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INTRODUCTION 
This application note introduces the main features of the  
ADSP-CM408F analog-to-digital converter controller (ADCC) 
blocks with a focus on relevance and usefulness in current 
feedback systems of high performance motor control 
applications.  

The purpose of this application note is to highlight the key 
capabilities of the analog-to-digital converter (ADC) module 
and to provide guidance on its configuration for motor control 
applications. Code samples illustrating the use of the ADCC 
drivers from Analog Devices, Inc., are provided. 

Further details on the full range of features, configuration registers, 
and application program interfaces (APIs) for this ADCC can be 
found in the ADSP-CM40x Mixed-Signal Control Processor with 
ARM Cortex-M4 Hardware Reference Manual available on the 
ADSP-CM402F/ADSP-CM403F/ADSP-CM407F/ADSP-CM408F 
product pages, and on the ADSP-CM40x Mixed-Signal Control 
Processor with ARM Cortex-M4 and 16-bit ADCs Development 
Products product page. 

While this application note is focused on current feedback, similar 
principles of configuration and application are applicable to the 
feedback and measurement of other signals. 

Likewise, the focus of the application note is specifically on the 
ADSP-CM408F; however, the principles are generally applicable 
to the other parts within the ADSP-CM402F/ADSP-CM403F/ 
ADSP-CM407F/ADSP-CM408F family. 
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CURRENT FEEDBACK SYSTEM OVERVIEW 
An example of current feedback in a motor control application 
is illustrated in Figure 1. This arrangement is typical of high 
performance motor drives in which motor phase winding 
currents are sampled rather than inverter low-side phase legs. 
At medium to high current levels, current transducers or 
transformers, CT0 and CT1, must be used in the current 
measurement path because resistive current shunts become 
too bulky and inefficient.  

In the Figure 1 setup, the processor is located on the safe, low 
voltage side of the isolation barrier, with signal isolation typically 
being inherent to CT0 and CT1, and with digital isolation also 
existing between the pulse width modulation (PWM) outputs 
of the microprocessor and the gate drivers.  

Generally, some signal conditioning is required between the 
outputs of the current transducers and the inputs to the ADC 
for range matching and high frequency noise filtering. The 
conditioned current measurement signals are then applied to 
the ADC inputs for sampling and conversion. Applying one 
winding current measurement to each of the ADC inputs 
enables simultaneous sampling of the current measurements 
for greater control loop accuracy, and consequent performance 
enhancement. Furthermore, synchronization of the sampling 
instant with the PWM sync pulse is also configurable directly 
in hardware.  
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Figure 1. Current Feedback to ADSP-CM408F ADC in Motor Control 

These features enable precise timing of the point in the PWM 
cycle at which the phase currents are measured. Aligning this 
measurement instant with the midpoint of the zero vector or the 
midpoint of the PWM cycle ensures that the level at which the 
current is being sampled is effectively equal to the instantaneous 
average current, with switching ripple being ignored. 

In Figure 2, simultaneous U-phase and V-phase sampling is 
shown occurring at both the zero vector midpoint and the 
PWM cycle midpoint. 
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Figure 2. Illustration of Average Current Sampling 

When conversion of the data is complete, it can be transferred 
via direct memory access (DMA) to the controller static random 
access memory (SRAM), and an interrupt is generated upon 
completion of the transfer. Direct ADC status and data reads 
are also possible in core mode through memory mapped 
registers, but this method involves more processor overhead.  

Typically, other analog signals, such as dc bus voltage, isolated 
gate bipolar transistor (IGBT) temperature, and motor position 
sine and cosine outputs, are also sampled. Though this application 
note focuses on current feedback, much of the information is 
also relevant to other measurement parameters within the system. 
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ADC MODULE OVERVIEW 
The ADC has a dual, 16-bit, high speed, low power, successive 
approximation register (SAR) design with up to 14 bits of 
accuracy.  

The input multiplexers enable up to a combined 26 analog input 
sources for the two independently controlled ADCs (12 analog 
inputs plus one DAC loopback input per ADC), with two channels 
simultaneously sampled at any given time. ADC conversion 
times are as fast as 380 ns. The voltage input range requirement 
for the single-ended analog inputs is from 0 V to 2.5 V.  

An on-chip buffer between the multiplexer and ADC reduces 
the need for additional signal conditioning external to the 
ADSP-CM408F. Additionally, each ADC has an on-chip 2.5 V 

reference that can be overdriven when an external voltage 
reference is preferred (and by selecting this option using the 
ADCC_CFG register). 

