

Engineer-to-Engineer Note EE-363

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-CM40x Serial Flash Execute-in-Place Technology

Contributed by Prasanth Rajagopal, Prashant Gawade, and Kritika Shahu Rev 2 – December 7, 2015

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

The ADSP-CM40x series of mixed-signal control processors is based on the ARM Cortex™-M4 core, and

it includes features to support fast memory accesses for motor control and industrial applications, among

others. These devices also offer large on-chip SRAM memory (up to 384 KB) that can be accessed at core

clock speeds of up to 240 MHz, as well as a system in package (SiP) serial flash memory device (up to

2 MB).

Furthermore, ADSP-CM40x processors support direct code execution from Serial Peripheral Interface (SPI)

flash devices. Most flash memory devices support features such as quad-I/O fast read, execute in place

(XiP), and wrap, all of which are supported directly by the embedded on-chip SPI Controller. These features,

when combined with instruction cache support, cache pre-fetch support, and merged accesses, enable code

execution from serial flash devices at fast execution rates.

This EE-Note discusses each block involved in the transfer path of SPI-flash-based direct code execution

and how the various sub-blocks interact with each other. The main blocks consist of flash memory, the SPI

controller, and the cache controller. Also, comparison of SPI flash throughput benchmarks with different

memories is provided in the Performance Analysis section. Several oscilloscope plots explaining the SPI

memory-mapped mode features, such as wrap and XiP, are provided in Appendix A. The associated .ZIP

file[1] contains code examples that demonstrate performance analysis and improvement techniques.

This EE-Note consists of specific information pertaining to the above context (i.e., flash reads

involving the cache controller and the SPI controller). For more details on the ADSP-CM40x

mixed-signal control processors, please refer to the device Datasheet[2] and the processor

Hardware Reference Manual[3].

http://www.analog.com/processors

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 2 of 24

ADSP-CM40x Memory Map

ADSP-CM40x processors include sufficient internal SRAM to support fast execution of real-time code.

Non-real-time code can be executed from SPI flash memory, as well as from external SRAM via the Static

Memory Controller (SMC). Figure 1 and Figure 2 provide an overview of the ADSP-CM40x processor

memory map.

Figure 1. ADSP-CM40x Internal SRAM Space

Figure 2. Cacheable External Memory Blocks

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 3 of 24

Recommended Memory Management Strategy

The following guidelines for typical memory management strategy can be helpful during ADSP-CM40x

application development:

1. Place all code and data in internal SRAM (up to 64 KB x 6 banks of on-chip SRAM available).

2. If it doesn’t fit in internal SRAM, profile the code using the development tools (typically using a map

file, which can be generated through the IAR embedded workbench). Map the real-time code (including

all ISRs) to on-chip SRAM, and map the setup code and initialization routine to flash, as these routines

do not execute frequently and are typically less time-critical.

3. Cache all other non-critical code executing from the in-package SPI flash space (enabled by default).

For fast execution rates, configure the SPI controller for quad-I/O operation with Command Skip /

Continuous Read mode, merge, and cache pre-fetch enabled, and set the SPI baud rate to the maximum

supported speed of 100 MHz.

4. Consider mapping constant data to flash memory and again utilizing the cache. Shared/split memory

banks are available for data and code accesses to cache memory.

5. If more memory space than that available in the on-chip SPI flash is required, use an external SPI flash

device. The code can be cached when accessing an external SPI flash device.

6. Lastly, if cost and the selected pin multiplexing scheme allows, consider interfacing with external

SRAM memory via the SMC.

Direct Code Execution from Serial Flash Devices

For applications that have code and/or constant data that do not fit into the on-chip SRAM space, additional

features have been added to allow the core to efficiently access SPI flash memory space. The following

serial memory blocks are available as directly addressable by the core. Because these memories are

addressable by the core without additional driver software, direct code execution is available as a built-in

feature.

 The SoC SPI flash memory supporting the quad-I/O SPI protocol, with speeds of up to 100 MHz, is

available through the SPI2 port.

 The interface to external SPI flash memory supporting the quad-I/O SPI protocol, with speeds of up to

50 MHz, is available through the SPI0 port.

The SPI controller also includes features such as wrap, merge, and XiP mode for efficient accesses to serial

flash memory. These features are explained in detail in the Performance Enhancement Features in the SPI

and Cache Controllers section of this EE-Note. An instruction cache is also provided to improve throughput

of recently used code. Up to 16 KB of recently executed instructions can be retained inside the cache

memory for faster reuse by the application.

Theoretically, internal SPI flash reads can occur at throughputs as high as 50 MB/s. When instructions are

brought into internal cache upon a cache miss, any further execution (cache hits) occurs at the core clock

rate (up to 240 MHz). Please refer to the Performance Analysis section for more details on cache

performance.

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 4 of 24

Flash Data Flow Architecture

When the core requests instruction op-codes from memory-mapped regions belonging to SPI flash

memories via the MEM-X and MEM-Y blocks (Figure 3), the requests are first directed to the cache

controller. If the controller finds a tag match for the requested address, the code is extracted from cache

memory and returned to the core at the core clock (CCLK) speed. If there is no tag match, the cache controller

will pass the request to the SPI controller. The controller then sends out the translated serial address for SPI

flash along with the required commands (options for critical word first and command skips are available).

