

AN-1267
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Motor Control Feedback Sample Timing Using the

ADSP-CM408F ADC Controller
By Dara O’Sullivan, Jens Sorensen, and Aengus Murray

Rev. A | Page 1 of 18

INTRODUCTION
This application note introduces the main features of the
ADSP-CM408F analog-to-digital converter controller (ADCC)
blocks with a focus on relevance and usefulness in current
feedback systems of high performance motor control
applications.

The purpose of this application note is to highlight the key
capabilities of the analog-to-digital converter (ADC) module
and to provide guidance on its configuration for motor control
applications. Code samples illustrating the use of the ADCC
drivers from Analog Devices, Inc., are provided.

Further details on the full range of features, configuration registers,
and application program interfaces (APIs) for this ADCC can be
found in the ADSP-CM40x Mixed-Signal Control Processor with
ARM Cortex-M4 Hardware Reference Manual available on the
ADSP-CM402F/ADSP-CM403F/ADSP-CM407F/ADSP-CM408F
product pages, and on the ADSP-CM40x Mixed-Signal Control
Processor with ARM Cortex-M4 and 16-bit ADCs Development
Products product page.

While this application note is focused on current feedback, similar
principles of configuration and application are applicable to the
feedback and measurement of other signals.

Likewise, the focus of the application note is specifically on the
ADSP-CM408F; however, the principles are generally applicable
to the other parts within the ADSP-CM402F/ADSP-CM403F/
ADSP-CM407F/ADSP-CM408F family.

http://www.analog.com/
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/adsp-cm40x_mixed_signal_control_processor_hardware_reference?doc=AN-1267.pdf
http://www.analog.com/adsp-cm40x_mixed_signal_control_processor_hardware_reference?doc=AN-1267.pdf
http://www.analog.com/adsp-cm402f?doc=an-1267.pdf
http://www.analog.com/adsp-cm403f?doc=an-1267.pdf
http://www.analog.com/adsp-cm407f?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/cm40x-ez?doc=an-1267.pdf
http://www.analog.com/cm40x-ez?doc=an-1267.pdf
http://www.analog.com/cm40x-ez?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/adsp-cm402f?doc=an-1267.pdf
http://www.analog.com/adsp-cm403f?doc=an-1267.pdf
http://www.analog.com/adsp-cm407f?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/

AN-1267 Application Note

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
Current Feedback System Overview .. 3
ADC Module Overview ... 4
Current Feedback Scaling .. 5
ADC Timing Considerations .. 6

ADCC Event Timing.. 6
ADC Operational Timing ... 7
ADC Pipelining .. 9

ADC Data Access ... 10
ADCC Data Fault Detection ... 10

ADCC Module, Trigger Routing, and Memory Setup 11
Configuration of ADCC Events ... 11
Interrupts and Trigger Routing .. 12
Data Access and Memory Allocation 12

ADCC Software Support ... 13
Example Code ... 13
Example Experimental Results ... 18

REVISION HISTORY
9/14—Rev. 0 to Rev. A
Changes to Introduction Section .. 1
Changes to Figure 2 .. 3
Changes to Figure 3 .. 4
Changes to Current Feedback Scaling Section 5
Changes to ADC Operational Timing Section 7
Added Adjustment of Sampling Instant Section and Figure 11;
Renumbered Sequentially .. 8
Added Trigger Routing for Enhanced Precision Sample
Timing Section .. 12
Changes to Example Code Section .. 13

9/13—Revision 0: Initial Version

Rev. A | Page 2 of 18

Application Note AN-1267

Rev. A | Page 3 of 18

CURRENT FEEDBACK SYSTEM OVERVIEW
An example of current feedback in a motor control application
is illustrated in Figure 1. This arrangement is typical of high
performance motor drives in which motor phase winding
currents are sampled rather than inverter low-side phase legs.
At medium to high current levels, current transducers or
transformers, CT0 and CT1, must be used in the current
measurement path because resistive current shunts become
too bulky and inefficient.

In the Figure 1 setup, the processor is located on the safe, low
voltage side of the isolation barrier, with signal isolation typically
being inherent to CT0 and CT1, and with digital isolation also
existing between the pulse width modulation (PWM) outputs
of the microprocessor and the gate drivers.

Generally, some signal conditioning is required between the
outputs of the current transducers and the inputs to the ADC
for range matching and high frequency noise filtering. The
conditioned current measurement signals are then applied to
the ADC inputs for sampling and conversion. Applying one
winding current measurement to each of the ADC inputs
enables simultaneous sampling of the current measurements
for greater control loop accuracy, and consequent performance
enhancement. Furthermore, synchronization of the sampling
instant with the PWM sync pulse is also configurable directly
in hardware.

U

AC
MOTOR

VCT1

CT0

ISOLATION BARRIER

WIS
O

L
A

T
IN

G

G
A

T
E

 D
R

IV
E

R
S

PWM

CPU

SRAM ADCC

SYNC

IRQ

DMA ADSP-CM408F

M
U

X
1

M
U

X
2

OTHER
MEASUREMENTS

OTHER
MEASUREMENTS

ADC0

ADC1

11
83

5-
00

1

Figure 1. Current Feedback to ADSP-CM408F ADC in Motor Control

These features enable precise timing of the point in the PWM
cycle at which the phase currents are measured. Aligning this
measurement instant with the midpoint of the zero vector or the
midpoint of the PWM cycle ensures that the level at which the
current is being sampled is effectively equal to the instantaneous
average current, with switching ripple being ignored.

In Figure 2, simultaneous U-phase and V-phase sampling is
shown occurring at both the zero vector midpoint and the
PWM cycle midpoint.

VW

IW

iV, iW

PWM
CYCLES 0 1 2 3

PWM

MOTOR
CURRENT

SAMPLING

SAMPLED
CURRENT

DATA
(V, W)

SAMPLING
SIGNAL

V

W

11
83

5-
00

2

Figure 2. Illustration of Average Current Sampling

When conversion of the data is complete, it can be transferred
via direct memory access (DMA) to the controller static random
access memory (SRAM), and an interrupt is generated upon
completion of the transfer. Direct ADC status and data reads
are also possible in core mode through memory mapped
registers, but this method involves more processor overhead.

Typically, other analog signals, such as dc bus voltage, isolated
gate bipolar transistor (IGBT) temperature, and motor position
sine and cosine outputs, are also sampled. Though this application
note focuses on current feedback, much of the information is
also relevant to other measurement parameters within the system.

http://www.analog.com/adsp-cm408f?doc=an-1267.pdf

AN-1267 Application Note

ADC MODULE OVERVIEW
The ADC has a dual, 16-bit, high speed, low power, successive
approximation register (SAR) design with up to 14 bits of
accuracy.

The input multiplexers enable up to a combined 26 analog input
sources for the two independently controlled ADCs (12 analog
inputs plus one DAC loopback input per ADC), with two channels
simultaneously sampled at any given time. ADC conversion
times are as fast as 380 ns. The voltage input range requirement
for the single-ended analog inputs is from 0 V to 2.5 V.

An on-chip buffer between the multiplexer and ADC reduces
the need for additional signal conditioning external to the
ADSP-CM408F. Additionally, each ADC has an on-chip 2.5 V

reference that can be overdriven when an external voltage
reference is preferred (and by selecting this option using the
ADCC_CFG register).

A graphical overview of the overall analog subsystem within the
ADSP-CM408F is shown in Figure 3. The ADSP-CM408F is a
multiple die system-in-package (SiP), and the ADC silicon is
manufactured on a different process than the processor silicon,
as shown in Figure 3.

