approximation used in 
Equation 6 gives rise to a few issues that need to be accounted 
for during the parsing of the data. 

Pseudo BER Implementation Null 

When the two sampling instants are brought close together, 
then the first and second terms in Equation 5 become closer in 
value to each other. The resulting PBER value then becomes a 
small value, eventually becoming zero as the two sample points 
are placed at the same instant. In this situation, the error between 
the right-hand side of Equation 5 (pseudo BER) and the right-
hand side of Equation 6 (ideal BER) becomes large. From theory 
and measurements, it is found that if the sample phase of the 
ODC is kept greater than 0.05 UI from the sample phase of the 
NDC, then this error is kept acceptably small. This is for actual 
BERs of less than 1e−2, and any sensible combinations of DJ 
and RJ. An example of this implementation null is shown if 
Figure 9. Do not use data within 0.05 UI of the NDC sample 
phase for the Q factor extrapolation algorithm. 
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Figure 9. Implementation Null Around 0 UI Offset to the NDC Sampling Instant. RJ = 0.065 UI, DJ = 0.2 UI.  

The green trace represents the ideal BER characteristic while the pink trace shows a typical reported pseudo BER characteristic. 

Pseudo BER Nonmonotonic at Very High Bit Error Rates 

The reported pseudo BER for small sample phase offsets is 
nonmonotonic at very high input BERs. A typical characteristic 
is shown in Figure 10. The blue trace shows the input BER as 
the input random jitter in UIs is increased (x-axis). The green 
trace is the actual BER when sampling at 0.1 UIs offset to the 
normal decision instant. The pink trace shows the reported 
pseudo BER at 0.1 UI. At low BERs (<1e−2) the measured 
PBER is a fairly good estimate of the actual input BER at 0.1 UI 
offset (green vs. pink). At higher input BERs (above ~2e−2) the 
reported PBER actually starts decreasing as the input BER 
continues to increase. 

Figure 8 shows the CDFs of the input jitter for example input 
BERs of ~1e−3 and ~1e−1. For very high input BERs, however, 
the second term in Equation 5 is no longer negligible. In fact, as 
the input BER increases above, for example, 1e−2 the second 

term becomes very close in magnitude to the first term, with 
the result that the reported PBER computed in Equation 5 starts 
to get smaller as the input BER increases. This is why the PBER 
value is nonmonotonic with increasing input BER at very high 
BERs, as shown with the pink trace in Figure 10. 

In practice, this is not a problem because the ADN2817 loss of 
lock detector is guaranteed to declare loss of lock when the 
input BER is in the range of 1e−2 to 1e−1. Consequently, it is 
not possible for the input BER to be >1e−2, and to have the 
output indicate that it is <1e−3. In addition, PBER data greater 
than 1e−2 should not be used for Q factor extrapolation 
because it is likely to be contaminated by DJ. 
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Figure 10. Nonmonotonic Report RBER at Very High Input BERs. The blue trace shows the input BER as the input random jitter in UIs is increased (x-axis).  
The green trace is the actual BER when sampling at 0.1 UIs offset to the normal decision instant. The pink trace shows the reported pseudo BER at 0.1 UI. 

 

Pseudo BER Plateau with Asymmetric Jitter Distributions 

The left and right BER profiles around the UI boundaries are 
rarely symmetric in optical communication receivers. Another 
interpretation of this is that the normal decision circuit is not 
sampling at the optimum BER location. When the NDC is 
sampling away from the optimum (lowest input BER) and the 
ODC retiming phase is moved by small amounts left and right 
of the normal decision phase, the reported PBER is always 
increased due to the implementation null. In addition, the 
asymmetry results in a plateau on the pseudo BER curve to one 
side of the NDC decision instant, beyond the implementation 
null. An example is shown in Figure 11. 

Each side of the BER characteristic is dominated by jittered data 
edges from that side, where the input BER minimum is the 
boundary between the left and right-hand side. For example, if 
the ODC sampling instant is set to −0.2 UI in Figure 11, pseudo 
errors are counted every time a left-hand side data edge occurs 
to the right of the ODC sampling instant, but not to the right of 
the NDC sampling instant. Thus, when the ODC sampl-ing 
instant is to the left of the NDC sampling instant, recorded 
pseudo errors are dominated by left-hand side data edges, and 
there is almost no bit error due to right-hand side data edges.  