The SPI controller must be configured appropriately by programming its memory-mapped header register

in order to initiate memory-mapped accesses. The cache controller is always enabled, and the default

configurations typically ensure that code is cached with optimal performance. It is also possible to bypass

cache, though this can result in significant performance loss.

Figure 3. Flash-Based Data Transfer Diagram

The ARM Cortex-M4 core does not have a strict memory space definition for code and data access within

each other’s memory space. In other words, it allows data to be placed in code regions and code to be places

in data regions. This is inefficient, as it causes bus contention. Since the ADSP-CM40x processor’s internal

SRAM supports user-configurable partitions between code and data banks, there is usually no need to mix

code and data placement. Cache memory, though it is inside the code region, allows for raw data (read-

only) to be cached through the D-Code interface, as shown in Figure 4.

Figure 4. Cortex-M4 Internal Bus Matrix

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 5 of 24

Memory X and Memory Y Blocks

Both cache memory and the on-chip SPI flash (via the SPI2 port) reside in the code region of the Cortex-

M4 core. External SPI flash (via the SPI0 port) and external memory accessed via the SMC can also be

cached for better performance, but these blocks reside outside the code region. Therefore, it is preferable to

have direct address translation inside the chip. This translation makes sure that all accesses are initiated via

the D-Code/I-Code interface (Figure 4), leading to efficient throughput. Otherwise, instruction fetches

would contend with data accesses on the SYS (data) bus. These translation memory blocks are referred to

as “Memory X” (MEM-X) and “Memory Y” (MEM-Y). The cache controller works only with MEM-X and

MEM-Y when performing memory-mapped accesses from SPI0, SPI2, or SMC-interfaced memory.

The translator is assigned to a specific memory space (SPI0, SPI2, or SMC memory) by programming the

MEM-X and MEM-Y registers. Unlike sophisticated virtual memory management units, it consists of direct

one-to-one mapping. Note that MEM-X and MEM-Y are basically translator regions; these are not

populated with any real physical memories, and hence must be thought of as virtual memory regions. Figure

5 to Figure 7 depict the transfer paths involving cache when the core initiates an access.

As illustrated in Figure 5, the most common use case involves the on-chip flash as a device always in use.

Therefore, the MEM-X region is typically always assigned to SPI2 internal flash (which is the default

configuration). This design allows the application to assign SPI2 flash memory to the MEM-X interface and

either of SPI0 flash or SMC memory to the MEM-Y interface.

Since there are only two memory blocks for translation purposes, the application has to manually

manage configuring the MEM-X and MEM-Y interfaces for SPI0 flash, SPI2 flash, and the SMC

when all three blocks are in use.

Figure 5. Memory-Mapped and Cache Access Transfer Path for SPI2 Flash

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 6 of 24

Figure 6. Memory-Mapped and Cache Access Transfer Path for SPI0 Flash

Figure 7. Memory-Mapped and Cache Access Transfer Path for Asynchronous Memory (SMC)

SPI Memory-Mapped Mode

The ADSP-CM40x SPI controller supports direct memory-mapped read accesses to the flash memory

interfaced to it. Only an initial configuration is required for setting up the SPI controller and its memory-

mapped header register. Once this is done, all the read accesses are automatically carried out by the

controller when the core accesses memory-mapped locations.

Only read accesses are supported in memory-mapped mode. For programming the flash with

instructions or for writing raw data, the non-memory mapped mode must be used to explicitly

configure SPI to send flash instructions, flash addresses, etc.

Memory-Mapped Mode Operation

Memory-Mapped mode allows direct execution of instructions from SPI memory without the need of a low-

level software driver. All overhead tasks such as transmission of the read instruction, signal timing, and

receive data sizing are handled in hardware. Memory-Mapped mode is enabled by setting the SPI_CTL.MMSE

bit. Additional programming flexibility is provided in the Memory-Mapped Read Header register (MMRDH)

for compatibility with a wide range of SPI memory devices. Typical Memory-Mapped mode operation is

as follows (Figure 8):

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 7 of 24

Figure 8. SPI Memory-Mapped Data Transfer Process

1. Once memory-mapped mode is enabled, the SPI device will accept read requests from the core through

a dedicated on-chip system bus slave interface.

2. The SPI peripheral, if ready, accepts these requests and begins the process of assembling the read header.

The read header is assembled in the SPI transmit FIFO based upon access attributes described in both

the MMRDH register and the request itself.

3. The read header is then transmitted across the SPI signals SPIx_MOSI, SPIx_MISO, SPIx_SEL, and

SPIx_SCK (standard SPI mode) or D[3:0], SPIx_SEL, and SPIx_SCK (multiple I/O mode).

4. Once the read header transmission is complete, a pin turn-around tri-state period is timed (required for

multiple I/O mode), and the receiver is enabled.

5. Once all receive data pins are tri-stated, receive data can be driven by the SPI memory device and

accepted by the SPI peripheral.

6. The SPI peripheral continues clocking the SPI memory device until all bytes have been received.

7. Upon reception of the last byte, the SPI peripheral typically de-asserts SPIx_SEL to prepare for the next

read header.