A graphical overview of the overall analog subsystem within the 
ADSP-CM408F is shown in Figure 3. The ADSP-CM408F is a 
multiple die system-in-package (SiP), and the ADC silicon is 
manufactured on a different process than the processor silicon, 
as shown in Figure 3.  

The ADCC is responsible for synchronizing timing within the 
ADC with the processor and for managing DMA transfers of 
sampled data to SRAM.  
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CURRENT FEEDBACK SCALING 
To correctly use the ADC capability over the maximum range, it 
is important to scale the feedback signals in the correct manner. 
The signal progress through the feedback path is illustrated in 
Figure 5. The bipolar phase winding current, IW, is converted to 
a unipolar voltage presented at the input of the ADC by the 
combined functionality of the current transducer (or transformer) 
and the signal conditioning circuitry.  

The transfer function of the current transducer is represented 
by the equation 

VIW = KCTIW + V0CT 

where: 
VIW is the output voltage. 
KCT is the linear gain coefficient of the transducer. 
V0CT is the zero current offset voltage of the transducer.  

KCT tends to be nonlinear at some current levels in various 
transducer types and, for increased accuracy, should be 
expressed as a function of IW, that is, KCT(IW). The ADC input 
voltage is then expressed as  

VIW_ADC = KSIGVIW = KSIG[KCT(IW)IW + V0CT] 

where KSIG is the low frequency gain of the signal conditioning 
circuitry.  

This unipolar voltage is converted to a 16-bit unsigned integer, 
which is DMA transferred to the processor memory, after 
which an interrupt alerts the control program that a new data 
sample is available. The idealized transfer function of the ADC 
is given by 

ADCIWADCIWADCIW VVKN _

16

_ 5.2
2

==  

where: 
NIW is the ADC digital output word. 
KADC represents the linear gain of the ADC and is equal to the 
ADC resolution divided by the input voltage range, as indicated.  

Some offset is associated with the output of the ADC; within 
the software, it is generally a good approach to include some 
offset compensation, NADC_OFFSET, which subtracts from the ADC 
output to take account of any offset within the ADC itself, plus 
any residual offset from the transducer and signal conditioning. 
This value can be dynamically updated during periods of zero 
current, such as system startup or disabled drive output.  

Finally, the digital representation of the current transducer zero 
current offset voltage, NCT_OFFSET, is subtracted from the ADC 

output to give the signed value IW, which is related to the actual 
phase winding current as 

IW = KADC(KSIG[KCT(IW)IW + V0CT]) – NADC_OFFSET – NCT_OFFSET 

where: 

CT0OFFSETCT VN
5.2

216

_ =  

This signed 16-bit value can be converted to a floating point value 
or used directly, depending on the controller implementation. 
For optimum use of the full ADC range, the peak positive 
controlled current in the system must correspond to an ADC 
input voltage of 2.5 V, with peak negative controlled current 
corresponding to an ADC input of 0 V.  

An example of this is shown in Figure 4, which depicts a typical 
current waveform and the various zero, peak, and nominal levels 
associated with it. The current levels of Figure 4 are converted 
to scaled quantities (see Table 1) that propagate through the 
signal measurement system, which is shown in Figure 5.  
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Figure 4. Current Feedback Signal Amplitudes 

Table 1. Current Feedback Signal Amplitudes 
Level IW (A) VIW (V) VIW_ADC (V) NIW 

LPK+ 6.8  4.625  2.313  0xECD9 
LNOM+ 4  3.75  1.875  0xC000 
L0 0  2.5  1.25  0x8000 
LNOM− −4  +1.25  +0.625  0x4000 
LPK− −6.8  +0.375  +0.188  0x1340 

This example is based on a CAS 6-NP Hall effect current 
transducer from LEM®, with three primary turns giving a 0 V to 
5 V output, followed by signal conditioning circuitry with a gain 
of 0.5.  
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Figure 5. Scaling Relationships in Current Feedback Path 
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ADC TIMING CONSIDERATIONS 
Synchronization of the sampling events with the PWM cycle 
is important for accurate current feedback. The conceptual 
sequencing of ADCC operation with respect to the PWM cycle 
is illustrated in Figure 6. The following sequence of events is 
triggered by the PWM synchronization pulse: 

