

AN-1293
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

A Quick Guide to the ADuCM350 Sequencer

INTRODUCTION
The ADuCM350 is an ultralow power, integrated, mixed-signal
metering solution that includes a microcontroller subsystem for
processing, control, and connectivity. The processor subsystem
is based on a low power ARM® Cortex™-M3 processor, a collection
of digital peripherals, an embedded SRAM and flash memory,
and an analog subsystem which provides clocking, reset, and
power management capabilities.

This application note details the ADuCM350 analog front end
(AFE) sequencer. The role of the ADuCM350 AFE sequencer is
to allow offloading of the low level AFE operations from the
Cortex-M3 and to provide cycle accurate control over the
analog and digital signal processor (DSP) blocks. The ADuCM350
AFE sequencer handles timing critical operations without being
subject to system load.

Rev. 0 | Page 1 of 8

http://www.analog.com/ADUCM350?doc=AN-1293.pdf
http://www.analog.com/aducm350?doc=an-1293.pdf
http://www.analog.com/aducm350?doc=an-1293.pdf
http://www.analog.com/ADUCM350?doc=AN-1293.pdf
http://www.analog.com/ADUCM350?doc=AN-1293.pdf
http://www.analog.com

AN-1293 Application Note

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2

Basics of the ADuCM350 Sequencer ... 3
Write Command ... 3
Timer Command .. 3
Safety Features .. 4
Sequence Abort ... 5

Example Sequences ...6
Safety Word ..6
Example Write Command ...6
Example Wait Command ...6

Appendix A: Online CRC-8 Tool ..6
Example 1. CRC In Sequence ..6
Example 2. Temperature Sensor Measurement7

REVISION HISTORY
5/14—Revision 0: Initial Version

Rev. 0 | Page 2 of 8

Application Note AN-1293

BASICS OF THE ADuCM350 SEQUENCER
The AFE sequencer is clocked by the analog clock source
(ACLK), with a frequency of 16 MHz. The ADuCM350 uses
clock gating internally to minimize power consumption when idle.

The AFE sequencer reads commands first in, first out (FIFO),
and depending on the command, either waits for a given period
or writes a value to a memory mapped register (MMR). The
execution of the command is sequential, with no branching. The
AFE sequencer cannot read MMR values or signals from the
analog and DSP blocks. If a particular sequence needs
conditional execution, the execution must be split between the
AFE sequencer and the Cortex-M3, with the decision block
executed on the Cortex-M3. In this case, the AFE sequencer is
programmed with commands up to the conditional point, and
upon completion of those commands, a Cortex-M3 interrupt
service routine determines the subsequent commands to be
executed and proceeds to load them into the command FIFO.

There are two types of commands that can be executed by the
AFE sequencer: write (MSB = 1) and timer (MSB = 0).

Write Command

The ADDRESS field is 6 bits wide, allowing access to 64 MMRs.
All MMR accesses are only 32 bits; byte and half word accesses
are not allowed. Write only is implied for all accesses. The write
command uses a direct mapping between the MMR address
and the ADDRESS field. The ADDRESS field corresponds to
Bits[7:2] of the 32-bit MMR address.

For example, when the Cortex-M3 wants to write to
Register AFE_WG_CFG, it uses the 0x40080014 address.
To write to the same register using the AFE sequencer, the
ADDRESS field needs to be 0b000101 (Bits[30:25] of the
address used by the Cortex-M3). See Figure 1.

The DATA field is 25 bits wide and allows writing to the MMR bits,
Bits[24:0]. To keep the width of the command FIFO in line with

the advanced high performance (AHB) bus, writing to the full
32 bits of the MMRs via the sequencer is not possible. However,
because the MMR bits, Bits[31:25], are not used by any of the
MMRs, all assigned MMR bits can be written by the AFE
sequencer.

Timer Command

There are two timer commands; wait command and timeout
command.

Wait Command

The wait command (see Figure 2) introduces wait states in the
AFE sequencer execution. When the programmed counter
reaches 0, the execution resumes by reading the next command
from the FIFO.

Timeout Command

The timeout command (see Figure 3) starts a counter that works
independently of the AFE sequencer flow. The current value of
the counter can be read by the Cortex-M3 at any time during
the AFE_SEQ_TIMEOUT register. There are two interrupt bits
associated with this command; SEQ_TIMEOUT_FINISHED
and SEQ_TIMEOUT_ERR which are asserted at the end of the
timeout period. SEQ_TIMEOUT_ERR is asserted if, at the end
of the timeout period, the AFE sequencer has not reached the
end of execution (END_OF_SEQ equals 0).