Programmable Features of SPI Memory-Mapped Mode

The available SPI memory-mapped features programmable through the MMRDH register provide great

flexibility in the choice of SPI memory device type and manufacturer. The supported features are listed

below. For more details, refer to the hardware reference manual[3].

 

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 8 of 24

 OPCODE[8] : Read command op-code value, typically 0x03, 0x0B, 0x3B, 0x6B, 0xBB, or 0xEB

 CMDPINS[1]: Number of SPI pins used for sending read command

 CMDSKIP[1]: Command skip enable (for XIP operation)

 ADRSIZE[3]: Number of address bytes for read address

 ADRPINS[1]: Number of SPI pins used for sending address

 DMYSIZE[3]: Number of dummy bytes

 MODE[8]: Mode field used in command skip mode (to be driven during dummy period)

 TRIDMY[2]: Three-state timing during dummy period

 WRAP[1]: Enable burst wrap

 MERGE[1]: Enable merging of two successive cache line transfers

Protocol Example Cases

Figure 9 to Figure 14 show a number of examples to help visualize the important features of the memory-

mapped protocol like merge, wrap, and command skip mode. Note that lag, lead, and stop are part of the

SPI controller features and are not specific to Memory-Mapped mode.

Example Case 1

Figure 9. 32-Byte Cache Line (Wrap Mode On, Command Skip Off, Word 4 Requested by Processor)

Example Case 2

Figure 10. 32-Byte Cache Line (Wrap Mode Off, Command Skip Off, Word 4 Requested by the Processor)

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 9 of 24

Example Case 3

Figure 11. 32-Byte Cache Line (Wrap Mode On, Command Skip On, Word 4 Requested by the Processor)

Example Case 4

Figure 12. 32-Byte Cache Line (Wrap Mode Off, Command Skip On, Word 4 Requested by the Processor)

Example Case 5

Figure 13. 32-Byte Cache Line (Merge On, Prefetch On, Command Skip Off, Word 0 of Consecutive Cache Lines
Requested by the Processor)

Example Case 6

Figure 14. 32-Byte Cache Line (Merge On, Prefetch On, Command Skip On, Word 0 of Consecutive Cache Lines
Requested by the Processor)

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 10 of 24

SPI Memory-Mapped Configuration

The code example provided in Listing 1 illustrates how to configure SPI2 flash in Quad-I/O Fast Read mode

under memory-mapped operation.

/* Setup SPI -

 - Quad - 0xEB

 - SPI Clock Frequency = SCLK frequency

 - LAG = LEAD = 1, STOP = 3

 - Fast mode enabled

 - Memory-Mapped Mode enabled

 - Merge enabled

 - Wrap disabled

 - No of ADDR pins = 4

 - No of CMD pins = 1

 - Dummy = 5 bytes

*/

// Configure the system clock to 100MHz for high performance

void Set_MemMap_XIP(void)

{

/* Disable the SPI */

 *pREG_SPI2_CTL = 0;

/* Putting the SPI into single bit mode and enabling SPI again */

 *pREG_SPI2_CTL = 0x3;

/* Send the Continuous mode reset command 0xFF to terminate XiP mode */

 spi_exit_xip();

/* Disable SPI and make sure we are out of Memory-Mapped mode */

 *pREG_SPI2_CTL = 0; __DSB();

 *pREG_SPI2_MMRDH = 0; __DSB();

/* Program flash with Dummy cycles: Dummy cycles can be programmed using bit[3:0]

of Status Register 3 of flash device. Additionally, if using Quad mode, user must

program bit 1 of Status Register 2.*/

 ProgramFlash_Dummy_Quad();

/* Program baud rate */

 *pREG_SPI2_CLK = 0x00;

/* Program delay register with lead and lag times */

 *pREG_SPI2_DLY= (((3 << BITP_SPI_DLY_STOP) & BITM_SPI_DLY_STOP) |

 ((1 << BITP_SPI_DLY_LEADX) & BITM_SPI_DLY_LEADX) |

 ((1 << BITP_SPI_DLY_LAGX) & BITM_SPI_DLY_LAGX));

/* Program SPI control register */

 *pREG_SPI2_CTL = (ENUM_SPI_CTL_MM_EN | ENUM_SPI_CTL_MASTER |

 ENUM_SPI_CTL_SIZE32 | ENUM_SPI_CTL_HW_SSEL |

 ENUM_SPI_CTL_ASSRT_SSEL | ENUM_SPI_CTL_MSB_FIRST |

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 11 of 24

 ENUM_SPI_CTL_FAST_EN | ENUM_SPI_CTL_MIO_QUAD |

 ((0 << BITP_SPI_CTL_CPHA) & BITM_SPI_CTL_CPHA) |

 ((0 << BITP_SPI_CTL_CPOL) & BITM_SPI_CTL_CPOL));

/* Program transmit control register */

 *pREG_SPI2_TXCTL = (BITM_SPI_TXCTL_TTI | BITM_SPI_TXCTL_TEN);

/* Program receive control register */

 *pREG_SPI2_RXCTL = (BITM_SPI_RXCTL_REN);