 



Preliminary Technical Data AN-941
 

Rev. PrA | Page 11 of 29 

1e–13

0.1

0.01

0.001

1e–4

1e–5

1e–6

1e–7

1e–8

1e–9

1e–10

1e–11

1e–12

–500 –400 –300 –200 –100 0 100 200 300 400 500

B
E

R

PHASE (mUI)

NORMAL
SAMPLING INSTANT

PLATEAU

07
06

4-
0

11

 
Figure 11. Plateau Due to the Asymmetric Input Distribution. Implementation Null Around 0 UI Offset to the NDC Sampling Instant.  

The green trace represents the input BER characteristic while the pink trace shows a typical reported pseudo BER characteristic.  

When the ODC sampling instant is set to +0.05 UI in Figure 11, 
then pseudo errors are counted every time a left-hand side data 
edge occurs to the right of the NDC sampling instant (0 UI), but 
not to the right of the ODC sampling instant (now +0.05 UI). 
(From the right-hand BER characteristic in Figure 11, it is 
evident that there are much fewer occurrences of right-hand 
sided data edges occurring to the left of either +0.05 UI or 0 UI, 
so these can be ignored.) This means that the reported PBER 
value is just equal to the BER of the NDC, sampling at 0 UI.  

This is the case for all ODC sampling instants where the ODC 
sampling instant BER is less than the NDC sampling instant 
BER, and beyond the implementation null. This is what 
provides the plateau.  

The data used for Q factor extrapolation can be checked to 
ensure that it is not affected by this plateau. Fortunately, this 
plateau effect is benign as far as BER extrapolation is concerned. 
It is clear from Figure 11 that when there is an asymmetry-induced 
plateau that the BER at the normal decision instant (phase = 0) 
is dominated by the statistics from the side where the plateau is 
not present.  

In realistic situations (as in Figure 11), a poorly estimated Q 
factor on the right-hand side is still going to predict a lower 
BER contribution than the accurate BER contribution/estimate 
from the left-hand side, and so this error is less important. It is 
more important to ignore data affected by the plateau when 
trying to estimate the optimum sampling instant, although even 
here the BER extrapolation algorithm is good with asymmetries 
of less than 0.2 UI. 

Assumptions Regarding Deterministic Jitter 

The BER algorithm can only work if there is a region of valid, 
normally distributed (Gaussian) jitter. If there is no significant 
region of Gaussian jitter, then the algorithm still provides some 
indication of BER, but accuracy is degraded. There are two 
requirements. 

1. The DJ ceiling must be greater than some minimum value. 
A minimum BER of 1e−2 is used here. For example, at 
phase offsets where the probability of error is <1e−2, the 
jitter characteristics are ideally purely Gaussian. Data 
dependent jitter with long pattern lengths may violate this 
assumption leading to a degradation in the BER extrapol-
ation accuracy. This is to ensure that there is at least a small 
region of Gaussian jitter that can be used for extrapolation 
when the BER is only 1e−3, for example. For further infor-
mation, refer to the Fibre Channel publication in the 
References section. 

2. The models for DJ assume that it can be represented as a 
dual-delta function, as shown in the Fibre Channel public-
cation listed in the References section. The implication is 
that the BER within the DJ region is assumed to be fixed at 
0.25 UI; otherwise, the jitter has a Gaussian characteristic. 
This is the dual-delta function definition of the deterministic 
jitter as is also described in the Agilent Technologies white 
paper listed in the References section. It is always less than 
the actual deterministic jitter. This does not affect the ability 
to determine the BER of the ADN2817. 
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MODES OF OPERATION
Two modes of operation are available for the BER monitor 
feature. There is also a sample phase adjust mode. Only one 
mode can be operational at a time. The primary mode is the 
BER extrapolation mode as discussed in the A Review of BER 
Extrapolation Theory section and the Processing Algorithm for 
BER Extrapolation Mode section. This is where the user scans 
the input eye in the range of ±0.5 UI of the data center, reads 
back the measured pseudo BER over the I2C, and then processes 
the data to determine the BER. Using the BER feature in this 
way provides for the greatest accuracy in BER estimation. This 
is because the magnitude of both random (Gaussian) jitter and 
deterministic jitter can be estimated and used to predict the actual 
BER.  