When the AFE sequencer execution stops because of an AFE or
sequencer write command (writing a 0 to SEQ_EN), the
timeout counter does not reset. However, if the Cortex-M3
writes a 0 to SEQ_EN, it is reset, which applies to situations in
which the Cortex-M3 needs to abort the sequence.

The TIME unit for both timer commands is 1 ACLK period.
For a clock frequency of 16 MHz, the timer resolution is 62.5 ns,
and the maximum timeout is ~67.1 seconds, which is true even
if the SEQ_WRITE_TIMER bits are nonzero.

Figure 1. Write Command

Figure 2. Wait Command

Figure 3. Timeout Command

1 0

[24:0] DATA

B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

[31] COMMAND

[30:25] ADDRESS 12
09

7-
00

1

0 0

[29:0] TIME

B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

[31:30] COMMAND 12
09

7-
00

2

0 1 0

[29:0] TIME

B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

[31:30] COMMAND 12
09

7-
00

3

Rev. 0 | Page 3 of 8

http://www.analog.com/ADUCM350?doc=AN-1293.pdf
http://www.analog.com/ADUCM350?doc=AN-1293.pdf

AN-1293 Application Note

Safety Features

Although the MMRs, with the exception of the calibration
registers, are located in the address space that can be written by
the AFE sequencer, only a subset of them can be written by the
sequencer. In addition to the read only registers, sequencer
writes to the following registers have no effect:

• AFE_CMD_FIFO_WRITE
• AFE_ANALOG_CAPTURE_INT
• AFE_CMD_FIFO_INT
• AFE_DATA_FIFO_INT
• AFE_SEQ_COUNT
• AFE_SEQ_CRC

If the AFE sequencer attempts to write to any of the previous
registers, the write is silently ignored. If such a write is attempted
due to an error (such as the wrong command read from the
memory), the error is detected when the cyclic redundancy
check (CRC) and command count values are checked.

The rate at which AFE sequencer commands are executed is
controlled through the SEQ_WRITE_TIMER bits in the
AFE_SEQ_CFG register. When a write command is executed by
the sequencer, it performs the MMR write and waits
SEQ_WRITE_TIMER clock cycles before taking the next
command from the FIFO. The effect is the same as when a write
command is followed by a wait command. The main purpose is
to reduce the code size when generating arbitrary waveforms.
The SEQ_WRITE_TIMER bits do not have any effect following
a wait or a timeout command.

In addition to a single write command followed by a wait
command, multiple write commands can be executed in
succession, followed by a wait command. Therefore, any
configuration can be set up rapidly by the AFE sequencer,
regardless of the number of register writes followed by a
precisely executed delay.

Sequence Count

The number of commands executed by the sequencer can be
read from the AFE_SEQ_COUNT register. Each time a command
is read from the FIFO and executed, the counter is incremented
by 1. Performing a write to the AFE_SEQ_COUNT register
resets the counter.

Sequence CRC

The sequencer calculates the CRC of all the commands it
executes. The algorithm used is CRC-8, using the polynomial,
x8 + x2 + x + 1.

The CRC-8 algorithm performs on 32-bit input data (sequencer
instructions). Each 32-bit input is processed in a one clock cycle,
and the result is available immediately for reading by the
Cortex-M3.

The CRC value can be read from the AFE_SEQ_CRC register.
This register is reset by the same mechanism as the command
count, by writing to the AFE_SEQ_COUNT register. The
AFE_SEQ_CRC resets to a seed value of 0x01. Attempting to
write to the AFE_SEQ_CRC register results in the same error
response as writing to any other read only register.

Rev. 0 | Page 4 of 8

Application Note AN-1293

Figure 4. Execution Flow Diagram

Table 1. Abort Sequence Example
Action Register Bit(s) Value Comments
Disable Sequencer AFE_SEQ_CFG SEQ_EN 0 Resets both internal timers (for wait and

timeout commands)
Disable Command FIFO AFE_FIFO_CFG CMD_FIFO_EN 0 Resets read and write pointers
 CMD_FIFO_DMA_REQ_EN 0 Disables command FIFO direct memory

access (DMA) requests
Disable DSP Blocks AFE_CFG WAVEGEN_EN 0 Disables waveform generator
 DFT_EN 0 Disables discrete Fourier transform (DFT) engine
 SUPPLY_LPF_EN 0 Disables supply rejection filter
Stop Temperature Measurement AFE_CFG TEMP_CONV_EN 0
Stop Analog-to-Digital Conversions AFE_CFG ADC_CONV_EN 0
Power Down Analog Blocks AFE_CFG As needed

Typically, the AFE sequencer is idle. Writing a 1 to the SEQ_EN
bit in the AFE_SEQ_CFG register starts the AFE sequencer.
Only the Cortex-M3 can write SEQ_EN equals 1 to start the
sequencer. The execution flow diagram is shown in Figure 4.

