

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance Wideband, 40 dB Isolation at $1 \mathrm{GHz}, \mathrm{CMOS}$ 1.65 V to 2.75 V , SPST Switch microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type
01

Generic

ADG901-EP

Circuit function

Wideband, 40 dB Isolation at 1 GHz , CMOS 1.65 V to 2.75 V , SPST Switch
1.2.2 Case outline(s). The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
	8	JEDEC MO-229-WEED-4	Lead Frame Chip Scale Package [LFCSP]

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A	Hot solder dip
C	Tin-lead plate
D	Gold plate
E	Palladium
Z	Gold flash palladium
	Other

1.3 Absolute maximum ratings. 1/

VDD to GND	-0.5 V to +4.0 V $\underline{2}^{\prime}$	
Inputs to GND	-0.5 V- to VDD +0.3 V	2/ 3/
Continuous Current	Data + 15\% 4/	
Input Power	18 dBm 5/	
Operating temperature range:	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Junction temperature	$150^{\circ} \mathrm{C}$	
Lead temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	
IR Reflow, Peak Temperature (<20 sec)	$235^{\circ} \mathrm{C}$	
ESD	1 kV	

1.4 Thermal characteristics.

Thermal resistance

Case outline	θ_{JA}	θ_{Jc}	Unit
Case X	48	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)
JEP95 - Registered and Standard Outlines for Semiconductor Devices
(Copies of these documents are available online at http:/www.jedec.org or from JEDEC - Solid State Technology Association, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201-2107).

1/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2/ Tested at $125^{\circ} \mathrm{C}$.
3/ When RF1 and RF2 are in the open position, the input to ground rating is -0.5 V to $\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$.
4/ See Table I. - Continuous Current Per Channel.
ㄷ/ The switch is tested in both the open and closed positions. In the closed condition, power is applied to RF1, and RF2 is terminated to a 50Ω resistor to GND. In the open condition, power is applied to RF1 and RF2.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE 3

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum operating conditions and electrical performance characteristics are as specified in 1.3, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Terminal function. The terminal function shall be as shown in figure 3.
3.5.4 Truth table. The truth table shall be as shown in figure 4.
3.5.5 Functional block diagram. The functional block diagram shall be as shown in figure 5 .
3.5.6 Insertion Loss. The Insertion Loss shall be as shown in figure 6.
3.5.7 Switching Timing: ton, toff. The Switching Timing: ton, toff shall be as shown in figure 7.
3.5.8 Switching Timing: $\mathrm{t}_{\text {RISE, }}$, $\mathrm{t}_{\text {FALL }}$. The Switching Timing: $\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {FALL }}$ shall be as shown in figure 8.
3.5.9 IP3. The IP3 shall be as shown in figure 9.
3.5.10 Video Feedthrough. The Video Feedthrough shall be as shown in figure 10.
3.5.11 OFF Isolation. The OFF Isolation shall be as shown in figure 11.
3.5.12 $\quad \mathrm{P} 1 \mathrm{~dB}$. The P 1 dB shall be as shown in figure12.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions 2/	Limits			Unit
			Min	Typ 3/	Max	
AC Electrical Characteristics						
-3 dB Frequency 4/				4.5		GHz
Insertion Loss	$\mathrm{S}_{21}, \mathrm{~S}_{12}$	DC to $100 \mathrm{MHz} ; \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%$, See Figure 6		0.4	0.7	dB
		500 MHz ; V ${ }_{\text {dD }}=2.5 \mathrm{~V} \pm 10 \%$		0.6	1	
		1000 MHz ; $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%$		0.8	1.25	
Isolation-RF1 to RF2	$\mathrm{S}_{21}, \mathrm{~S}_{12}$	100 MHz	55	61		dB
		500 MHz	40	45		
		1000 MHz	31	38		
Return Loss (On Channel) 4/	$\mathrm{S}_{11}, \mathrm{~S}_{22}$	DC to 100 MHz	18	28		dB
		500 MHz		25		
		1000 MHz		20		
Return Loss (Off Channel) 4/	$\mathrm{S}_{11}, \mathrm{~S}_{22}$	DC to 100 MHz	15	23		dB
		500 MHz		21		
		1000 MHz		19		
On Switching Time 4/	ton	50\% CTRL to 90\% RF, see Figure 7		4	6.5	ns
Off Switching Time 4/	toff	50\% CTRL to 10\% RF, see Figure 7		6.5	10.5	ns
Rise Time 4/	trise	10\% to 90\% RF, see Figure 8		3.1	5.5	ns
Fall Time 4/	$\mathrm{t}_{\text {FALL }}$	90\% to 10\% RF, see Figure 8		6.0	9.5	ns
Third-Order Intermodulation Intercept		$900 \mathrm{MHz} / 901 \mathrm{MHz}$, 4 dBm , see Figure 9	28.5	36		dBm
Video Feedthrough 5/		See Figure 10		2.5		mVp-p
Input Power						
1 dB Input Compression 6/	P1dB	1000 MHz ; see Figure 12		17		dBm
DC Electrical Characteristics						
Input High Voltage	VINH	$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$ to 2.75 V	1.7			V
	VINH	$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to 1.95 V	0.65 VDD			V
Input Low Voltage	VINL	$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$ to 2.75 V			0.7	V
	VInL	$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to 1.95 V			0.35 V DD	V
Input Leakage Current	11	$0 \leq \mathrm{V}_{\text {IN }} \leq 2.75 \mathrm{~V}$		± 0.1	± 1	$\mu \mathrm{A}$
Capacitance 4/						
RF1/RF2, RF Port On Capacitance	CrF on	$\mathrm{f}=1 \mathrm{MHz}$		1.2		pF
CTRL Input Capacitance	C CTRL	$\mathrm{f}=1 \mathrm{MHz}$		2.1		pF