The voltage output mode is a secondary BER monitor mode 
where the ADN2817 autonomously samples the PBER at 0.1 UI 
offset and decodes this value to provide an estimate of the input 
BER. This estimate is output via a DAC as an analog voltage to 
the BERMON pin. This mode is characterized by lower accuracy 
because it cannot account for large amounts of deterministic 
jitter on the input data eye. This mode is described further in 
the Voltage Output BER Mode section. 

With the sample phase adjust mode, the user can set the sam-
pling instant of the input data relative to the sample instant 
acquired by the CDR to optimize the received BER. 

BER EXTRAPOLATION MODE THROUGH I2C 
READBACK 
In the BER extrapolation mode, the BER is measured as 
outlined above. 

Power Saving 

Three power settings can be applied. 

 In the BER enabled setting, all of the BER functionality is 
powered up. The user can perform a PBER measurements 
through I2C control. 

 In the BER standby setting, the BER is placed into a low 
power mode, saving approximately 80 mW. Note that this 
mode can only be invoked if the BER Enabled mode has 
been previously set. 

 In the BER off setting, all the BER circuitry is powered 
down, and operation of the CDR is unaffected, saving 
approximately 160 mW of power. 

These modes are defined to allow optimal power saving opportu-
nities. It is not possible to switch between BER off mode and BER 
enabled mode without losing lock. Switching between BER standby 

mode and BER enabled mode is achieved without interrupting the 
data recovery. Setting BER standby mode without having set the 
BER enable mode is not supported. 

BER On Setting 

The BER on setting allows the user to scan the incoming  
data eye in the time dimension and to build up a profile of  
the pseudo BER statistics. 

User Protocol 

The user protocol consists of seven steps. 

1. Power up the BER circuitry through the I2C, (BERCTLB[5] 
= 1). The BERMODE pin is set high. The part deasserts the 
Loss of Lock (LOL) pin. 

2. Program the sample phase offset, (PHASE[5:0]), and the 
number of data bits to be counted (BERCTLA[7:5], 
NumBits is the choice between 218, 221, 224, 227, 230, 233, 236  
or 239) through the I2C. 

3. Apply a reset pulse to the BER circuit through the I2C by 
writing a 1 followed by a 0 to BERCTLA[3]. 

4. Note that BER logic indicates End Of BER Measurement 
with EOBM I2C bit (BERSTS[0] = 1).  

5. Poll the I2C to determine if EOBM has been asserted. 
6. Read back NumErrors [39:0] through the I2C by setting 

BERCTLA[2:0] and reading BER_RES[7:0]. PBER for 
programmed sample phase is calculated as NumErrors/ 
NumBits. 

7. Power down the BER, or request another BER measure-
ment (see Step 2). 
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Figure 12. I2C Interface to BER Monitor Circuitry 

The user sweeps the phase over 0 to 1 UI to get the BER profile 
required. The sample phase code word can be incremented in 
integer steps over the range of −30 to +30, which corresponds to 
a sample phase range of −0.5 UI to +0.5 UI. The resulting 
resolution is 1/60th of a UI, or 6°. The phase code (I2C: 
PHASE[5:0]) is in twos complement format. 
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An example of I2C code for a complete scan of the eye follows: 

1. WR BERCTLB = 0x20 *** POWER UP BER (after acquiring) 

1. *** DO A PBER MEASUREMENT 

2. WR PHASE = 0x22 *** Phase = -0.5UI = -30 code. 

3. WR BERCTLA 0x48 *** Apply BER Startpulse. Numbits initially set to 2^24 bits. 

4. WR BERCTLA 0x40 

5. RD BERSTS *** Monitor EOBM until set. 

6. *** Readback NumErrors 

7. WR BERCTLA 0x00 *** NumErrors Byte 0 (Least Significant Byte) 

8. RD BER_RES 

9. WR BERCTLA 0x01 *** NumErrors Byte 1 

10. RD BER_RES 

11. WR BERCTLA 0x02 *** NumErrors Byte 2 

12. RD BER_RES 

13. WR BERCTLA 0x03 *** NumErrors Byte 3 

14. RD BER_RES 

15. WR BERCTLA 0x04 *** NumErrors Byte 4 

16. RD BER_RES 

17. Repeat Step 2 to Step 16, however, in Step 2 increment the phase code step by 1 to cover the range of −30 to +30. Depending on the 
previous measurement, determine if the NumBits value should be increased/decreased. NumBits should always be set to give greater 
than 1000 pseudo errors, if possible. Within code values of approximately −6 to +6, it may not be possible to select a large enough 
value for NumBits. The user should reduce the number of phase locations used when applying the algorithms described in the A 
Review of BER Extrapolation Theory section and the Processing Algorithm for BER Extrapolation Mode section. 