The last command in any sequence writes a 0 to SEQ_EN, which
forces the end of the execution and triggers the END_OF_SEQ
interrupt.

Attempting to read from the FIFO command when empty,
SEQ_STOP_ON_FIFO_EMPTY equals 1, turns the sequencer
off and is a valid way to end the sequence. It can be useful to turn
the SEQ_STOP_ON_FIFO_EMPTY flag off for sequences with
a minimum timing specification and to turn it on for sequences
with strict timing.

Sequence Abort

To abort a sequence, the Cortex-M3 needs to write a number of
actions to the AFE to disable the sequencer and stop the different
blocks that can be used at this point. Table 1 details the possible
actions. The first two actions shown (disable the sequencer and
disable command FIFO) must always be done. The other actions
may or may not be required, depending on the AFE mode of
operation at the time the sequence is aborted. The sequencer
execution can be paused through the SEQ_HALT bit in the
AFE_SEQ_CFG register. When the bit equals 1, the sequencer
execution stops, which applies to every AFE function, including
FIFO operations, internal timers, waveform generation, and data
capture. Cortex-M3 reads from the MMRs are allowed, and this
mode is used for debug purposes during software development.

SEQ_EN = 1

READ COMMAND FIFO

WRITE MMR

START TIMEOUT

END_OF_SEQ = 1

MSB? BIT 30?

TIME = 0?

SEQ_EN?

CMD_FIFO_
EMPTY?

SEQUENCER IDLE

SEQ_STOP_
ON_FIFO_
EMPTY?

12
09

7-
04

7

1

0

1

1

0

0

1

0

1

1

0

0

Rev. 0 | Page 5 of 8

AN-1293 Application Note

EXAMPLE SEQUENCES
The following sequence, which powers up the excitation channel,
explains the hardware and software features of the sequencer:

const uint32_t seq_afe_tempsensmeas[] = {

 0x00080081, /* safety word: Bits[31:16]
= command count, Bits[7:0] = CRC*/

 0x800210B0, /* AFE_CFG: TEMP_SENS_EN = 1
*/

 0xA0000103, /* AFE_ADC_CFG: MUX_SEL =
00011, GAIN_OFFS_SEL = 01 (TS)*/

 0x00000640, /* Wait 100 µs */

 0x800331B0, /* AFE_CFG: ADC_CONV_EN = 1,
SUPPLY_LPF_EN = 1, TEMP_CONV_EN = 1 */

 0x00090880, /* Wait 37 ms */

 0x800200B0, /* AFE_CFG: ADC_CONV_EN = 0,
SUPPLY_LPF_EN = 0, TEMP_CONV_EN = 0,
TEMP_SENS_EN = 0 */

 0xA0000300, /* AFE_ADC_CFG: MUX_SEL =
00000 */

 0x82000002, /* AFE_SEQ_CFG: SEQ_EN = 0 */

};

Safety Word

When using the AFE sequencer application programming
interfaces (APIs) in the ADuCM350 software development kit,
the first value in the sequence array is the safety word.

The safety word consists of the following:

• The sequence count [31:16]
• A CRC-8 [7:0]

In the previous example, the safety word is 00080081.

Sequence Count

The number of commands in a sequence (excluding the safety
word) is 8 or 0x0008, located in Bits[31:16].

CRC-8 Calculation

Use the CRC-8 tool to generate the CRC for the previous hex
commands.

Hexstring =
800210B0A000010300000640800331B000090880800200B0A00
0030082000002

CRC-8 → 0x81, located in Bits[7:0].

See Appendix A on how to download the CRC-8 tool.

Example Write Command

Take the following line:
0xA0000103, /* AFE_ADC_CFG: MUX_SEL =
00011, GAIN_OFFS_SEL = 01 (TS) */

When the COMMAND field MSB equals 0, it equals a write.
The ADDRESS field corresponds to Bits[7:2] of the 32-bit MMR
address. Therefore, for the AFE_ADC_CFG register, the hex is
0x40080040, which is located at Bits[7:2] and equals 0100 00.