The ADCC is responsible for synchronizing timing within the
ADC with the processor and for managing DMA transfers of
sampled data to SRAM.

ADC0

ADC SILICON PROCESSOR SILICON
LO

C
A

L
A

D
C

 C
O

N
TR

O
L

BAND GAP

DMA
SRAM

CPU

MMRs

ADCC
DAC0

ADC1

LO
C

A
L

D
A

C
 C

O
N

TR
O

L

DAC1

MMRs

DACCCTL

DATA

CTL

DATA

M
U

X0

BUF

BUF

VIN0
VIN1

VIN07

M
U

X1

BUF

BUF

VIN0
VIN1

VIN07

11
83

5-
00

3

NOT
PINNED OUT

NOT
PINNED OUT

Figure 3. ADSP-CM408F Analog Subsystem

Rev. A | Page 4 of 18

http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/adsp-cm408f?doc=an-1267.pdf

Application Note AN-1267

CURRENT FEEDBACK SCALING
To correctly use the ADC capability over the maximum range, it
is important to scale the feedback signals in the correct manner.
The signal progress through the feedback path is illustrated in
Figure 5. The bipolar phase winding current, IW, is converted to
a unipolar voltage presented at the input of the ADC by the
combined functionality of the current transducer (or transformer)
and the signal conditioning circuitry.

The transfer function of the current transducer is represented
by the equation

VIW = KCTIW + V0CT

where:
VIW is the output voltage.
KCT is the linear gain coefficient of the transducer.
V0CT is the zero current offset voltage of the transducer.

KCT tends to be nonlinear at some current levels in various
transducer types and, for increased accuracy, should be
expressed as a function of IW, that is, KCT(IW). The ADC input
voltage is then expressed as

VIW_ADC = KSIGVIW = KSIG[KCT(IW)IW + V0CT]

where KSIG is the low frequency gain of the signal conditioning
circuitry.

This unipolar voltage is converted to a 16-bit unsigned integer,
which is DMA transferred to the processor memory, after
which an interrupt alerts the control program that a new data
sample is available. The idealized transfer function of the ADC
is given by

ADCIWADCIWADCIW VVKN _

16

_ 5.2
2

==

where:
NIW is the ADC digital output word.
KADC represents the linear gain of the ADC and is equal to the
ADC resolution divided by the input voltage range, as indicated.

Some offset is associated with the output of the ADC; within
the software, it is generally a good approach to include some
offset compensation, NADC_OFFSET, which subtracts from the ADC
output to take account of any offset within the ADC itself, plus
any residual offset from the transducer and signal conditioning.
This value can be dynamically updated during periods of zero
current, such as system startup or disabled drive output.

Finally, the digital representation of the current transducer zero
current offset voltage, NCT_OFFSET, is subtracted from the ADC

output to give the signed value IW, which is related to the actual
phase winding current as

IW = KADC(KSIG[KCT(IW)IW + V0CT]) – NADC_OFFSET – NCT_OFFSET

where:

CT0OFFSETCT VN
5.2

216

_ =

This signed 16-bit value can be converted to a floating point value
or used directly, depending on the controller implementation.
For optimum use of the full ADC range, the peak positive
controlled current in the system must correspond to an ADC
input voltage of 2.5 V, with peak negative controlled current
corresponding to an ADC input of 0 V.

An example of this is shown in Figure 4, which depicts a typical
current waveform and the various zero, peak, and nominal levels
associated with it. The current levels of Figure 4 are converted
to scaled quantities (see Table 1) that propagate through the
signal measurement system, which is shown in Figure 5.

LPK+

LNOM+

L0

IW

LNOM–

LPK– 11
83

5-
00

5

Figure 4. Current Feedback Signal Amplitudes

Table 1. Current Feedback Signal Amplitudes
Level IW (A) VIW (V) VIW_ADC (V) NIW

LPK+ 6.8 4.625 2.313 0xECD9
LNOM+ 4 3.75 1.875 0xC000
L0 0 2.5 1.25 0x8000
LNOM− −4 +1.25 +0.625 0x4000
LPK− −6.8 +0.375 +0.188 0x1340

This example is based on a CAS 6-NP Hall effect current
transducer from LEM®, with three primary turns giving a 0 V to
5 V output, followed by signal conditioning circuitry with a gain
of 0.5.

KSIG KADC
VIW_ADC

NADC_OFFSET

S/W
CURRENT

TRANSDUCER
SIGNAL

CONDITIONING ADC

NIW IW

VIW

V0CTKCT
BIPOLAR

CURRENT

IW

0V TO 2.5V
UNIPOLAR
VOLTAGE

16-BIT
UNSIGNED
INTEGER

16-BIT
SIGNED

INTEGER

+
+

–
+

NCT_OFFSET

–
+

11
83

5-
00

4

Figure 5. Scaling Relationships in Current Feedback Path

Rev. A | Page 5 of 18

AN-1267 Application Note

ADC TIMING CONSIDERATIONS
Synchronization of the sampling events with the PWM cycle
is important for accurate current feedback. The conceptual
sequencing of ADCC operation with respect to the PWM cycle
is illustrated in Figure 6. The following sequence of events is
triggered by the PWM synchronization pulse:

1. The PWM sync pulse triggers the timer to start.
2. The ADCC continuously compares the sample time from

the event information with the timer time.
3. A timer match occurs and the ADCC schedules ADC

operation.
4. When the ADC is available, the appropriate channel is

selected by the ADCC using the event information.
5. The ADCC triggers an ADC conversion sequence, and the

ADC samples and converts the data.
6. Data is streamed back to the ADCC.
7. Data is transferred by the ADCC to a memory location via

DMA (LSB first).
8. An interrupt (IRQ) is generated and alerts the CPU that a

data sample is available.

PWM

CPU

TRANSFER
DATA

TRANSFER
COMPLETE

GET DATA

START
SAMPLING

SRAM
ADCC

SYNC
tSAMPLE

TIME = tSAMPLE

SELECT
ADC CHANNEL

TIMER

IRQ

DMA

ADSP-CM40x

M
U

X

ADC

EVENT
INFORMATION

3

5

6

2

8

7

4

1

11
83

5-
00

6

Figure 6. ADCC Operation Sequence

ADCC EVENT TIMING
The controller manages the configuration and timing of up to
24 sampling events. The timing of these events is constrained by
a trigger, which starts one of two timers (TMR0 or TMR1), and
an event time after the timer starts.

As illustrated in Figure 7, the trigger source can be selected from
a range of peripheral or processor events, such as PWM sync
pulses, timers, or I/O pin interrupts. Each event is associated
with an event number depicted as Event x, an event time, TIMEx,
control information shown as CTLx, and its resultant data. The
event control information, depicted as CTLx in Figure 7, contains
information for each sample event, such as the ADC interface
and channel numbers, the ADC timer used, simultaneous
sampling selection, and memory offset for the ADC data
associated with the event. This information is used by the
ADCC to multiplex the correct ADC channel, CHx, initiate
ADC conversion (CVST0/CVST1 signals), and transfer the
correct data to the appropriate event data register.

A DMA transfer can then be set up to move the ADC data for each
event into the SRAM. Upon completion of all of the events and
subsequent DMA transfer, an interrupt is generated to inform
the main application code that new ADC data is available.