1. The PWM sync pulse triggers the timer to start. 
2. The ADCC continuously compares the sample time from 

the event information with the timer time. 
3. A timer match occurs and the ADCC schedules ADC 

operation. 
4. When the ADC is available, the appropriate channel is 

selected by the ADCC using the event information. 
5. The ADCC triggers an ADC conversion sequence, and the 

ADC samples and converts the data. 
6. Data is streamed back to the ADCC. 
7. Data is transferred by the ADCC to a memory location via 

DMA (LSB first). 
8. An interrupt (IRQ) is generated and alerts the CPU that a 

data sample is available. 
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Figure 6. ADCC Operation Sequence 

ADCC EVENT TIMING 
The controller manages the configuration and timing of up to 
24 sampling events. The timing of these events is constrained by 
a trigger, which starts one of two timers (TMR0 or TMR1), and 
an event time after the timer starts.  

As illustrated in Figure 7, the trigger source can be selected from 
a range of peripheral or processor events, such as PWM sync 
pulses, timers, or I/O pin interrupts. Each event is associated 
with an event number depicted as Event x, an event time, TIMEx, 
control information shown as CTLx, and its resultant data. The 
event control information, depicted as CTLx in Figure 7, contains 
information for each sample event, such as the ADC interface 
and channel numbers, the ADC timer used, simultaneous 
sampling selection, and memory offset for the ADC data 
associated with the event. This information is used by the 
ADCC to multiplex the correct ADC channel, CHx, initiate 
ADC conversion (CVST0/CVST1 signals), and transfer the 
correct data to the appropriate event data register.  

A DMA transfer can then be set up to move the ADC data for each 
event into the SRAM. Upon completion of all of the events and 
subsequent DMA transfer, an interrupt is generated to inform 
the main application code that new ADC data is available.  
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Figure 7. ADCC Module Functional Diagram  
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For example, Figure 8 depicts three sampling events associated 
with ADC Timer 0. The PWM sync pulse is the trigger for the 
timer, and event times are associated with each event. Event 0 
and Event 1 are simultaneous sampling events with the event 
time in the event time registers set to zero. Event 2 occurs at a 
later time, again, as determined by the time in the Event 2 time 
register, expressed in multiples of the ADC clock period (tACLK). 
If Event 2 is the final event associated with Timer 0, the timer 
stops running after the event is handled to save power. 
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Figure 8. Event Timing 

ADC OPERATIONAL TIMING 
After a sampling event has been triggered by the ADCC controller, 
there is a conversion time latency associated with the ADC 
operation itself. This is shown in Figure 9 for a situation in which 
a single ADC event is associated with each ADC interface, and 
simultaneous sampling of the two events is enabled. 

Three discrete conversion cycles are associated with the ADC 
operation: 

1. Writing the 8-bit control word that selects the ADC 
channel to be read (ADCC_EVTCTL.CTLWD). 

2. Asserting the conversion pulse that enables ADC sampling 
and conversion. 

3. Streaming the 16-bit ADC data back to the ADCC. 

The ADCC provides the chip select and gated clock signals for 
these three event phases. The ADCC interface to the ADC is a 
serial interface with a dual bit option. Therefore, the minimum 
number of clock cycles provided during each CS pulse (ADCC 
timing control register field NCK) is 8. Other important settings 
are the ADC clock frequency, the minimum delay (in ACLK 
cycles) between the conversion cycle chip selects (tCSCS), and the 
minimum delays between CS edges and ACLK edges (tCSCK and 
tCKCS). Consequently, the ADC conversion cycle time, tCONV_ADC, 
for a single pair of simultaneously sampled signals is given by 

 CSCSCKCSCSCK
ACLK

ADCCONV ttNCKt
f

t 
3

_  

where fACLK is the frequency of the ADCC clock.  

The ADCC clock is internally generated from the processor 
system clock (fSYSCLK) by means of the divisor ACKDIV (in the 
timing control register, ADCC_TCA) and is calculated as 