/* Program Memory Map Read Header register */

 *pREG_SPI2_MMRDH = (

 ((0xEB << BITP_SPI_MMRDH_OPCODE) & BITM_SPI_MMRDH_OPCODE)|

 ((3 << BITP_SPI_MMRDH_ADRSIZE) & BITM_SPI_MMRDH_ADRSIZE)|

 ((1 << BITP_SPI_MMRDH_ADRPINS) & BITM_SPI_MMRDH_ADRPINS)|

 ((5 << BITP_SPI_MMRDH_DMYSIZE) & BITM_SPI_MMRDH_DMYSIZE)|

 ((0xFF << BITP_SPI_MMRDH_MODE) & BITM_SPI_MMRDH_MODE) |

 ((1 << BITP_SPI_MMRDH_TRIDMY) & BITM_SPI_MMRDH_TRIDMY) |

 ((1 << BITP_SPI_MMRDH_MERGE) & BITM_SPI_MMRDH_MERGE) |

 ((0 << BITP_SPI_MMRDH_WRAP) & BITM_SPI_MMRDH_WRAP) |

 ((0 << BITP_SPI_MMRDH_CMDSKIP) & BITM_SPI_MMRDH_CMDSKIP)|

 ((0 << BITP_SPI_MMRDH_CMDPINS) & BITM_SPI_MMRDH_CMDPINS));

/* Program Memory-mapped Top register */

 *pREG_SPI2_MMTOP = 0x18000000 + (FLASH_BLOCK_SIZE * FLASH_BLOCK_COUNT);

/* Program SPI with slave select */

 *pREG_SPI2_SLVSEL = ENUM_SPI_SLVSEL_SSEL1_HI | ENUM_SPI_SLVSEL_SSEL1_EN;

 __DSB();

/* Now enable SPI */

 *pREG_SPI2_CTL |= BITM_SPI_CTL_EN;

 __DSB(); }

Listing 1. SPI Memory-Mapped Mode Programming Example

Internal Flash Memory

Device Description

The ADSP-CM40x on-chip flash is a high-performance multiple input/output serial flash memory device.

It features execute-in-place (XiP) functionality, advanced write protection mechanisms, and a high-speed

SPI-compatible bus interface. High-performance dual- and quad-I/O fast read instructions allow for

doubling or quadrupling (respectively) the transfer bandwidth for read operations.

Memory Organization

The memory is organized as 32 64-KB blocks that are further divided into 16 sectors each (512 sectors in

total). The memory can be erased one 4-KB sector at a time, one 64-KB block at a time, or as a whole.

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 12 of 24



Refer to the hardware reference manual[3] and datasheet[2] for more information on the internal

flash device.

Operating Protocols and Commands

The standard SPI protocol is enhanced by dual and quad operations. In addition, the dual-SPI and quad-SPI

protocols improve the data access time and throughput of a single I/O device by transmitting addresses,

mode bytes, dummy cycles, and data across two or four data lines, respectively. The SPI operating protocols

and commands are shown in Table 1.

SPI Protocols

Read Command

Read Fast Read Dual-Output

Fast Read

Dual-I/O

Fast Read

Quad-Output

Fast Read

Quad-I/O

Fast Read

0x03 0x0B 0x3B 0xBB 0x6B 0xEB

Command Input Lines D0 D0 D0 D0 D0 D0

Address Input Lines D0 D0 D0 D[1:0] D0 D[3:0]

Data Output Lines D1 D1 D[1:0] D[1:0] D[3:0] D[3:0]

Table 1. SPI Operating Protocols and Commands

XiP Mode

The XiP mode/Command Skip mode does not require the read command to be sent to the flash, improving

random access time and eliminating the need to shadow code in the RAM for fast execution. Quad-I/O Fast

Read and Dual-I/O Fast Read modes support XiP operation, which requires only the address to be sent.

Activate or Terminate XiP

Applications may switch to XiP because XiP provides faster memory read operations by requiring only an

address to execute, rather than a command code and an address. The following is required to configure this

mode:

1. Enable XiP by setting the mode bits in the SPI_MMRDH register to 0x20.

2. Enable the SPI module and execute a dummy read.

3. Set the SPI_MMRDH.CMDSKIP bit.

4. Once in XiP mode, instructions require only the address bits to execute. A command code is not

necessary, and device operations use the SPI protocol that is enabled.

5. XiP is terminated by sending the Continuous Read Mode Reset command (0xFF).

XiP requires to send the XiP mode byte to the memory during the dummy clock cycles after the address has

been sent, as shown in Figure 15.

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 13 of 24

Figure 15. Sending XiP Confirmation to SPI Flash in Quad-I/O Fast Read Mode

Setting XiP Mode

XiP confirmation is sent as shown in Listing 2:

/* Configure the MODE bits of SPI_MMRDH register to 0x20 */

*pREG_SPI2_MMRDH = (*pREG_SPI2_MMRDH & (~BITM_SPI_MMRDH_MODE)) | ((0x20 <<

BITP_SPI_MMRDH_MODE) & BITM_SPI_MMRDH_MODE);

*pREG_SPI2_CTL |= BITM_SPI_CTL_EN;

 /* Perform one dummy access to SPI flash for setting MODE bits to 0x20 */

 unsigned int* pSPI_MEM = (unsigned int*) 0x18004000;

 /* Set the Command Skip bit of SPI_MMRDH register */

 *pREG_SPI2_MMRDH |= BITM_SPI_MMRDH_CMDSKIP;

 DSB();

/* All further SPI flash accesses will be in XiP mode (command skip) */

Listing 2. Sending XiP Confirmation

In utilizing the above code, the programmer must ensure that the following guidelines are respected:

1. The cache line size is set to 32 bytes.

2. The code routine is executed from internal SRAM.

3. A cache clear is performed before this routine is called.



 The code in Listing 2 also assumes that the mode byte was previously configured to a value

other than 0x20.