M
U

X0

D
M

A

TMR0 ADC0CVST0
CHx

ADAT0

ADC
DATA

ADC
CTLEVT

COMPARETRIGGER
SELECTION

TMR1

Trigy

TMRy

TIMEx

t

CTLx

M
U

X1ADC1CVST1
CHx

ADAT1ADC CTL

SRAM

TRU

TMRy
CTLx

ACTL ADCx SIM OFS

TIME

TIMEx DATA (x)TM0-MX2-A0-S-O

DATAADC_CTL

SE
L

SE
L

PWM0...2
TIMER0...7

COUNT0...3
PININT0...7

SW0...5

DATA OFFSET
SIM SAMPLE Y/N
ADC0/ADC1
MUX CHx
TMR0/TMR1

EVENT 0
...

EVENT x
...

EVENT 23

11
83

5-
00

7

Figure 7. ADCC Module Functional Diagram

Rev. A | Page 6 of 18

Application Note AN-1267

Rev. A | Page 7 of 18

For example, Figure 8 depicts three sampling events associated
with ADC Timer 0. The PWM sync pulse is the trigger for the
timer, and event times are associated with each event. Event 0
and Event 1 are simultaneous sampling events with the event
time in the event time registers set to zero. Event 2 occurs at a
later time, again, as determined by the time in the Event 2 time
register, expressed in multiples of the ADC clock period (tACLK).
If Event 2 is the final event associated with Timer 0, the timer
stops running after the event is handled to save power.

Timer 0

PWM
SYNC

Event 0, Event 1 Event 2

t = ADCC_EVT00 × tACLK t = ADCC_EVT02 × tACLK 11
83

5-
00

8

Figure 8. Event Timing

ADC OPERATIONAL TIMING
After a sampling event has been triggered by the ADCC controller,
there is a conversion time latency associated with the ADC
operation itself. This is shown in Figure 9 for a situation in which
a single ADC event is associated with each ADC interface, and
simultaneous sampling of the two events is enabled.

Three discrete conversion cycles are associated with the ADC
operation:

1. Writing the 8-bit control word that selects the ADC
channel to be read (ADCC_EVTCTL.CTLWD).

2. Asserting the conversion pulse that enables ADC sampling
and conversion.

3. Streaming the 16-bit ADC data back to the ADCC.

The ADCC provides the chip select and gated clock signals for
these three event phases. The ADCC interface to the ADC is a
serial interface with a dual bit option. Therefore, the minimum
number of clock cycles provided during each CS pulse (ADCC
timing control register field NCK) is 8. Other important settings
are the ADC clock frequency, the minimum delay (in ACLK
cycles) between the conversion cycle chip selects (tCSCS), and the
minimum delays between CS edges and ACLK edges (tCSCK and
tCKCS). Consequently, the ADC conversion cycle time, tCONV_ADC,
for a single pair of simultaneously sampled signals is given by

 CSCSCKCSCSCK
ACLK

ADCCONV ttNCKt
f

t 
3

_

where fACLK is the frequency of the ADCC clock.

The ADCC clock is internally generated from the processor
system clock (fSYSCLK) by means of the divisor ACKDIV (in the
timing control register, ADCC_TCA) and is calculated as

1


ACKDIV
f

f SYSCLK
ACLK

The system clock is, in turn, derived from the processor core
clock (fCORECLK). Optimum system performance is achieved
when fCORECLK is an integer multiple of fSYSCLK. Upon completion
of the ADC conversion, additional latency is associated with the
DMA transfer of the ADC data to data memory, and finally, the
servicing of the interrupt request that makes the data frame
available to the main application program. Thus, the total time
from trigger (for example, PWM sync pulse) to data availability
in the application is equal to

tCONV_TOTAL = tCONV_ADC + tDMA + tIRQ

where:
tDMA is the average time for DMA transfer.
tIRQ is the average time for interrupt request servicing.

EVT0 ~ ADCC0
EVT1 ~ ADCC1

ADC0 + ADC1 CS

ADC0

ADC1

DMA IRQ LATENCY

ADC0 MUX0 ADC0 DATA0ADC0 S/H
AND CONV0

ADC1 DATA1

TOTAL CONVERSION TIME

tCSCK

NCK tCSCS

ACLK

SAMPLING INSTANT

ADC1 MUX1
ADC0 S/H

AND CONV1

11
83

5-
00

9

tCKCS FRAME PROCESSED
IRQ

Figure 9. Conversion Timing of a Simultaneous Sampling Single Event

AN-1267 Application Note

Rev. A | Page 8 of 18

Typical timing settings are listed in Table 2. Some of the constraints
on the times are also given. An absolute constraint for achieving
correct performance of the ADC is that at least 380 ns must be
allowed for the ADC sampling and conversion cycle (tCONV_ADC/3).
The resulting timings for a single simultaneous sampling event
are outlined in Figure 10 relative to the sampling of the motor
winding current (note that this figure is exaggerated for purposes
of illustration).

∆ iSAMP

PWM SYNC

ADC S/H

ADC CONVERSION
COMPLETE

ADC DATA AVAILABLE

450ns

1350ns

1600ns

11
83

5-
01

0

Figure 10. Sample Delay Times

With these settings, there is an offset of 450 ns between the
desired sampling point on the current waveform and the actual
point sampled. This is equal to one chip select pulse width
(200 ns + 25 ns + 0 ns) plus one pulse width between chip
selects (225 ns). This results in a difference of ΔiSAMP between
the average motor winding current and the actual sampled

current, which may need to be accounted for in sample timing
scheduling, although in the context of a typical current control
loop bandwidth of 1 kHz, this represents <0.2° of phase shift.
Moreover, for a typical PWM frequency of 10 kHz, ADC data is
available to the application program within <2% of the available
PWM cycle time from occurrence of the PWM sync pulse for
the settings in Table 2. An additional latency of 4 to 5 SYSCLK
cycles occurs between an event becoming active and the
beginning of ADC operation if the ADC is in an idle state on
occurrence of the event.

Adjustment of Sampling Instant

It may be important to further enhance the precision of the
motor current sampling instant and to remove the 450 ns offset
between desired and actual sampling instant. Use cases such as
low inductance servo motors, or situations where higher switching
frequencies are being utilized would especially benefit from this
enhanced precision. One option to cancel this small time offset
is to use a general purpose (GP) timer to create a trigger at a point
in time one ADCC chip select pulse width before the PWM
sync pulse. This can be achieved by triggering the GP timer
from the previous PWM sync pulse, as illustrated in Figure 11.

With this approach, care must be taken when scheduling any
sampling events towards the end of the PWM cycle. All sampling
events must be completed one chip select pulse width before the
beginning of the next cycle (EVT0 marker in Figure 11).