Note that WR indicates an I2C write operation, and RD indicates an I2C read operation. 
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VOLTAGE OUTPUT BER MODE 
A secondary BER mode of operation is implemented. This 
mode gives easy access to an estimate of the BER. The 
measurement is performed autonomously by the ADN2817, 
and the result is output as a voltage on a pin, from which the 
actual BER can be inferred. 

The user merely has to keep the BERMODE pin low and read 
the voltage on the VBER pin. A 3.0 kΩ resistor is placed between 
the VBER pin and the VEE pin. Alternatively, a 6-bit value can 
be read over the I2C (I2C: BER_DAC[5:0]). In this mode, the 
dynamic range is limited. Figure 14 indicates the relationship 
between the input BER and the voltage on the VBER pin. 

BERMODE

BER
MONITOR

NUMERRORS
DECODE DAC

NUMERRORS<39:0>

(LATCH)

6 i

VBER

VEE

ADN2817

0
70
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Figure 13. Voltage Output Mode. I2C control not needed. 
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Figure 14. Output Voltage vs. BER 

Because there is no method of differentiating between 
deterministic and random jitter, this mode of operation is 
inherently less accurate than the BER extrapolation mode. The 
typical accuracy limits for this mode of operation are shown in 
Figure 15 for the case of 0 UIp-p, and 0.2 UIp-p of applied DJ. This 
mode cannot run concurrently with BER extrapolation mode. 

The update rate on the VBER pin is a function of data rate, and 
is determined as  

VoltageUpdatedTime = 227/(DataRate). 

Table 5. Update Rates for Some Key Data Rates  
Data Rate  Measurement Time = No. of Bits/DataRate  
2.5 G  54 ms  
1 Gbps  134 ms  
155 Mbps  865 ms  
10 Mbps  1.34 sec  
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Figure 15. Accuracy of BER Voltage Output Mode 
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SAMPLE PHASE ADJUST MODE 
When BER monitoring is not required, the sample phase of the 
offset decision circuit can be adjusted as in BER extrapolation 
mode, and the corresponding clock and sampled data can be 
taken off-chip at the normal outputs. This allows implement-
ation of the sample phase adjust mode. This may be required if 
the user wishes to independently choose the data sampling 
instant, relative to the normal CDR sampling instant. Switching 
between this mode, and the BER monitoring mode causes a 
temporary loss of output data.  

The sample phase code word can be incremented in integer 
steps over the range of −30 to +30, which corresponds to a 
sample phase range of −0.5 UI to +0.5 UI. The resulting 

resolution is 1/60th of a UI or 6°. The phase code (I2C: 
PHASE[5:0]) is in twos complement format. Example I2C code 
showing how to set the part into this mode is given as follows: 

 The part is allowed to acquire normally. The BERMODE 
pin is high. 

 WR BERCTLB=0x21*** POWER UP BER. Route ODC 
clock & Data to Output (implements Sample Phase 
Adjust). 

 WR PHASE = 0x06*** Phase = +0.1UI = code +6. 
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PROCESSING ALGORITHM FOR BER EXTRAPOLATION MODE 
This section provides a detailed example of a processing 
algorithm applied to obtain a BER estimate from the pseudo 
BER data obtained from the ADN2817. The proposed algorithm 
can be used to parse the pseudo BER data from the ADN2817, 
estimate the Q factor, and consequently estimate the BER at the 
normal decision instant. 

OUTLINE OF BER EXTRAPOLATION ALGORITHM 
Figure 16 shows an eye diagram statistic and corresponding 
Q factor characteristic. For every BER value in the Gaussian 
region, its corresponding Q factor can be obtained using either 
a lookup table or a known polynomial. The left and right data 
are processed independently before combining the left and right 
estimate Q factors at the normal decision instant to obtain the 
BER at that sampling instant, according to Equation 4, and 
repeated in Equation 7. Note that for the Gaussian region the 
Q factor is, by definition, a straight line. 
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For the nonhorizontal region of the Q factor graph 

Q = mt + C  

where: 
m is the slope. 
t is the sampling instant with respect to 0 UI. 
C is the Y intercept for t = 0. 