1


ACKDIV
f

f SYSCLK
ACLK  

The system clock is, in turn, derived from the processor core 
clock (fCORECLK). Optimum system performance is achieved 
when fCORECLK is an integer multiple of fSYSCLK. Upon completion 
of the ADC conversion, additional latency is associated with the 
DMA transfer of the ADC data to data memory, and finally, the 
servicing of the interrupt request that makes the data frame 
available to the main application program. Thus, the total time 
from trigger (for example, PWM sync pulse) to data availability 
in the application is equal to 

tCONV_TOTAL = tCONV_ADC + tDMA + tIRQ 

where: 
tDMA is the average time for DMA transfer. 
tIRQ is the average time for interrupt request servicing. 
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Figure 9. Conversion Timing of a Simultaneous Sampling Single Event  
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Typical timing settings are listed in Table 2. Some of the constraints 
on the times are also given. An absolute constraint for achieving 
correct performance of the ADC is that at least 380 ns must be 
allowed for the ADC sampling and conversion cycle (tCONV_ADC/3). 
The resulting timings for a single simultaneous sampling event 
are outlined in Figure 10 relative to the sampling of the motor 
winding current (note that this figure is exaggerated for purposes 
of illustration). 
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Figure 10. Sample Delay Times 

With these settings, there is an offset of 450 ns between the 
desired sampling point on the current waveform and the actual 
point sampled. This is equal to one chip select pulse width 
(200 ns + 25 ns + 0 ns) plus one pulse width between chip 
selects (225 ns). This results in a difference of ΔiSAMP between 
the average motor winding current and the actual sampled 

current, which may need to be accounted for in sample timing 
scheduling, although in the context of a typical current control 
loop bandwidth of 1 kHz, this represents <0.2° of phase shift. 
Moreover, for a typical PWM frequency of 10 kHz, ADC data is 
available to the application program within <2% of the available 
PWM cycle time from occurrence of the PWM sync pulse for 
the settings in Table 2. An additional latency of 4 to 5 SYSCLK 
cycles occurs between an event becoming active and the 
beginning of ADC operation if the ADC is in an idle state on 
occurrence of the event. 

Adjustment of Sampling Instant 

It may be important to further enhance the precision of the 
motor current sampling instant and to remove the 450 ns offset 
between desired and actual sampling instant. Use cases such as 
low inductance servo motors, or situations where higher switching 
frequencies are being utilized would especially benefit from this 
enhanced precision. One option to cancel this small time offset 
is to use a general purpose (GP) timer to create a trigger at a point 
in time one ADCC chip select pulse width before the PWM 
sync pulse. This can be achieved by triggering the GP timer 
from the previous PWM sync pulse, as illustrated in Figure 11.  

With this approach, care must be taken when scheduling any 
sampling events towards the end of the PWM cycle. All sampling 
events must be completed one chip select pulse width before the 
beginning of the next cycle (EVT0 marker in Figure 11). 
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Figure 11. Implementation of Sampling Instant Adjustment 

 

Table 2. Timing Settings for a Typical ADC Setup 
Parameter Value Comment Set By 
fCORECLK 240 MHz Maximum allowed PLL configuration 
fSYSCLK 80 MHz Maximum is 100 MHz  fSYSCLK = fCORECLK/3 
fACLK 40 MHz Maximum specified is 50 MHz ADCC_TCA0.CKDIV = 1 
CS Time (tCSCS) 200 ns Must allow sufficient ACLK cycles for transfer of CTL word and data  ADCC_TCA0.NCK = 8 
CS Edge to ACLK Edge (tCSCK) 25 ns Minimum time at 40 MHz, recommended ADCC_TCB0.TCSCK = 1 
ACLK Edge to CS Edge (tCKCS) 0 ns Recommended ADCC_TCB0.TCKCS = 0 
Time Between CS (tCSCS) 225 ns Must be >150 ns for accurate sampling ADCC_TCB0.TCSCS = 9 
tCONV_ADC 450 ns   
tDMA 50 ns On average takes 4 SYSCLK cycles  
tIRQ 200 ns On average takes 16 SYSCLK cycles  
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ADC PIPELINING 
In the case where new events begin to overlap existing events 
that are being handled by the ADC, the ADCC stores the new 
events as pending events in an eight deep, first in, first out 
(FIFO) buffer, one of which is available for each ADC interface. 
When the control word is written for an active event, the ADCC 
immediately initiates writing of the control word for the first 
pending event, while the active event sampling phase occurs. 
Likewise, a second pending event has its control word phase 
initiated upon completion of the control word phase for the first 
pending event. In this manner, the ADCC can interleave three 
parallel events together on each ADC interface in a pipelined 
manner. Thus, events can be spaced together in a compact and 
efficient manner.  

Configuration of the event timing to achieve this pipelining of 
events results in the highest ADC throughput. This pipelining 
is illustrated in Figure 13 in which three pairs of simultaneous 
sampled events are triggered very close to each other. The 
ADCC begins to process Event 0 and Event 1, while storing 
Event 2 through Event 5 in the FIFOs. Subsequently, these 
events are handled as ADC resources become available.  