PWM SYNC

TMRn_CNT

TMRn TRIGGER
OUT

ADCC_TMR0

ADC0

ADC1

S/H

ALL EVTS
FIRED

EVT0

tSW

tSW – 1 CS 1 CS

MUX0 CONV0 DATA0 MUX0 CONV0 DATA0

MUX1 CONV1 DATA1 MUX1

MUX0

MUX1CONV1 DATA1 11
83

5-
11

1

Figure 11. Implementation of Sampling Instant Adjustment

Table 2. Timing Settings for a Typical ADC Setup
Parameter Value Comment Set By
fCORECLK 240 MHz Maximum allowed PLL configuration
fSYSCLK 80 MHz Maximum is 100 MHz fSYSCLK = fCORECLK/3
fACLK 40 MHz Maximum specified is 50 MHz ADCC_TCA0.CKDIV = 1
CS Time (tCSCS) 200 ns Must allow sufficient ACLK cycles for transfer of CTL word and data ADCC_TCA0.NCK = 8
CS Edge to ACLK Edge (tCSCK) 25 ns Minimum time at 40 MHz, recommended ADCC_TCB0.TCSCK = 1
ACLK Edge to CS Edge (tCKCS) 0 ns Recommended ADCC_TCB0.TCKCS = 0
Time Between CS (tCSCS) 225 ns Must be >150 ns for accurate sampling ADCC_TCB0.TCSCS = 9
tCONV_ADC 450 ns
tDMA 50 ns On average takes 4 SYSCLK cycles
tIRQ 200 ns On average takes 16 SYSCLK cycles

Application Note AN-1267

ADC PIPELINING
In the case where new events begin to overlap existing events
that are being handled by the ADC, the ADCC stores the new
events as pending events in an eight deep, first in, first out
(FIFO) buffer, one of which is available for each ADC interface.
When the control word is written for an active event, the ADCC
immediately initiates writing of the control word for the first
pending event, while the active event sampling phase occurs.
Likewise, a second pending event has its control word phase
initiated upon completion of the control word phase for the first
pending event. In this manner, the ADCC can interleave three
parallel events together on each ADC interface in a pipelined
manner. Thus, events can be spaced together in a compact and
efficient manner.

Configuration of the event timing to achieve this pipelining of
events results in the highest ADC throughput. This pipelining
is illustrated in Figure 13 in which three pairs of simultaneous
sampled events are triggered very close to each other. The
ADCC begins to process Event 0 and Event 1, while storing
Event 2 through Event 5 in the FIFOs. Subsequently, these
events are handled as ADC resources become available.

Figure 7 shows that during one of the CS assertions, the ADCC
handles all six events at varying stages of each event, and that
the time spacing between consecutive samples is only equal to
18 ACLK cycles. This time spacing corresponds to 450 ns for
the settings in Table 2 and can be reduced further by increasing
the ACLK frequency. To maximize the bandwidth of the ADC
within the motor control application, the best approach is to

deliberately pipeline all of the PWM cycle related sampling
events. This approach ensures that new ADC samples are
available at the earliest opportunity within the PWM cycle.
Implementation of the pipelining shown in Figure 13 requires
that all of the event times are close to zero, that is, immediately
after the PWM sync pulse.

It is recommended to allow a minimum of 1 ACLK cycle
between the event times stored in the event time registers,
ADCC_EVTnn (nn is the number of registers from 0 to 24),
to allow for correct scheduling. With pipelining operational,
the total conversion time including start-up latency, DMA
transfer, and interrupt servicing is shown in Figure 12 for
different simultaneously sampled pair numbers with the timing
settings shown in Table 2.

0

1

2

3

4

6

5

1 2 3 4 5 6 7 8

TO
TA

L
C

O
N

VE
R

SI
O

N
 T

IM
E

(µ
s)

SAMPLE PAIRS 11
83

5-
01

2

Figure 12. Total Conversion Time for Different Sample Pair Numbers

ADC0 + ADC1 CS

ADC0

ADC1

FRAME PROCESSED
IRQ

DMA IRQ LATENCY

TOTAL CONVERSION TIME

EV
T0

~A
D

C
C

0;
 E

VT
1~

A
D

C
C

1
EV

T2
~A

D
C

C
0;

 E
VT

3~
A

D
C

C
1

EV
T4

~A
D

C
C

0;
 E

VT
5~

A
D

C
C

1

ADC0 MUX0 ADC0 DATA0ADC0 S/H
AND CONV0

ADC0 MUX2 ADC0 DATA2ADC0 S/H
AND CONV2

ADC0 MUX4 ADC0 DATA4ADC0 S/H
AND CONV4

ADC1 MUX1 ADC1 DATA1ADC1 S/H
AND CONV1

ADC1 MUX3 ADC1 DATA3ADC1 S/H
AND CONV3

ADC1 MUX5 ADC1 DATA5ADC1 S/H
AND CONV5

11
83

5-
0 1

1

Figure 13. Pipelining of Events Within the ADC

Rev. A | Page 9 of 18

AN-1267 Application Note

Rev. A | Page 10 of 18

ADC DATA ACCESS
The examples shown thus far have all assumed that the ADC data
is accessed in the memory via an automatic DMA transfer. Data
access directly from core reads of the ADCC memory mapped
registers (MMRs) is also possible, as shown in Figure 14. Note
that ACK in Figure 14 represents an acknowledge signal, not
the analog clock.

ADCC_EISTAT

ADCC_FISTAT

ACK

ACK CPU SRAM

Core READ

ADCC
MMRs

Event 0

TRIG

TIMER 0/TIMER 1
FRAME

TIME
Event 1

Event 2

Event 3 OPTIONAL

EVENT IRQs

FRAME IRQs

EVENT00

EVENT01

EVENT02

EVENT03

11
83

5-
01

3

Figure 14. ADC Data Access in Core Mode

In core mode, the CPU is signaled regarding the readiness of
new data via either event or frame interrupts, which can be
individually masked or unmasked, as desired. The additional
flexibility in this mode is that individual events can be read as
soon as they are completed, before the entire frame of events
has completed. The disadvantage of core mode is that the overall
latency involved in the interrupt servicing and MMR read accesses
is higher than in DMA mode. With optimal core and clock ratio
settings, each MMR read takes 10 to 12 SYSCLK cycles on top
of the latency associated with each interrupt service.

Data access in DMA mode is shown in Figure 15. In this case,
DMA transfers only take place after the completion of a timer
frame, and the frame interrupt signals the CPU only after the
DMA transfer has been completed.

ADCC_FISTAT

FRAME IRQ

FRAME IRQ

ACK

ACK

TIME0 FRAME

TIME1 FRAME

DMA UNIT 1

DMA UNIT 0

ADCC_FISTAT

CPUSRAM

11
83

5-
01

4

Figure 15. ADC Data Access in DMA Mode

In both cases, the EISTAT and FISTAT registers provide status
indications of the event and frame interrupts, where these are
active, and these must be acknowledged by the CPU by clearing
the relevant bits before the next trigger occurrence, or a trigger
overrun condition is flagged.

ADCC DATA FAULT DETECTION
The ADCC has a number of error status register bits that are
set on occurrence of data faults that can occur due to incorrect
setup of the ADCC event timings, and/or nondeterministic
event sequences. These faults can overload the ADCC or result
in invalid ADC data and comprise the following:

 Trigger overrun. Next trigger occurs before current frame
has completed.

 DMA bandwidth. Frame completion is taking longer than
user defined time.

 Memory error. Unsuccessful ADC data write.
 Event collision. A new event occurs while processing an

existing event.
 Event miss. An event is not processed.

All of these errors are configurable as interrupt sources to the
core, if desired, and all of them set bits in the ADCC_ERRSTAT
register. In a motor control context, and particularly for current
feedback measurements, errors related to event miss, memory,
and trigger overruns are important to monitor in the core
application because incorrect or missing current loop data can
result in control loop instability. Event collision is a normal
occurrence in pipelined operation and is not generally critical
unless the FIFO becomes full.

Application Note AN-1267

Rev. A | Page 11 of 18

ADCC MODULE, TRIGGER ROUTING, AND MEMORY SETUP
There are a number of steps in setting up the ADCC module
along with the trigger routing unit and data buffers before the
ADC is ready for use. Once configured, assuming DMA data
access mode is used, the DMA engine automatically streams
primary ADC data to memory where it can be accessed from
within the main application. The ADCC generates an interrupt
when data is ready so that the processor can execute the control
algorithm and update the PWM modulator registers.