For a pair of data points on the Q factor graph, the straight line 
equations become  
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Thus, for a minimum of two pairs of Q and sampling phase 
data, both the standard deviation σ of the jitter distribution, and 
an equation for the Q factor at any sampling instant can be 
determined. Now, if the line end data point is chosen, t2 = DJL, 
and Q2 = 0, and substituted into Equation 10, the result is 
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Figure 16. Eye Diagram Statistics Bathtub Curves 
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Comparing this with Equation 8 gives 
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Given σ and DJL from Equation 14, it can be predicted that the 
left side Q factor (QL) at the normal decision instant T/2 is 

  





 


 DJLTTQL

2
1

2
 

Referencing Equation 14, the values for σ and DJL are easily 
computed as 1/slope, and Y-intercept divided by the slope. The 
Q factor equation must be found for the left and right distributions. 
By knowing left and right Q factors at the normal sample 
instant, either a lookup table or a known polynomial can be 
used to find the left and right BER contributions, which can 
then be added together, according to Equation 7, to find the 
BER at the normal decision instant. 

To estimate the slope for Q vs. sample instant and, conse-
quently, the value for DJ, it is necessary to take at least two 
sample pairs for (PBER, t) and map these to pairs of (Q, t). In 
implementations with reasonable amounts of processing 
capabilities, a better approach is to take many samples of PBER 
(in the 1e−3 to 1e−8 range, for example), and then do an LMS 
best fit to get the straight line equation for Q vs. t, from which 
σj (that is, 1/slope) and DJl (that is, Y-intercept divided by 
slope) are determined. 

Optimum Sampling Instant 

With asymmetric jitter distributions as shown in Figure 17,  
the actual BER at T = T/2 is dominated by the worst-case 
distribution. Therefore, each side of the distribution/bathtub 
must be analyzed, and the combined Q estimates must be used 
to determine the bit error rate at T/2. 

This information is used to determine the optimum decision 
instant. 

RL
DJLRDJRL

Toptimum






  

TAKING SAMPLES FOR A GIVEN PBER 
It is important to know how many bits to process to have 
confidence that the measured PBER value is a good estimate of 
the actual BER at a given sampling point. To do so, first determine 
the confidence level for the measured PBER value being within 
a certain range of the actual BER at a given sampling point. To 
calculate the exact value for the PBER at any sample instant, one 
would need to consider the number of errors that occurred over 
all the data bits transmitted down the link. When only a fixed 
size sample of data bits is taken, there is a probability distribution 
that the current fixed size sample of data bits actually has a 
greater or lesser number of errors than if the total population of 
data bits is taken.  

Each time this experiment is repeated, a different answer is 
obtained from the actual long-term value with a well defined 
probability. As sample size is increased (that is, increase the 
number of pseudo errors collected at any sample point), then 
the probability of the estimated PBER being within α% of the 
exact value increases. 

Note that this does not refer to the long-term probability of 
receiving a bit error here, instead, what is being determining is 
the probability of the reported number of pseudo errors being 
within a certain range of the true value, given a certain BER, or 
probability of bit error, and the number of data bits received. 
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Figure 17. Eye Diagram Statistics Bathtub Curves 
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For this, the confidence level or cumulative density function is 
calculated, which is based on the binomial distribution. The 
function to be computed, using a Poisson approximation, is 
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where: 

ε is the number of errors counted. 
N is the number of data bits or samples. 
P(ε≤k) is the probability of receiving less than k errors. 
P(k) is the probability of receiving exactly k errors. 
p is the probability of receiving an error. 
q is the probability of not receiving an error. For further details, 
refer to Montgomery and Runger in the References section. 

This probability is plotted as a function of k in Figure 18, for  
N = 1e10, BER = p = 1e−8. It is expected that, on average, there 
will be 100 errors. From the graph in Figure 18, note that the 
probability of getting less than 80 errors is less than 2.5%, and 
the probability of getting more than 120 errors is less than 2.5% 
also. This is very similar to what is seen with BER = 1e−3 and  
N = 1e5. From this it can be concluded that if the number of 

bits used in measuring a PBER value is >100/BER then the 
PBER value obtained has a very high probability (>95%) of being 
correct to within ±20%. Increasing the number of bits used 
further improves the probability of an accurate measurement. 