The DATA field (AFE_ADC_CFG) then results in the
GAIN_OFFS_SEL bits, Bits[9:8] equaling 01 and the MUX_SEL
bits, Bits[4:0] equaling [0 0011] (TEMP). Therefore, in binary
code, it is 1010 0000 0000 0000 0000 0001 000 0011, or in hex
code, it is 0xA0000103.

Example Wait Command

Take the following line
0x00000640, /* Wait 100 µs */

ACLK is based on 16 MHz, and therefore, a period of 62.5 ns is
required.

100 µs/62.5 ns = 1600 (decimal)

When converted to hex code, it equals 0x640.

Note that the fetch and decode cycles are built in to the wait
command.

APPENDIX A: ONLINE CRC-8 TOOL
For this example, it is assumed that users have the CRC-8 tool
called Python installed on their PCs.

Run the CRC-8 tool from the command line. Run the command
from the directory where the archive was unzipped (for
example, pycrc-0.8.1) and has the following format:

python pycrc.py --width 8 --poly 0x7 --reflect-in False --reflect-
out False --xor-in 0x01 --xor-out 0x00 --check-
hexstring=<sequence>

where <sequence> is the actual sequence as a single hex
number.

Example 1. CRC In Sequence

The following is an example of a CRC-8 calculation in the AFE
sequencer.
const uint32_t seq_afe_excitechanpowerup[] =
{
 0x0003009C, /* safety word:
Bits[31:16] = command count, Bits[7:0] =
CRC*/
 0x80020EF0, /* AFE_CFG: DAC_EN = 1,
TIA_EN = 1, INAMP_EN = 1, BUF_EN = 1 */
 0x00000640, /* Wait 100 µs */
 0x82000002, /* AFE_SEQ_CFG: SEQ_EN = 0
*/
};

The command line is the following:
python pycrc.py --width 8 --poly 0x7 --reflect-in False --reflect-
out False --xor-in 0x01 --xor-out 0x00 --check-hexstring =
80020EF00000064082000002
→ 0x9C
Note that the sequence is written as a 24-digit hex number, all of
which is obtained from the concatenation of the sequence hex
codes, except for the safety word.

Rev. 0 | Page 6 of 8

http://www.analog.com/ADUCM350?doc=AN-1293.pdf

Application Note AN-1293

Example 2. Temperature Sensor Measurement

The following is an example of a temperature sensor
measurement using the AFE sequencer.

const uint32_t seq_afe_tempsensmeas[] = {

 0x00080081, /* safety word:
Bits[31:16] = command count, Bits[7:0] =
CRC*/

 0x800210B0, /* AFE_CFG: TEMP_SENS_EN =
1 */

 0xA0000103, /* AFE_ADC_CFG: MUX_SEL =
00011, GAIN_OFFS_SEL = 01 (TS) */

 0x00000640, /* Wait 100 µs */

 0x800331B0, /* AFE_CFG: ADC_CONV_EN = 1,
SUPPLY_LPF_EN = 1, TEMP_CONV_EN = 1 */

 0x00090880, /* Wait 37 ms */

 0x800200B0, /* AFE_CFG: ADC_CONV_EN = 0,
SUPPLY_LPF_EN = 0, TEMP_CONV_EN = 0,
TEMP_SENS_EN = 0 */

 0xA0000300, /* AFE_ADC_CFG: MUX_SEL =
00000 */

 0x82000002, /* AFE_SEQ_CFG: SEQ_EN = 0 */

};

The command line is the following:

python pycrc.py --width 8 --poly 0x7 --reflect-in False --reflect-
out False --xor-in 0x01 --xor-out 0x00 --check-
hexstring=800210B0A000010300000640800331B000090880800
200B0A000030082000002

→0x81

The pycrc tool also allows the user to write the C code that
implements the CRC calculation.

Figure 5. CRC-8 PYCRC Tool

12

09
7-

00
5

Rev. 0 | Page 7 of 8

AN-1293 Application Note

NOTES

©2014 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN12097-0-5/14(0)

Rev. 0 | Page 8 of 8

http://www.analog.com

	Introduction
	Table of Contents
	Revision History
	Basics of the ADuCM350 Sequencer
	Write Command
	Timer Command
	Wait Command
	Timeout Command

	Safety Features
	Sequence Count
	Sequence CRC

	Sequence Abort

	Example Sequences
	Safety Word
	Sequence Count
	CRC-8 Calculation

	Example Write Command
	Example Wait Command

	Appendix A: Online CRC-8 Tool
	Example 1. CRC In Sequence
	Example 2. Temperature Sensor Measurement