Figure 17 outlines the interconnections required between the
ADCC, CPU, SRAM, PWM, and external signals to capture
motor current feedback and other analog monitoring signals in
a typical motor control application. In this example, encoder sine
and cosine signals, heat sink temperature, and dc bus voltage
are provided as examples of additional monitoring inputs.

The three steps for setting up the ADCC to correctly handle the
signal feedback are as follows:

1. ADCC event configuration.
2. Interrupt and trigger routing.
3. Data access and memory allocation.

The following subsections describe the procedure and the relevant
register configurations required for correct setup of the system.

CONFIGURATION OF ADCC EVENTS
Configuration of the ADCC events for the example shown in
Figure 17 involves assignment of each event with a timer, an
ADC interface and channel, a time offset, and a simultaneous
sampling switch. This can be achieved in several ways; one
possibility is shown in Figure 16 and listed in Table 3. This
example utilizes both timers for illustration purposes only.

For this specific example, the events can be linked to one timer
because all of the events are timed in relation to the PWM SYNC
pulse. A use case in which the use of both timers would be
essential is a dual axis motor control algorithm, which uses two
sets of PWM outputs and their corresponding PWM sync pulses.

PWM_U

PWM_V

PWM_W

PWM SYNC

TMR0/TMR1

TRIGGER

ADC0

ADC1

tE3

tE0

tE1

tE2

eCOS

eSIN
VDC

TMR1 FRAME IRQ TMR0 FRAME IRQ

THS iV

iW

E
4

E
4

E
3

E
2

E
0

E
1

E
3

E
2

E
0

E
5

E
1

E
5

11
83

5-
01

6

Figure 16. Typical ADCC Use in a Motor Control Application

Table 3. Event Configurations for Example Application

Event Timer
ADC
I/F

ADC
Ch Time

Simultaneous
Sample

E0 (eSIN) TMR0 0 0 tE0 Yes
E1 (eCOS) TMR0 1 0 tE1 = tE0 Yes
E2 (VDC) TMR0 0 2 tE2 No
E3 (THS) TMR0 0 3 tE3 No
E4 (iV) TMR1 0 1 0 Yes
E5 (iW) TMR1 1 1 0 Yes

Phase currents iV and iW are simultaneously sampled immediately
after the PWM sync pulse trigger has occurred, and these phase
currents are linked to TMR1. The Timer 1 frame is immediately
DMA transferred to memory and the new current samples are
available to be used by the main application program. At a later
point in the PWM cycle, linked to TMR0, a new frame of events
is sampled. The encoder sine and cosine signals are simultaneously
sampled, closely followed by the dc bus voltage and heat sink
temperature signals. The three ADC0 signals are pipelined for
maximum throughput. The TMR0 frame is then DMA
transferred to memory.

Configuration of these parameters requires programming of the
ADCC_EVCTLnn event control register and ADCC_EVTnn
and event time register for each event number nn. Driver APIs
described in this section are available to simplify this process.

CPUTRU

ADSP-CM408F

PWM

SRAM
M1

M0 ADC0

ADC1

ADCC

SYNC S/W

ADC
DATA
DMA

TRIGGER

EM

eCOSeSINiWiVTHSVDC

INVERTER

11
83

5-
01

5

Figure 17. System Interconnections in Typical Motor Control Application

AN-1267 Application Note

Rev. A | Page 12 of 18

INTERRUPTS AND TRIGGER ROUTING
In the example in Figure 17, all events in time are referenced
to the PWM cycle; therefore, both timers are triggered by the
PWM sync pulse. The connection of the PWM sync pulse as a
hardware trigger to the ADCC timers first requires configuration
of the TRU to connect the PWM sync pulse as a master trigger
to an ADCC trigger slave. Then, the ADCC timers must be
linked to the ADCC trigger.

The routing of the appropriate triggers is shown conceptually
in Figure 18 and involves connection of the Trigger Master 19
(PWM0 SYNC) to Trigger Slave 24 (ADCC_TRIG0) by writing
the master number in the appropriate slave select register,
TRU_SSR24 in this case. The ADCC_TRIG0 trigger is then
routed to the two timers by setting the appropriate value for
the TRIGSEL bits in the ADC_CTL register.

TRGM1
TRGM2
TRGM3

TRGS1
TRU ADCC

TRIG SEL

TRGS2
TRGS3

TRGS24
TRGS25

TRGM19

TRGM68
SSRn

TRGS62

ADCC_CTL

Timer 0

SSR1
Timer 1

11
83

5-
01

7

Figure 18. Trigger Routing from PWM Sync to ADCC Timers

This trigger routing arrangement provides a direct link in hardware
from the PWM timing to the ADC sampling with no software
latencies in the path. The trigger master can also be routed from
other sources, such as GPIO pin interrupts, timer, and counter
events. This arrangement enables accurate synchronization of
sampling with, for instance, other converters being controlled
by the ADSP-CM408F.

Furthermore, completion of ADCC timer frames can be connected
as trigger masters to other peripheral or core slaves.

Because DMA transfer mode is used in this example, all event
interrupts should be masked in the ADCC_EIMSK register. Again,
driver APIs are provided to register the appropriate interrupt
service routines for the frame interrupts in DMA mode.

Trigger Routing for Enhanced Precision Sample Timing

Removal of the chip select pulse width lag from the current
sample timing, as described previously, requires slightly
different arrangement of the trigger routing. In this case, the
ADCC timers are triggered from a GP timer trigger, which
is itself triggered from PWM sync. This sequence can be seen
in Figure 11.

DATA ACCESS AND MEMORY ALLOCATION
As illustrated in Figure 14 and Figure 15, the ADC data can be
accessed either via core MMR reads or by making it available in
SRAM by DMA transfer. In core mode, no specific memory
allocation needs to be configured for the data apart from the
variables to which the core MMR reads are being written.
However, in DMA mode, specific memory area must be
allocated and then configured for the DMA access, and this
must be performed for each timer. The memory size required
depends on the size of the frame associated with each timer and
on how many frames need to be stored in memory before being
overwritten by new frames.

Figure 19 shows a conceptual SRAM map along with relevant
ADCC registers that control the configuration of the SRAM.
The ADCC_BPTR register must store a pointer to the memory
base address for ADC samples to be stored. If more than one
frame needs to be stored in the memory buffer, the ADCC_FRINC
register contains the offset for the pointer to the base of the next
frame. In linear buffering mode, which is activated by writing
zero to the ADCC_CBSIZ register, additional frames are stored
in the memory in a continuously increasing linear manner,
spaced by the frame increment value. If a nonzero value, M, is
written to the ADCC_CBSIZ, circular buffering is activated,
and M frames are written to the memory before the frame base
pointer returns to the ADCC_BPTR value and begins to
overwrite the existing frames.