The problem with Equation 15 is that it is somewhat cumber-
some to use. To explore the expected accuracy when N × p is 
increased to 1000,(for example, p = 1e−8, N = 1e11), use the 
fact that the normal distribution is a very good estimate of a 
bino-mial distribution when N × p >> 5. The mean is given by μ 
= Np and the standard deviation is given as σ = √npq which at a 
low bit error rates is closely approximated as σ = √μ. Thus, in 
this example, the mean number of errors is expected to be 1000, 
and the ±2σ (±95%) confidence interval to be in the 937 to 1063 
range. This means that 95% of all measurement would lie within 
±6.3% of the expected value. 

In summary, if a sample size of at least 1000/BER is always 
taken, then the measurement of PBER should be very accurate. 
However, taking a sample size of 100/BER also provides rea-
sonable repeatability, and shorter measurement time.
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Figure 18. Probability of Getting <K Errors When the Bit Error Rate is 1e−8 and the Number of Bits is 1e10 
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Figure 19. Example Input BER Data (Green), and Reported PBER Data (Pink) 
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PARSING BASED ON EXPERIMENTAL 
OBSERVATIONS 
Figure 19 shows an example input BER characteristic, along 
with the reported PBER values from the ADN2817. Note that 
the phase programming resolution is 1/60 UI = 6°. 

The first processing task is to parse the data to remove any non-
Gaussian data (that is, exclude the DJ region, and the region 
affected by the implementation null and plateau). Clearly, the 
success of this technique relies on the input deterministic BER 
component being limited to more than one decade above the 
minimum BER, there being a region of Gaussian data, and there 
being a region where the reported PBER Gaussian data is not 
severely affected by the implementation null. There are many 
ways to perform this task, and one simple parsing algorithm 
based on experimental evidence is summarized as follows: 

1. Discard PBER values that are larger than 1e−2. As shown 
in the MJSQ report (see the Fibre Channel publication in 
the References section) a model for the DJ region has it 
corresponding to a BER of 0.25. In reality, the BER in the 
DJ region can be lower than this due to data dependent 
effects. Therefore, discarding PBER values greater than  
1e−2 removes some of these DJ effects. 

2. Discard data that is within 0.1 UI of the NDC sampling 
phase. For BERs less than 1e−3, this limits the magnitude  
of the errors due to the implementation null, yet still gives 
enough PBER readings less than the above BER limit of 
1e−2. 

3. It is not advisable to collect PBER data values less than  
1e−9, as these values take too long to collect. Using a value 
of 1e−8 or higher is a better trade off. For low DUT BERs, 
collecting high confidence data as low as 1e−8 is important 
to provide sufficient accuracy. 

4. Greatest accuracy is achieved by processing only that 
remaining data that has the lowest PBERs. For example, if 
PBER data is available at every phase increment, then using 
only the five lowest PBER values for BER extrapolation is a 
good option. 

For the input BER and reported PBER data shown in Figure 19, 
the resulting parsed data is shown in Figure 20. Notice that the 
number of PBER data points that can be used for extrapolation 
is greatly reduced. 
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Figure 20. Parsed PBER Data: Remove 1e−9>BER>1e−2; Remove |PHASE| < 0.1 UI 
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CONVERTING PARSED PBER DATA TO Q FACTORS 
The next step is to convert the parsed PBER data to corresponding Q factors. The Q factor for any PBER value in the range  
[1e−2:1e−9] from the Gaussian region can be closely approximated using the equation 

Q = (d0 + d1 × log(pber) + d2 × (log(pber))2 + d3 × (log(pber))3) 

where: 
d0 = 0.1346273,  
d1 = −1.135047,  
d2 = −0.08386615,  
d3 = −0.003196661. 

Figure 21 shows the computed Q factors for the data in Figure 19. 
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Figure 21. Calculated Q, Over Range of Valid Data. Note that −Q is plotted to reflect conventions. 

USE LINEAR REGRESSION TO FIND A LINE 
EQUATION FOR Q vs. PHASE 
Linear regression based on the method of least squares can be 
used to find the slope and Y-intercept for Q as a function of 
phase. See Montgomery and Runger in the References section 
for more details. An example implementation of this regression 
algorithm is given on the following page (for one side only).  