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/16613			
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test		Symbol	$\begin{aligned} & \text { Test conditions } \\ & \underline{2} / \\ & \hline \end{aligned}$	Limits			Unit	
		Min		Typ 3/	Max			
Power Requirements								
VDD					1.65		2.75	V
Quiescent Power Supply Current		IDD	Digital inputs $=0 \mathrm{~V}$ or V DD		0.1	2.5	$\mu \mathrm{A}$	
Continuous Current Per Channel 4/								
$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}, \mathrm{~V}$ Ss $=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8 -lead LFCSP, $\theta_{\mathrm{JA}}=48^{\circ} \mathrm{C} / \mathrm{W}$, dc bias $=0.5 \mathrm{~V}$			70	mA	
	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$					7		
	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$					3.85		
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$					2.8		
$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		8-lead LFCSP, $\theta_{\mathrm{JA}}=48^{\circ} \mathrm{C} / \mathrm{W}$, dc bias $=0.5 \mathrm{~V}$			56	mA	
	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$					7		
	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$					3.85		
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$					2.8		

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to 2.75 V , GND $=0 \mathrm{~V}$, input power $=0 \mathrm{dBm}$, temperature range $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
3/ Typical values are at $V_{D D}=2.5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, unless otherwise specified
4/ Guaranteed by design, not subject to production test.
5/ Video feedthrough is the dc transience at the output of any port of the switch when the control voltage is switched from high to low or low to high in a 50Ω test setup, measured with 1 ns rise time pulses and 500 MHz bandwidth.
6/ For less than 100 MHz , refer to the AN-952 Application Note from manufacturer data for more information about power handling.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/16613			
		REV	PAGE

Case X

See Note 1

NOTES:

1. For proper connection of the exposed pad, refer to the pin configuration and function descriptions section from the manufacturer data sheet.
2. The Lead Frame Chip Scale Package [LFCSP] has an exposed PAD. The exposed PAD must be tied to the substrate, GND.
3. All linear dimensions are in millimeters.
4. Falls within JEDEC MO-229-WEED-4.

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/16613			
		REV	PAGE

Case outline X			
Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	VDD	8	RF2
2	CTRL	7	GND
3	GND	6	GND
4	RF1	5	GND

FIGURE 2. Terminal connections.

Terminal number	Terminal symbol	Description
1	VDD	Power Supply Input. These devices can be operated from 1.65 V to 2.75 V ; decouple V_{DD} to GND.
2	CTRL	CMOS or LVTTL Logic Level. CTRL input must not exceed $V_{\text {DD }}$. Logic 0: RF1 isolated from RF2. Logic 1: RF1 to RF2.
3, 5, 6, 7	GND	Ground Reference Point for All Circuitry on the Device.
4	RF1	RF1 Port.
8	RF2	RF2 Port.
	EPAD	Exposed Pad. The LFCSP package has an exposed pad. The exposed pad must be tied to the substrate, GND.

FIGURE 3. Terminal function.

CTRL	Signal Path
0	RF1 isolated from RF2
1	RF1 to RF2

FIGURE 4. Truth table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE 8

FIGURE 5. Functional block diagram.

FIGURE 6. Insertion Loss.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE 9

FIGURE 7. Switching Timing: ton, toff.

FIGURE 8. $\underline{\text { Switching Timing: } t_{\text {RISE, }} t_{\text {FALL }} .}$

FIGURE 9. IP3.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE 10

FIGURE 10. Video Feedthrough.

FIGURE 11. Off Isolation.

FIGURE 12. P 1 dB .

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE 11

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/default.aspx

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Ordering Quantity	Vendor part number
V62/16613-01XE	24355	Tray 714 units	ADG901SCPZ-EP
		Reel 1500 units	ADG901SCPZ-EP-RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code
24355
Source of supply
Analog Devices
1 Technology Way
P.O. Box 9106
Norwood, MA 02062-9106

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16613
		REV	PAGE 12