Event 0 DATA
Event n DATA

Event 2 DATA
Event 1 DATA

Event 0 DATA

Event 2 DATA
Event 1 DATA

Event 0 DATA

ADCC_EVCTL01.EV TOFS

ADCC_BPTR

ADCC_CBSIZ

B
A

S
E

 P
O

IN
T

E
R

B
A

S
E

 P
O

IN
T

E
R

ADCC_FRINC
FRAME0

FRAME1

SRAM

= 0
>0

Event n DATA

11
83

5-
01

8

Figure 19. Memory Configuration for ADC DMA Transfers

In the motor control application example in Figure 17, the ADC
samples are gathered every PWM cycle and are used immediately
within the control and monitoring application. Therefore, it
does not make sense to store the samples in a linear manner
because memory is very quickly overloaded. In such an
application, it is better to enable circular buffering with M
limited to 1 or some small value, or to set the ADCC_FRINC
value to 0 and overwrite the frame every PWM cycle. The
driver application programming interfaces (APIs) that simplify
this task are outlined in the ADCC Software Support section.

http://www.analog.com/adsp-cm408f?doc=an-1267.pdf

Application Note AN-1267

ADCC SOFTWARE SUPPORT
The Analog Devices enablement software package provided with
the ADSP-CM40x EZKIT contains a number of API function
calls that simplify the setup of the ADCC module discussed in
this application note. These calls monitor correct configuration
of the various register, as well as any status acknowledgments
that need to take place.

EXAMPLE CODE
The example code in this application note illustrates a step-by-step
approach to configuring and using the motor control application,
shown in Figure 17. The device driver adds some overhead but
significantly simplifies the programming of the ADCC module
registers.

The first section of code defines a number of parameter and
configuration constants used in the driver API calls.

Line 1 through Line 10 define the frame and associated data
buffer sizes for each timer. The factor 2 is included in allocating
the sample buffer lengths as a safety measure for debugging
purposes. Because ADC sample transfer to memory is entirely
hardware triggered (including DMA), inserting a software
breakpoint at Line 122, before a new buffer is submitted to the
driver and ADC buffer pointer are reset, can cause memory to
be overwritten. Allowing an additional buffer for headroom
prevents this debugging related issue from occurring. The
number of frames in the buffer is defined as 1, which means
that the API overwrites the memory buffer every time a new
frame is submitted to it, that is, memory allocation is required
for only one frame for each timer.

Line 11 through Line 16 define the sample times for each event
in ACLK cycle numbers as shown in Table 3. Note the
separation of SMP_TIME1, SMP_TIME2, and SMP_TIME3 by
only one ACLK cycle. This setup causes these events to be
pipelined within ADC0.

Line 17 to Line 44 define the control words for each ADC
channel, the channel mapping for the six sampling events, and
the array indices for each event within its data buffer.

Line 45 to Line 59 declare the variables and function prototypes
required for the ADC operation. The memory allocation sizes
for the ADCC memory buffer and ADCC timer memory
buffers are predefined by the API and must not be changed.
One ADCC setup function, one TRU setup function, and two
ISR callbacks (one for each ADCC timer) are registered.

Line 60 to Line 91 contain the main ADCC configuration
function SetupADC(). The first step is to set up the event
configuration table, a struct that contains the event number,
ADC control word, ADC timer, simultaneous sampling, and
memory offset for each event.

Following successful configuration of the ADCC events, an
instance of the ADCC must be opened, as well as any ADCC
timers associated with that instance. The callback function
names for each timer frame interrupt must then be registered
with the driver (Line 72 to Line 73). Following this, DMA mode
is enabled (Line 74), and the ADCC clocks and chip selects are
configured (Line 75 to Line 78).

The timers are then configured, both with the ADCC_TRIG0
input as the trigger source. The ADCC_TRIG0 trigger is
separately connected as a trigger slave to the PWM sync pulse
trigger master in the SetupTRU() function (Line 92 to Line 97)
and as shown graphically in Figure 18. The data enumerations
used in these function calls are listed in the Analog Devices
Enablement Software package driver documentation.

In Line 81, the EventCFG struct defined in Line 62 is passed
to the adi_adcc_ConfigEvent driver function, and the
adi_adcc_SetEventMask driver function then enables or masks
the events as required. In this case, all events are enabled. For
maximum ADC throughput, it is important to enable the dual
bit data interface as per Line 83, meaning that 16-bit data can be
transferred from the ADC in eight ADC clock cycles. (Note that
if the dual-bit interface is not enabled, NCK in Line 76 and tCSCS
in Line 77 and Line 78 must be set to 16 and 17, respectively.)
Memory is then allocated for the data buffers, and the data
buffers are submitted to the ADCC for filling via the
adi_adcc_SubmitBuffer call. The adi_adcc_SubmitBuffer API
only works in DMA mode; therefore, DMA mode must be set
first before using this API. This driver function is called again
by the main application in Line 105 to return the buffer to the
ADCC control once data is extracted from it by the application.
Finally, when all configurations are completed, the instances of
the timers and ADCC itself need to be enabled.

Line 92 to Line 97 contain the setup of the TRU, which involves
opening an instance of the TRU, routing the trigger from the
PWM sync master to the ADCC slave, and enabling the TRU.

As described previously, the processing of the ADC data at the
application level is handled via ADCC timer callbacks following
an interrupt on completion of the timer events and associated
DMA transfers.

Line 98 to Line 127 provide the implementation of the
callbacks. The buffered data is extracted from the relevant
locations within the buffer and saved to the appropriate global
variables. In this example, the updated phase current data is
then used immediately within the motor control algorithm,
which is called from the Timer 1 callback via the algorithm call
MotorControl() in Line 117.

Rev. A | Page 13 of 18

http://www.analog.com/adsp-cm408f?doc=an-1267.pdf

AN-1267 Application Note

Note that the servicing of the ADCC event timer interrupt is
the only software call that takes place to access the ADCC data.
Synchronization and timing all take place at the hardware level.

Line 128 to Line 136 provide additional code snippets that can
be inserted into the TRU and ADCC setup functions to enable
the enhanced precision sample timing functionality depicted in
Figure 11. In Line 128 to Line 129, the hardware trigger routing

path from PWM sync to GP timer TMR7 to ADCC Timer 0
trigger is set up. Line 130 to Line 136 provide sample code that can
be inserted within the ADC setup function to correctly configure
and enable the GP timer TMR7 to provide the correct delay.

In all cases, the SetupTRU function call must occur prior to
calling the SetupADC function.

Rev. A | Page 14 of 18

Application Note AN-1267

/***

ADCC Module Setup Code Example
***/

/********************Defines*********************/
1. #define ADCC_DEVICE_NUM 0
2. #define TRU_DEV_NUM 0
3. #define ADI_TRU_REQ_MEMORY
4. #define NUM_SAMPLES0 4
5. #define NUM_SAMPLES1 2 /*

Length of ADC buffers */
6. #define FRAME_INC0

2*NUM_SAMPLES0*sizeof(short)
7. #define FRAME_INC1

2*NUM_SAMPLES1*sizeof(short) /* Frame
increment in number of bytes for each buffer*/

8. #define FRAMES_IN_BUFFER 1 /*Number of
frames in buffer */

9. #define NO_OF_EVENTS 6 /* Total
number of events */

10. #define EVENT_MASK 0xFFFF

/*Event Times in ACLK Cycles*/
11. #define SMP_TIME0 950
12. #define SMP_TIME1 950
13. #define SMP_TIME2 951
14. #define SMP_TIME3 952
15. #define SMP_TIME4 0
16. #define SMP_TIME5 0

/* Control Words for All ADC Channels */
/*Upper Nibble = Chan No. Lower Nibble = 0xF for
Sim Sampling, 0xD Otherwise*/
17. #define ADC0_VIN00_CTL 0x0F
18. #define ADC0_VIN01_CTL 0x1F
19. #define ADC0_VIN02_CTL 0x2D
20. #define ADC0_VIN03_CTL 0x3D
21. #define ADC0_VIN04_CTL 0x4D
22. #define ADC0_VIN05_CTL 0x5D
23. #define ADC0_VIN06_CTL 0x6D
24. #define ADC0_VIN07_CTL 0x7D