Note that the code also computes the variance of the error and 
the correlation coefficient. It is strictly the square root of the 
coefficient of determination as the xi are not from a set of 
random variables. These are a measure of how well the data is 
representative of a straight line. This is also a measure of how 
well the data used in the BER extrapolation matches the 
required Gaussian distribution. 
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***************************************************** 
* xi are the phase values, sum_xi is the sum of all the phase values, 
* sum_sq_xi is the sum of all the squared phase values, yi are the Q factors, 
* sum_yi is the sum of all the Q factors, sum_sq_yi is the sum of all the 
* squared Q factors, sum_xiyi is the sum of all the products, num is the 
* number of data pairs. 
sum_xi = 0 
sum_sq_xi = 0 
sum_yi = 0 
sum_xiyi = 0 
sum_sq_yi = 0 
xi = phasel_p 
yi = Ql_a 
num = pcountl 

do loop_phase = loop_phase_start to num 
  sum_xi = sum_xi + xi(loop_phase) 
  sum_sq_xi = sum_sq_xi + (xi(loop_phase))**2 
  sum_yi = sum_yi + yi(loop_phase) 
  sum_xiyi = sum_xiyi + xi(loop_phase)*yi(loop_phase) 
  sum_sq_yi = sum_sq_yi + (yi(loop_phase))**2 
enddo 

sxx = sum_sq_xi - (sum_xi**2)/num 
sxy = sum_xiyi - sum_xi*sum_yi/num 
mean_xi = sum_xi/num 
mean_yi = sum_yi/num 

print " SLOPE = " slope_l = sxy/sxx 
print " INTERCEPT = " intercept_l = mean_yi - slope_l*mean_xi 
* Estimate Vaildity of Regression, from Variance of the Error Terms. 
SSt = sum_sq_yi - num*(mean_yi**2) 
SSe = SSt - slope_l*sxy 
SSr = slope_l*sxyR_sq = SSr/SSt 
variance_of_error = 1e9 
if (num > 2 ) variance_of_error = abs(SSe/(num-2)) 

print " CORRELATION COEFFICIENT = " R = sqrt(R_sq) 
print " VARIANCE OF ERROR = " var_e = variance_of_error 
***************************************************************************** 

SSr/SSt is a measure of how good the line equation is at estimating the change in yi for a given change in xi. 

 SSr is a measure of the amount of change in yi that is expected from the line equation y = mx + c, for any change in xi. It is a measure 
of the predictable amount of change in yi.  

 SSe is a measure of the amount of change in yi that cannot be explained by the model.  

 SSt is a measure of the total change in yi due to a change in xi, or more accurately, the total corrected sum of squares.  

Figure 22 shows the left and right extrapolated Q factors for the data in Figure 19. Note that the figure plots −Q vs. phase, to conform to 
convention. The green trace is a plot of the left-hand side equation q = intercept_l + slope_l × phase, where intercept_l and slope_l are as 
computed above. The pink trace is the corresponding right Q factor equation. 
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Figure 22. Extrapolated Q Factors for Data in Figure 19 Based on Application of Linear Regression to the Measured Q Factors 
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CONVERT EXTRAPOLATED Q FACTOR TO A BER 
VALUE AT THE NORMAL DECISION INSTANT 
Using the slope and intercept, the value for the Q factor for  
both the left and the right distribution can be calculated at the 
normal sampling phase, (phase = 0 in Figure 22). The left and 
right values of the extrapolated Q factor at the normal sampling 
instant (such as Ql and Qr) are used to estimate the BER at the 
normal sampling instant as 
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Because the erfc() function is not readily available, the calcu-
lation is performed with the help of a polynomial fit for the 
Log(BER) vs. Q factor. Thus,  

* Left Log(BER) 
Logberl = (c0 + c1 × (ql) + c2 × (ql2) + c3 × (ql3)       

* Right Log(BER) 
logberr = (c0 + c1 × (qr) + c2 × (qr2) + c3 × (qr3))     

* Extrapolated BER value. 
ber = 10(logberl) + 10(logberr)                                

where: 
c0 = −0.6270002  
c1 = −0.2820845 
c2 = −0.1838629  
c3 = −0.001688561 is valid for Q factors in the range of 0.2 to 8. 