Dummy Cycles

For read operations, the internal SPI flash supports a variable number of dummy clock cycles based on the

read mode selected and the frequency of operation, as shown in Table 2. Note that SPI_MMRDH.DMYSIZE

must be programmed in terms of bytes relative to the flash requirement. Therefore, there may be cases where

the SPI port provides more dummy cycles than required. If the number of dummy cycles is insufficient for

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 14 of 24

the operating frequency, invalid data will be read. For the purpose of setting XiP mode, a mode byte is

required to be sent after the address is sent, and the dummy cycles follow the mode bytes. Note that some

values of dummy cycles are not applicable, as the SPI controller is configured in terms of bytes (dummy

cycles plus mode bytes). For example, the Quad-I/O Fast Read command sends the dummy and mode bytes

over four data lines, so it takes two cycles to send a byte. Hence, for the Quad-I/O Fast Read command,

only dummy cycle configurations which are multiples of two cycles are allowed. The number of dummy

cycles can be set by configuring the Status Register-3 of the flash in volatile mode.

Number of

Dummy Clock

Cycles

Read Command Maximum Frequency (MHz)

Fast Read Dual-Output

Fast Read

Dual-I/O Fast

Read

Quad-Output

Fast Read

Quad-I/O Fast

Read

0 (legacy dummy

cycle)
100

(8 dummy

cycles)

100

(8 dummy

cycles)

88

(4 mode and 4

dummy cycles)

100

(8 dummy cycles)

78

(2 mode and 6

dummy cycles)

1 NA NA NA NA NA

2 NA NA NA NA 59

(2 mode and 2

dummy cycles)

3 NA NA NA NA NA

4 NA NA 100

(4 mode and 4

dummy cycles)

NA 78

(2 mode and 4

dummy cycles)

5 NA NA NA NA NA

6 NA NA NA NA 95

(2 mode and 6

dummy cycles)

7 NA NA NA NA NA

8 100

(8 dummy

cycles)

100

(8 dummy

cycles)

100

(4 mode and 8

dummy cycles)

100

(8 dummy cycles)

100

(2 mode and 8

dummy cycles)

Table 2. Internal Flash Dummy Cycles

Interfacing External Flash Memory Devices

External flash memory may be interfaced with the controller through the SPI0 interface. To improve

performance, the memory accesses through SPI0 must be cached. Since the cache controller works only

with MEM-X and MEM-Y, when performing memory-mapped accesses from SPI0, SPI2 or SMC-

interfaced memory, the application has to manually manage configuring the MEM-X and MEM-Y

interfaces between SPI0 flash, SPI2 flash, and the SMC. This is done by setting the base address field of the

M4P_CACHE_MEMX and M4P_CACHE_MEMY appropriately, as shown in Listing 3.

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 15 of 24

#define SPI0_MEM 0x50000000

#define ASYNC_MEM 0x60000000

#define SPI2_MEM 0x18000000

void SetupMemXMemY(unsigned int MEMX_TRANS, unsigned int MEMY_TRANS)

{

 *pREG_M4P0_CACHE_MEMX = MEMX_TRANS | 0x3;

 __DSB();

 *pREG_M4P0_CACHE_MEMY = MEMY_TRANS | 0x3;

 __DSB();

}

//setup for SPI0 and SPI2

SetupMemXMemY(SPI2_MEM,SPI0_MEM);

Listing 3. Programming MEM-X and MEM-Y Registers

Performance Enhancement Features in the SPI and Cache Controllers

Features

Merge

With Merge set in the SPI controller, linear accesses will be merged, resulting in high throughput. The SPI

controller will merge cache line bursts if the addresses are contiguous. The address and read command will

not be sent, and consecutive cache line data will be merged.

Speculative Operations

The Speculative bit in the cache controller enables speculative fetching, and this bit must be enabled for

proper merge operations to take place. This enables the cache controller to start work on the next access

from the core (even when stalled during the current access). This is enabled by default in the cache

controller.

Pre-emptive

Pre-emptive fetching is a technique which only helps when the cache is shared, so it is useful when ICODE

and DCODE could conflict with one another. If enabled (disabled by default), non-stalled banks fetch ahead

from cache arrays and buffer the data.

Wrap

Wrap mode is a specific feature supported by most flash devices. It enables the host processor to ask for the

critical word first in a cache line. If enabled, the core is delivered with the critical word it requested as soon

as possible. When using this mode, the cache controller, SPI controller, and flash device all must be pre-

programmed to support this mode.

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 16 of 24

Command Skip

Command Skip (True XiP or Continuous Read mode) is a method where higher throughput is possible by

sending only the address (without the overhead of sending any commands). To support this, appropriate

mode bytes should be sent, and the SPI_MMRDH register must be configured appropriately.