25. #define ADC1_VIN00_CTL 0x0F
26. #define ADC1_VIN01_CTL 0x1F
27. #define ADC1_VIN02_CTL 0x2D
28. #define ADC1_VIN03_CTL 0x3D
29. #define ADC1_VIN04_CTL 0x4D
30. #define ADC1_VIN05_CTL 0x5D
31. #define ADC1_VIN06_CTL 0x6D
32. #define ADC1_VIN07_CTL 0x7D

/*Mapping the Signals to the Appropriate ADC
Channels*/
33. #define ES_CTL ADC0_VIN00_CTL
34. #define EC_CTL ADC1_VIN00_CTL
35. #define VDC_CTL ADC0_VIN02_CTL
36. #define THS_CTL ADC0_VIN03_CTL
37. #define IV_CTL ADC0_VIN01_CTL
38. #define IW_CTL ADC1_VIN01_CTL

/*Locations of ADC Signals in Data Buffer Index*/
39. #define IV_ADC 0
40. #define IW_ADC 1
41. #define ES_ADC 0
42. #define EC_ADC 1
43. #define VDC_ADC 2
44. #define THS_ADC 3

/*******************Variables********************/
45. static ADI_ADCC_HANDLE hADCC; /*

ADCC Handle */
46. static ADI_ADCC_HANDLE hADCCTimer0,

hADCCTimer1; /*ADCC Timer Handles*/
47. static uint8_t ADCCMemory[ADI_ADCC_MEMORY];

/* Memory buffer for the ADCC device -
predefined */

48. static uint8_t
ADCCTmr0Memory[ADI_ADCC_TMR_MEMORY];

49. static uint8_t
ADCCTmr1Memory[ADI_ADCC_TMR_MEMORY]; /*
Memory buffer for the ADCC Timers -
predefined*/

50. static uint16_t SampleBuffer0[NUM_SAMPLES0];
51. static uint16_t SampleBuffer1[NUM_SAMPLES1];

/* Memory buffer for the ADC samples */
52. static uint16_t Iv_adc, Iw_adc;
53. static uint16_t Es_adc, Ec_adc, Vdc_adc,

Ths_adc;
/*Variables for ADC data*/

54. static uint8_t
TruDevMemory[ADI_TRU_REQ_MEMORY];

55. static ADI_TRU_HANDLE hTru;
 /*TRU Device Memory and Handle*/

/*************Function Prototypes****************/
56. void SetupADC(void);
57. void SetupTRU(void);
58. static void AdccTmr0Callback(void *pCBParam,

uint32_t Event, void *pArg);
59. static void AdccTmr1Callback(void *pCBParam,

uint32_t Event, void *pArg);

/******Function to Configure ADCC***************/
60. void SetupADC(void) {
61. static ADI_ADCC_RESULT result;

/*Set Up Event Configuration Table*/
62. ADI_ADCC_EVENT_CFG EventCFG[NO_OF_EVENTS] = {
63. {0, ES_CTL, ADI_ADCC_ADCIF0, ADI_ADCC_TIMER0,

true, 0, SMP_TIME0},
64. {1, EC_CTL, ADI_ADCC_ADCIF1, ADI_ADCC_TIMER0,

true, 2, SMP_TIME1},
65. {2, VDC_CTL, ADI_ADCC_ADCIF0,

ADI_ADCC_TIMER0, false, 4, SMP_TIME2 },
66. {3, THS_CTL, ADI_ADCC_ADCIF0,

ADI_ADCC_TIMER0, false, 6, SMP_TIME3 },
67. {4, IV_CTL, ADI_ADCC_ADCIF0, ADI_ADCC_TIMER1,

true, 8, SMP_TIME4 },
68. {5, IW_CTL, ADI_ADCC_ADCIF1, ADI_ADCC_TIMER1,

true, 10, SMP_TIME5 }}; /*Event#, CTL_WORD,
ADC Interface, Timer ID, sim. samp, Mem offset
in frame, Event time */

Rev. A | Page 15 of 18

AN-1267 Application Note

/*ADCC Setup API Functions*/
69. result = adi_adcc_OpenDevice(ADCC_DEVICE_NUM,

ADCCMemory, &hADCC);
70. result = adi_adcc_OpenTimer(hADCC,

ADI_ADCC_TIMER0, ADCCTmr0Memory,
&hADCCTimer0);

71. result = adi_adcc_OpenTimer(hADCC,
ADI_ADCC_TIMER1, ADCCTmr1Memory,
&hADCCTimer1); /* ADCC Device handle, Timer to
open, Timer memory, Pointer to the timer
handle */

72. result = adi_adcc_RegisterTmrCallback
(hADCCTimer0, AdccTmr0Callback, hADCCTimer0);

73. result = adi_adcc_RegisterTmrCallback
(hADCCTimer1, AdccTmr1Callback,
hADCCTimer1);/*Register callback functions*/

74. result = adi_adcc_EnableDMAMode(hADCC,true);

75. result = adi_adcc_ConfigADCCClock(hADCC,
ADI_ADCC_ADCIF0, false,1u, 8u);

76. result = adi_adcc_ConfigADCCClock(hADCC,
ADI_ADCC_ADCIF1, false,1u, 8u); /*For each
ADC interface: ADCC handle, ADC Interface
number, falling edge, ACLK Clock divide, NCK*/

77. result = adi_adcc_ConfigChipSelect(hADCC,
ADI_ADCC_ADCIF0, false, 1u, 0u, 9);

78. result = adi_adcc_ConfigChipSelect(hADCC,
ADI_ADCC_ADCIF1, false, 1u, 0u, 9);/*For each
interface: ADCC handle, ADC interface, active
low, TCSCK, TCKCS, TCSCS*/

79. result = adi_adcc_ConfigTimer(hADCCTimer0,
ADI_ADCC_TRIG0, true, false);

80. result = adi_adcc_ConfigTimer(hADCCTimer1,
ADI_ADCC_TRIG0, true, false); /*For each
timer: Timer handle, Timer trigger source,
falling edge trigger, No trigger output */

81. result = adi_adcc_ConfigEvent(hADCC,
&EventCFG[0], NO_OF_EVENTS); /*ADCC handle,
Pointer to the event configuration table,
Number of events in the table */

82. result = adi_adcc_SetEventMask(hADCC,
EVENT_MASK); /*
Handle to the device, Enable all events */

83. adi_adcc_EnableDualBitDataIF(hADCC, true);
/*Dual bit interface allows highest
throughput*/

84. memset((void *)SampleBuffer0, 0, NUM_SAMPLES0
* sizeof(short));

85. memset((void *) SampleBuffer1, 0, NUM_SAMPLES1
* sizeof(short));

86. result = adi_adcc_SubmitBuffer(hADCCTimer0,
SampleBuffer0, FRAME_INC0, FRAMES_IN_BUFFER);

87. result = adi_adcc_SubmitBuffer(hADCCTimer1,
SampleBuffer1, FRAME_INC1, FRAMES_IN_BUFFER);

/*For each timer: timer handle, Pointer to the
buffer, Frame increment, Number of frames
that fits into the given buffer */

88. result = adi_adcc_EnableTimer(hADCCTimer0,

true);
89. result = adi_adcc_EnableTimer(hADCCTimer1,

true);
90. result = adi_adcc_EnableDevice(hADCC, true);
 /*Enable everything*/
91. }

/*******Function to Configure TRU****************/
92. void SetupTRU(void){
93. ADI_TRU_RESULT result;
94. result = adi_tru_Open (TRU_DEV_NUM,