Figure 23 shows a comparison of the input and the reported and 
extrapolated BER values computed using this algorithm. 
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Figure 23. Plot of Actual Input BER Data (Green), Reported Pseudo BER data (Pink) and Extrapolated BER data (Blue) Based on Suggested Algorithms 
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HOW TO DETECT WHEN THE BER > 1e−3
When the actual input BER is above 1e−3, then there is very 
little valid Gaussian data available to use for BER extrapolation. 
With reference to Figure 10, note when the PBER at 0.1 UI 
becomes greater than ~5e−3. This can be taken as an indication 
that the actual BER is greater than the upper performance limit 
of 1e−3. 

MATLAB CODE 
Example processing algorithms are available and implemented 
in MATLAB®. These routines are written to provide an intro-
ductory tutorial to the methods required for BER extrapolation, 
as well as to provide the user with a means of quickly getting 
started with the ADN2817 BER monitor feature. The routines 
are not intended to be robust in all applications, but do provide 
a useful starting point for the user’s own code development.  

To use these routines the user must provide a means of 
collecting pseudo BER data from the ADN2817 over the I2C, 
and storing it in a file called pber.dat. Alternatively, to test the 
algorithms in the absence of real data the user can use the 
MATLAB M file gen.m to create a user-defined pseudo BER 
characteristic. The file alg.m reads pairs of data (phase in UIs, 

pseudo BER) in from the file called pber.dat. The previously 
described algorithms are applied to the data, graphs of relevant 
information are plotted, and the BER estimate is produced.  

A routine called genalg.m essentially calls both the routines 
gen.m and alg.m, and provides an estimate of the accuracy  
of the algorithms, given the ideal input characteristic. It is 
suggested that the user start with the routine genalg.m as a 
means of quickly getting familiar with the processing algorithms. 
To do so: 

1. Copy the gen.m, alg.m, and genalg.m routines to a  
working directory on a PC or UNIX platform with 
MATLAB installed. 

2. Start MATLAB and type genalg at the command prompt. 
3. Follow the instructions that display and observe the plots 

in Figure Windows 1 through 3. 
4. Type alg in MATLAB to process your own BER monitor 

data from a file named pber.dat. 
5. Type gen to generate example pseudo BER data in a file 

called pber.dat. 
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APPENDIX A: SUMMARY OF JITTER STATISTICS THEORY 
This appendix summarizes the normal (Gaussian) statistics 
theory used to determine bit error ratios resulting from the 
sampling of jittery data. Figure 24 represents the data eye edge 
crossing jitter probability distributions around 0 UI and 1 UI 
boundaries, assuming only random jitter. Each probability 
density function is given as 
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The bit error rate at the sampling instant ts is given as  

BER = P0 × PE0 + P1 × PE1 

where: 
P0 is the probability that there was a transition scheduled to 
occur at the 0 UI boundary. 
P1 is the probability that there was a transition scheduled to 
occur at the 1 UI boundary. 
PE0 is the probability that the 0 UI transition occurred to the 
right of sampling instant tS. 
PE1 is the probability that the 1 UI transition occurred to the 
left of sampling instant tS.  

It is normally assumed that P0 = P1 = 1/2. Thus,  
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PE0 is determined as the integral of the left normal distribution 
from ts to infinity, 
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A change of variable approach is used to convert this into 
something that can be evaluated. 
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substituting Equation 20 into Equation 18 gives 
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To allow use of standard solutions the independent variable is 
changed from t (time) to x (generic) by letting  
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To map any point in the t domain to the x domain, subtract μ, 
and multiply by 1/(σ √2). 

Therefore, the lower integration value of ts must get mapped to 
(ts – μ)/(σ √2). With these two substitutions, Equation 21 now 
becomes  
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Figure 24. Example Data Eye Edge Crossing Probability Density Function 
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There is no closed form solution to the integral in Equation 22, 
however numerical tables and polynomial approximations of 
the complementary error function are well known. The comple-
mentary error function is defined as 
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Substituting this into Equation 22 gives 
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where:  
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To get the equation for the BER, consider the impact of both the 
left and right distributions in Figure 24, and in Equation 17. 
This gives  
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With Equation 27, if the mean and standard deviation of the 
normal jitter statistics for the data eye are known, the BER can 
be computed. 
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