Pre-fetch

There is a pre-fetch unit present in the cache that aims to predict and generate sequential cache line fills for

the ICODE interface during the fill read-return of the current cache line. The hardware automatically

generate a pre-fetch request after a particular count of words are read. The count is configurable in the

REG_M4P0_CACHE_CFG register.

Choosing the Correct Mode of Operation

It is recommended that application performance is first evaluated using the default modes of operation in

the M4P_CACHE_CFG register, which is optimal for most cases. Further evaluation of the software can be

made with other features, such as utilizing the Pre-emptive, Pre-fetch and Wrap modes. Based on this

analysis, the optimum settings can be selected. Some ideas are explained below to help choose the right

mode.

Line-Wrap vs. Line-Base-First Modes

In Line-Base-First mode, the line is always fetched starting at offset 0 (line base). In Line-Wrap mode, the

critical word is returned first while the rest of the line is fetched with wrap-around addressing. Since Line-

Wrap mode implies non-linear sequencing, merging is not possible. Usually, Line-Base-First mode will be

faster because merging is possible.

Merge vs. Non-Merge Modes

Since merging is performed automatically, it should be avoided when predictable access time is required,

when debugging, and when using Wrap mode.

Pre-emptive Mode

Pre-emptive fetching may provide benefits when there is heavy contention for the same cache ways, banks,

and stripes. However, it may result in greater power consumption if the processor never requires data that

is pre-emptively acquired.

Cache Line Size

A larger cache size setting is always desirable, provided the flash memory supports the selected size. At the

same time, a large cache line can cause Interrupt Service Routine (ISR) execution to be delayed because the

cache has to read the complete burst of the cache line prior to executing the cached instructions.

Pre-fetch Mode

The pre-fetch mode is enabled using the REG_M4P0_CACHE_CFG.PF bits. A setting of b#000 disables the

pre-fetch unit, while a setting of b#111 configures it for the most aggressive prediction, where the next line

is always pre-fetched regardless of the number of received words. An intermediate value tells the pre-fetch

unit to begin pre-fetching after a set value of received words.

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 17 of 24

Enabling and Disabling of Modules

Enabling

Cache Controller

The cache controller is enabled by default with the following settings: 32-byte cache line, line-base first

mode, speculative mode, and shared cache. The pre-fetch feature of the cache controller is enabled by setting

the REG_M4P0_CACHE_CFG.PF bits. By default, the pre-fetch feature is disabled.

SPI Controller

For SPI Master Boot mode, the code that resides in the boot ROM space will enable the SPI controller in

Memory-Mapped mode with quad-I/O data enabled. Additionally, 10 dummy cycles are configured, which

is required for the highest frequency of operation. The boot kernel, however, will not enable XiP mode,

which the user must change as needed. To configure XiP mode, refer to the associated example code[1].

Once executing user code, the SPI clock frequency must be programmed to make it the same as the System

Clock (SCLK) frequency (via the SPI_CLK register). Since the boot ROM space operates in Active mode, it

is the user’s responsibility to program the Clock Generation Unit (CGU) for Full-On mode. With these two

procedures in place, the access speed from flash memory can be as high as 100 MHz, provided SCLK is also

programmed to the same frequency.

Flash Device

For special modes such as Wrap, the flash device must be programmed manually by the user setting bit 4

of Status Register 3 in the volatile mode. By default, flash memories operate in sequential address format,

so the internal flash device has to be programmed for 8-, 16-, or 32-byte Wrap modes using bits 5 and 6 of

Status Register 3 in the volatile mode. Users must ensure that the SPI and cache controllers are also

configured with the same settings. Additionally, the wrap boundary alignment must be the same as the cache

line size and can be programmed for 8-, 16-, or 32-byte. Refer to the hardware reference manual[3] for more

details regarding the flash device.

Disabling

Cache Controller

Typically, there is no need to disable the cache controller, as that will result in performance degradation.

SPI Memory-Mapped Mode

SPI Memory-Mapped mode needs to be disabled if a write operation is to be performed (such as for flash

programming). This can only be done using the SPI controller memory-mapped registers.

Terminating XIP Mode

In certain cases, it may be desired to terminate XiP mode. For instance, all flash programming has to occur

through non-memory-mapped mode only (via MMRs). If the flash device has been configured for XiP

mode, programming of the flash in non-memory-mapped mode will cause a bus conflict, as the flash device

will not expect any commands from the processor. Thus, terminating XiP mode is required, which is

achieved by executing the Continuous Mode Reset command (0xFF).

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 18 of 24

Performance Analysis

Analyzing Code Performance Using Cache

The overall performance of the application is a factor of the speed/efficiency of SPI-based reads, as well as

the cache miss-to-hit ratio. The modes of operation described above will help achieve the right performance

required for the application. The choice may involve weighing algorithm performance between cache-based

accesses and internal SRAM accesses (typically used for executing critical code).

Cache counters may be employed to understand cache utilization in detail. This is an effective tool when

there are large numbers of misses and hits (the reused functions always compete within the 16 KB space).

As a basic scenario, the I-Code Reference Counter (M4P_CACHE_IREF), I-Code Miss Counter

(M4P_CACHE_IMISS) and I-Code Fill Counter (M4P_CACHE_IFILL) will first be explored.

The M4P_CACHE_IFILL fill counter always shows the number of cache line fills read from SPI flash memory.