&TruDevMemory[0], ADI_TRU_REQ_MEMORY, &hTru);
/* Setup TRU for ADCC. Slave is ADCC0 trig 1
and master is PWM0 SYNC pulse*/

95. result = adi_tru_TriggerRoute (hTru,
TRGS_ADCC0_TRIG0, TRGM_PWM0_SYNC); /*TRU
device, slave, master*/

96. result = adi_tru_Enable (hTru, true); /*Enable
TRU*/

97. }

/***********ADCC Timer Callbacks*****************/
98. static void AdccTmr0Callback(void *pCBParam,

uint32_t Event, void *pArg){
99. switch(Event){
100. case ADI_ADCC_EVENT_FRAME_PROCESSED:
101. Es_adc= SampleBuffer0[ES_ADC];
102. Ec_adc = SampleBuffer0[EC_ADC];
103. Vdc_adc = SampleBuffer0[VDC_ADC];
104. Ths_adc = SampleBuffer0[THS_ADC];

/*Store all of the data sampled in appropriate
global variables*/

105. _adcc_SubmitBuffer(hADCCTimer0,
SampleBuffer0, FRAME_INC0, FRAMES_IN_BUFFER);
/*Return the buffer to the ADCC for use in the
next events*/

106. break;
107. case ADI_ADCC_EVENT_BUFFER_PROCESSED:
108. break;
109. default:
110. break;
111. }

112. static void AdccTmr1Callback(void

*pCBParam, uint32_t Event, void *pArg){

113. switch(Event){
114. case ADI_ADCC_EVENT_FRAME_PROCESSED:
115. Iv_adc = SampleBuffer1[IV_ADC];
116. Iw_adc = SampleBuffer1[IW_ADC];
117. MotorControl(); /*Run the

current control algorithm*/
118.
119.
120. break;

121. case ADI_ADCC_EVENT_BUFFER_PROCESSED:
122. adi_adcc_SubmitBuffer(hADCCTimer1,

SampleBuffer1, FRAME_INC1, FRAMES_IN_BUFFER);
123. break;
124. default:
125. break;
126. }
127. return;
 }

Rev. A | Page 16 of 18

Application Note AN-1267

/***

Enhanced Precision Timing Code
***/
/*Setup TRU for ADCC enhanced timing precision.
Slave is ADCC0 trig 1 and master is GP timer 7
Added to SetpTRU() function in place of line 95 */

128. result = adi_tru_TriggerRoute(hTru,

TRGS_ADCC0_TRIG0, TRGM_TIMER0_TMR7); // TRU
device, slave, master

129. result = adi_tru_TriggerRoute(hTru,
TRGS_TIMER0_TMR7, TRGM_PWM0_SYNC); // TRU
device, slave, master

/*Setup GP timer 7 timer used to advance frame by
one CS. Add to SetupADC() function after line 91*/

130. *pREG_TIMER0_STOP_CFG_SET =

BITM_TIMER_STOP_CFG_TMR07;
131. *pREG_TIMER0_RUN_CLR =

BITM_TIMER_RUN_SET_TMR07; /*Disable Timer
First*/

132. *pREG_TIMER0_TMR7_CFG =
ENUM_TIMER_TMR_CFG_PWMSING_MODE|ENUM_TIMER_TMR
_CFG_IRQMODE1 |ENUM_TIMER_TMR_CFG_TRIGSTART |
ENUM_TIMER_TMR_CFG_POS_EDGE|ENUM_TIMER_TMR_CFG
_PADOUT_EN | ENUM_TIMER_TMR_CFG_EMU_CNT;

133. *pREG_TIMER0_TMR7_DLY = (uint32_t)(fsysclk
/ F_SW - 0.00000045 * fsysclk); /* Delay must
be Tsw minus one ADC chip-select. Chip select
is 18 ACLKs*/

134. *pREG_TIMER0_TMR7_WID = 16; /*Be careful
here... DLY+WID must be smaller than one PWM
period. In other words, WID must be smaller
than one ADC chip select. If WID>CS, trigger
pulse stretches into next PWM period. */

135. *pREG_TIMER0_TRG_MSK &=
~(BITM_TIMER_TRG_MSK_TMR07);

136. *pREG_TIMER0_TRG_IE |=
BITM_TIMER_TRG_IE_TMR07; /*Enable TMR7*/

Rev. A | Page 17 of 18

AN-1267 Application Note

Rev. A | Page 18 of 18

EXAMPLE EXPERIMENTAL RESULTS
The current sampling portions of the code described in the
Example Code section have been tested in a closed-loop,
permanent magnet synchronous motor control application
circuit. The application circuit operates over a universal ac line
input and over a controlled motor current range of −6.8 A to
+6.8 A, using the current transducer referred to in the current
scaling data in Figure 4. Sample results from the application
circuit are shown in Figure 20 to Figure 23.

Figure 20 displays the measured motor phase current with a
1500 rpm speed reference and no load on the motor. The motor
current level is very low and highly discontinuous.

The averaging effect of the correctly synchronized sampling
approach is shown in Figure 21, where the smooth sinusoidal
averaged shape of the motor phase currents is evident, even at
current levels <2% of maximum. Figure 21, as well as Figure 22,
which shows the operation of the control loop in tracking the IQ
reference current, is generated from data streamed from the
ADSP-CM408F over an RS-232 to a MATLAB® interface.

In Figure 23, the location of the PWM sync pulse, and
consequent triggering of sampling, is shown at the center of the
phase current PWM cycle where the current is equal to the
instantaneous average. This plot is shown at a higher load for
ease of illustration.

CH2 470mV M2.00ms A CH2 880mV

3

T 40µsCH3 100mA

100mA/DIV

11
83

5-
01

9

Figure 20. Measured Motor Phase Current

–0.2

–0.1

0

0.1

0.2

I P
HA

SE
 (A

)
I P

H
AS

E
 (D

ig
ita

l)

0 20 40 60 80 100 120 140 160 180 200
3.15

3.20

3.25

3.30

3.35

SAMPLES 11
83

5-
02

0

Figure 21. ADC Sampled Motor Phase Current: (Top) Scaled to Real-World
Value and (Bottom) Digital Word Output

0 20 40 60 80 100
CURRENT (A)

120 140 160 180 200
0

0.05

0.10

0.15

0.20

Q
-A

XI
S

C
U

R
R

EN
T

(A
)

IQ
IQREF

11
83

5-
02

1

Figure 22. Q-Axis Reference Current and Actual Current

CH2 2V M10µs A CH2 880mV

3

2

T –8nsCH3 500mA

SAMPLE

PWM SYNC
PULSE

11
83

5-
02

2

Figure 23. Sampling in Relation to Phase Current

©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN11835-0-9/14(A)

http://www.analog.com/adsp-cm408f?doc=an-1267.pdf
http://www.analog.com/

	Introduction
	Table of Contents
	Revision History

	Current Feedback System Overview
	ADC Module Overview
	Current Feedback Scaling
	ADC Timing Considerations
	ADCC Event Timing
	ADC Operational Timing
	Adjustment of Sampling Instant

	ADC Pipelining

	ADC Data Access
	ADCC Data Fault Detection

	ADCC Module, Trigger Routing, and Memory Setup
	Configuration of ADCC Events
	Interrupts and Trigger Routing
	Trigger Routing for Enhanced Precision Sample Timing

	Data Access and Memory Allocation

	ADCC Software Support
	Example Code
	Example Experimental Results