Figure 7 shows that during one of the CS assertions, the ADCC 
handles all six events at varying stages of each event, and that 
the time spacing between consecutive samples is only equal to 
18 ACLK cycles. This time spacing corresponds to 450 ns for 
the settings in Table 2 and can be reduced further by increasing 
the ACLK frequency. To maximize the bandwidth of the ADC 
within the motor control application, the best approach is to 

deliberately pipeline all of the PWM cycle related sampling 
events. This approach ensures that new ADC samples are 
available at the earliest opportunity within the PWM cycle. 
Implementation of the pipelining shown in Figure 13 requires 
that all of the event times are close to zero, that is, immediately 
after the PWM sync pulse.  

It is recommended to allow a minimum of 1 ACLK cycle 
between the event times stored in the event time registers, 
ADCC_EVTnn (nn is the number of registers from 0 to 24), 
to allow for correct scheduling. With pipelining operational, 
the total conversion time including start-up latency, DMA 
transfer, and interrupt servicing is shown in Figure 12 for 
different simultaneously sampled pair numbers with the timing 
settings shown in Table 2.  
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Figure 12. Total Conversion Time for Different Sample Pair Numbers 
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Figure 13. Pipelining of Events Within the ADC 
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ADC DATA ACCESS 
The examples shown thus far have all assumed that the ADC data 
is accessed in the memory via an automatic DMA transfer. Data 
access directly from core reads of the ADCC memory mapped 
registers (MMRs) is also possible, as shown in Figure 14. Note 
that ACK in Figure 14 represents an acknowledge signal, not 
the analog clock.  
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Figure 14. ADC Data Access in Core Mode 

In core mode, the CPU is signaled regarding the readiness of 
new data via either event or frame interrupts, which can be 
individually masked or unmasked, as desired. The additional 
flexibility in this mode is that individual events can be read as 
soon as they are completed, before the entire frame of events 
has completed. The disadvantage of core mode is that the overall 
latency involved in the interrupt servicing and MMR read accesses 
is higher than in DMA mode. With optimal core and clock ratio 
settings, each MMR read takes 10 to 12 SYSCLK cycles on top 
of the latency associated with each interrupt service.  

Data access in DMA mode is shown in Figure 15. In this case, 
DMA transfers only take place after the completion of a timer 
frame, and the frame interrupt signals the CPU only after the 
DMA transfer has been completed. 
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Figure 15. ADC Data Access in DMA Mode 

In both cases, the EISTAT and FISTAT registers provide status 
indications of the event and frame interrupts, where these are 
active, and these must be acknowledged by the CPU by clearing 
the relevant bits before the next trigger occurrence, or a trigger 
overrun condition is flagged. 

 

ADCC DATA FAULT DETECTION 
The ADCC has a number of error status register bits that are  
set on occurrence of data faults that can occur due to incorrect 
setup of the ADCC event timings, and/or nondeterministic 
event sequences. These faults can overload the ADCC or result 
in invalid ADC data and comprise the following: 

 Trigger overrun. Next trigger occurs before current frame 
has completed. 

 DMA bandwidth. Frame completion is taking longer than 
user defined time. 

 Memory error. Unsuccessful ADC data write. 
 Event collision. A new event occurs while processing an 

existing event. 
 Event miss. An event is not processed. 

All of these errors are configurable as interrupt sources to the 
core, if desired, and all of them set bits in the ADCC_ERRSTAT 
register. In a motor control context, and particularly for current 
feedback measurements, errors related to event miss, memory, 
and trigger overruns are important to monitor in the core 
application because incorrect or missing current loop data can 
result in control loop instability. Event collision is a normal 
occurrence in pipelined operation and is not generally critical 
unless the FIFO becomes full. 
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ADCC MODULE, TRIGGER ROUTING, AND MEMORY SETUP 
There are a number of steps in setting up the ADCC module 
along with the trigger routing unit and data buffers before the 
ADC is ready for use. Once configured, assuming DMA data 
access mode is used, the DMA engine automatically streams 
primary ADC data to memory where it can be accessed from 
within the main application. The ADCC generates an interrupt 
when data is ready so that the processor can execute the control 
algorithm and update the PWM modulator registers.  