The M4P_CACHE_IREF reference counter shows the number of word accesses requested from the core. The

M4P_CACHE_IMISS miss counter reflects the misses that occurred during the above requests, and the number

of hits can be extrapolated (M4P_CACHE_IREF value – M4P_CACHE_IMISS value). Note that the Cortex-M4

core can request more words through its pre-fetch unit, so there would be a few additional requests reported

by the counters when branches are not taken, which is not significant when looking at the overall

performance.

Figure 16 is a screenshot taken while running the CMSIS FFT on the ADSP-CM40x mixed-signal control

processor in a cache-testing-based environment, captured using the IAR Embedded Workbench for ARM

development tools[4]. A Cycle/Sys-Tick counter, as well as an output comparison, would add a sanity-check

for any tests performed, especially when dealing with an external device connected to the SPI0 or SMC

interfaces.

In this example, counters are reset before every subsequent run. Reference counter values are closely related

to the actual core cycle count (depending on code layout). It is also evident that Miss/Fill counters show

zeroes for all subsequent runs after the first cache miss case because the entire program could fit inside

cache with no further cache misses. In a larger application, there may be a mix of misses and hits, depending

on cache line replacement.

Figure 16. Analyzing Cache Miss and Hit Measurements

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 19 of 24

Throughput Benchmarks

Throughput Comparison Across Various Memory Blocks

Table describes the sustained performance of various memory pathways in the system. It is important to

note that this measures the data transfer bandwidth of the SPI in a benchmark composed of 4000 bytes of

linear code (so that cache accesses are not intended to hit).

32-Bit

Instructions

Sequential Read

Accesses

Cache Usage

CCLK: 225 MHz

SCLK: 100 MHz

CCLK: 240 MHz

SCLK:96 MHz

CCLK: 240 MHz

SCLK: 80 MHz

CCLK: 200 MHz

SCLK: 100 MHz

Throughput

(MB/s)

Throughput

(MB/s)

Throughput

(MB/s)

Throughput

(MB/s)

Internal SRAM Unused 897.31 957.13 957.13 797.61

Internal SPI2

Flash

1st run (code not

cached)
48.96 47.02 39.19 48.95

Internal SPI2

Flash

2nd run (code

cached)
893.74 953.33 953.33 794.44

External Async

SRAM

1st run (code not

cached)
99.49 95.52 79.63 99.46

External Async

SRAM

2nd run (code

cached)
893.74 953.33 953.33 794.44

Table 3. Throughput Benchmarks of Various Memory Blocks



This table should not be taken as a benchmark for the performance of typical application code, as

the cache miss-to-hit ratio is important to include when estimating the overall application

performance. These measurements reflect how fast the interfaces can read data in from the memory

upon a cache miss. The cache pre-fetch unit was enabled while performing these throughput

measurements.

Comparison Among Modes

Typically, it’s desirable to always enable the XiP and pre-fetch features in internal flash memory space.

However, it is important to understand how these modes affect efficiency. The data summarized in Table 4

and depicted graphically in Figure 17 through Figure 19 was obtained from an experiment that exercised

the pre-fetch and XiP features during execution of a 4000-byte application comprised of 3996 bytes of

Cortex-M4 linear instructions and a return instruction mapped to the SPI2 flash memory. In all cases, the

SPI clock frequency is the same as the SCLK frequency, and the SPI, cache, and flash conditions used for

the analysis were as follows:

 Cache enabled with 32-byte cache lines

 SPI uses Quad-I/O Fast Read command

 SPI configured for one command line, four address lines, and four data lines

 SPI Merge mode enabled

 Cache speculative access enabled

 Optimal dummy cycles configured based on SPI clock (same as SCLK) frequency

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 20 of 24

For the four possible combinations of XiP on/off and pre-fetch on/off, the following settings were modified

between tests:

 XiP mode toggled on or off using the sequence in the associated code example

 Pre-fetch toggled on or off by setting the REG_M4P0_CACHE_CFG.PF bits to either b#000 (off – pre-fetch

disabled) or b#111 (on – always pre-fetch the next cache line)

Note that a similar performance analysis may be conducted on external devices.

Command = 0xEB

Mode = Fast Quad-I/O
CCLK/SCLK (MHz) XiP On (MB/s) XiP Off (MB/s)

Pre-fetch Off

225/100 35.03 32.18

240/96 34.77 31.87

240/80 29.66 27.13

200/100 34.64 31.86

Pre-fetch On

225/100 48.96 48.91

240/96 47.02 46.97

240/80 39.19 39.16

200/100 48.95 48.90

Table 4. SPI Flash Throughput Summary for Quad-I/O Fast Read Mode

Figure 17. Quad-I/O Performance Vs. Clock Frequencies and Dummy Cycles

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 21 of 24

Figure 18 shows a zoomed version of the quad-I/O, pre-fetch off case with respect to XiP on and off

measurements.

Figure 18. Quad-I/O Performance Difference with Pre-fetch Off (XiP On Vs. XiP Off)

For the quad-I/O with pre-fetch on case, the performance gain between XiP on vs. XiP off is very narrow

(Figure 19). With Pre-fetch and Merge enabled, continuous merging of data occurs. The read command,

address, and dummy bytes are skipped, and the read data is always merged. Hence, the difference between

XiP on and XiP off is only a read command of eight SPI clock cycles. Even with Pre-fetch and Merge

enabled causing continuous merging of data, the hardware introduces a delay of 1 SPI clock cycle between

two cache lines.

Figure 19. Quad-I/O Performance Difference with Pre-fetch On (XiP On Vs. XiP Off)

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 22 of 24

Appendix A: SPI Flash Accesses Oscilloscope Plots

XiP Mode Off (CMDSKIP in SPI Controller Off)

In Figure 20, 32-bit cache lines are read by the core. In this case, a command is sent to flash for every access,

thus adding additional overhead in throughput.

Figure 20. Scope Plot for XiP Mode Off

XiP Mode On (CMDSKIP in SPI Controller On)

In the same 32-bit cache line scenario, both the SPI controller and the flash device are now pre-configured

for Command Skip mode, such that only the address needs to be sent for every access, as shown in Figure

21.

Figure 21. Scope Plot for XiP Mode On

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 23 of 24

Line Base Access (Wrap Disable)

Let’s now assume that a cache line is 64 bits (i.e., each transfer consists of two 32-bit words) and the core

requested the second word. In Line Base Access mode, the entire cache line is first read out, with the

requested data provided only when it is made available (in this case, only after the first 32-bit data), as

shown by the FLAG1 GPIO signal in Figure 22. FLAG1 is toggled after the access request is made by the core.

In this example, cache line data read from the flash is {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07}.

Figure 22. Scope Screenshot for Line Base Access

Critical Word First Access (Wrap Enable)

Working from the previous example, if Wrap mode is now enabled, the SPI controller will fetch the critical

word first (in this case, it is the second 32-bit word in the 64-bit cache line). As shown in Figure 23, the

FLAG1 pin toggles right after the critical 32-bit data is presented to the core. Also, after the second 32-bit

word is received, the access is wrapped around to receive the first 32-bit word.

Figure 23. Scope Screenshot for Critical First Access

ADSP-CM40x Serial Flash Execute-in-Place Technology (EE-363) Page 24 of 24

References

[1] Associated ZIP File for EE-363: ADSP-CM40x Serial Flash Throughput Benchmarks. Rev 2, December 2015. Analog

Devices, Inc.

[2] ADSP-CM40x ARM Cortex-M4 Mixed-Signal Control Processor Data Sheet. Rev A, October 2015. Analog Devices, Inc.

[3] ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference. Rev 1.0, November 2015.

Analog Devices, Inc.

[4] ADSP-CM40x ARM Cortex-M4 Mixed-Signal Control Processor Anomaly Sheet. Rev H, December 2015. Analog

Devices, Inc.

[5] ADSP-CM40x Enablement Software Package. Rev 2.1.0. Analog Devices, Inc.

[6] IAR Embedded Workbench for ARM (http://www.iar.com/). 6.60. IAR Systems AB.

[7] IAR C/C++ Compiler, Compiling and Linking Manual (http://www.iar.com/). 9th Edition May 2012.

IAR Systems AB.

Document History

Revision Description

Rev 2 – December 7, 2015

 by Prasanth Rajagopal, Prashant Gawade, and

Kritika Shahu

Updated the document and example code for Silicon revision H

with added security and pre-fetch features.

Rev 1 – September 20, 2013

by Prasanth Rajagopal and Prashant Gawade

Initial release.

http://www.iar.com/
http://www.iar.com/

	Introduction
	ADSP-CM40x Memory Map
	Recommended Memory Management Strategy

	Direct Code Execution from Serial Flash Devices
	Flash Data Flow Architecture
	Memory X and Memory Y Blocks

	SPI Memory-Mapped Mode
	Memory-Mapped Mode Operation
	Programmable Features of SPI Memory-Mapped Mode
	Protocol Example Cases
	Example Case 1
	Example Case 2
	Example Case 3
	Example Case 4
	Example Case 5
	Example Case 6

	SPI Memory-Mapped Configuration

	Internal Flash Memory
	Device Description
	Memory Organization
	Operating Protocols and Commands
	XiP Mode
	Activate or Terminate XiP

	Setting XiP Mode
	Dummy Cycles

	Interfacing External Flash Memory Devices
	Performance Enhancement Features in the SPI and Cache Controllers
	Features
	Merge
	Speculative Operations
	Pre-emptive
	Wrap
	Command Skip
	Pre-fetch

	Choosing the Correct Mode of Operation
	Line-Wrap vs. Line-Base-First Modes
	Merge vs. Non-Merge Modes
	Pre-emptive Mode
	Cache Line Size
	Pre-fetch Mode

	Enabling and Disabling of Modules
	Enabling
	Cache Controller
	SPI Controller
	Flash Device

	Disabling
	Cache Controller
	SPI Memory-Mapped Mode
	Terminating XIP Mode

	Performance Analysis
	Analyzing Code Performance Using Cache

	Throughput Benchmarks
	Throughput Comparison Across Various Memory Blocks
	Comparison Among Modes

	Appendix A: SPI Flash Accesses Oscilloscope Plots
	XiP Mode Off (CMDSKIP in SPI Controller Off)
	XiP Mode On (CMDSKIP in SPI Controller On)
	Line Base Access (Wrap Disable)
	Critical Word First Access (Wrap Enable)

	References
	Document History