Figure 17 outlines the interconnections required between the 
ADCC, CPU, SRAM, PWM, and external signals to capture 
motor current feedback and other analog monitoring signals in 
a typical motor control application. In this example, encoder sine 
and cosine signals, heat sink temperature, and dc bus voltage 
are provided as examples of additional monitoring inputs.  

The three steps for setting up the ADCC to correctly handle the 
signal feedback are as follows: 

1. ADCC event configuration. 
2. Interrupt and trigger routing. 
3. Data access and memory allocation. 

The following subsections describe the procedure and the relevant 
register configurations required for correct setup of the system. 

CONFIGURATION OF ADCC EVENTS  
Configuration of the ADCC events for the example shown in 
Figure 17 involves assignment of each event with a timer, an 
ADC interface and channel, a time offset, and a simultaneous 
sampling switch. This can be achieved in several ways; one 
possibility is shown in Figure 16 and listed in Table 3. This 
example utilizes both timers for illustration purposes only.  

For this specific example, the events can be linked to one timer 
because all of the events are timed in relation to the PWM SYNC 
pulse. A use case in which the use of both timers would be 
essential is a dual axis motor control algorithm, which uses two 
sets of PWM outputs and their corresponding PWM sync pulses.  
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Figure 16. Typical ADCC Use in a Motor Control Application 

Table 3. Event Configurations for Example Application 

Event Timer 
ADC 
I/F 

ADC 
Ch Time 

Simultaneous 
Sample 

E0 (eSIN) TMR0 0 0 tE0 Yes 
E1 (eCOS) TMR0 1 0 tE1 = tE0 Yes 
E2 (VDC) TMR0 0 2 tE2 No 
E3 (THS) TMR0 0 3 tE3 No 
E4 (iV) TMR1 0 1 0 Yes 
E5 (iW) TMR1 1 1 0 Yes 

Phase currents iV and iW are simultaneously sampled immediately 
after the PWM sync pulse trigger has occurred, and these phase 
currents are linked to TMR1. The Timer 1 frame is immediately 
DMA transferred to memory and the new current samples are 
available to be used by the main application program. At a later 
point in the PWM cycle, linked to TMR0, a new frame of events 
is sampled. The encoder sine and cosine signals are simultaneously 
sampled, closely followed by the dc bus voltage and heat sink 
temperature signals. The three ADC0 signals are pipelined for 
maximum throughput. The TMR0 frame is then DMA 
transferred to memory.  

Configuration of these parameters requires programming of the 
ADCC_EVCTLnn event control register and ADCC_EVTnn 
and event time register for each event number nn. Driver APIs 
described in this section are available to simplify this process. 
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Figure 17. System Interconnections in Typical Motor Control Application 
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INTERRUPTS AND TRIGGER ROUTING 
In the example in Figure 17, all events in time are referenced 
to the PWM cycle; therefore, both timers are triggered by the 
PWM sync pulse. The connection of the PWM sync pulse as a 
hardware trigger to the ADCC timers first requires configuration 
of the TRU to connect the PWM sync pulse as a master trigger 
to an ADCC trigger slave. Then, the ADCC timers must be 
linked to the ADCC trigger.  

The routing of the appropriate triggers is shown conceptually 
in Figure 18 and involves connection of the Trigger Master 19 
(PWM0 SYNC) to Trigger Slave 24 (ADCC_TRIG0) by writing 
the master number in the appropriate slave select register, 
TRU_SSR24 in this case. The ADCC_TRIG0 trigger is then 
routed to the two timers by setting the appropriate value for 
the TRIGSEL bits in the ADC_CTL register. 
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Figure 18. Trigger Routing from PWM Sync to ADCC Timers 

This trigger routing arrangement provides a direct link in hardware 
from the PWM timing to the ADC sampling with no software 
latencies in the path. The trigger master can also be routed from 
other sources, such as GPIO pin interrupts, timer, and counter 
events. This arrangement enables accurate synchronization of 
sampling with, for instance, other converters being controlled 
by the ADSP-CM408F. 

Furthermore, completion of ADCC timer frames can be connected 
as trigger masters to other peripheral or core slaves. 

Because DMA transfer mode is used in this example, all event 
interrupts should be masked in the ADCC_EIMSK register. Again, 
driver APIs are provided to register the appropriate interrupt 
service routines for the frame interrupts in DMA mode. 

Trigger Routing for Enhanced Precision Sample Timing 

Removal of the chip select pulse width lag from the current 
sample timing, as described previously, requires slightly 
different arrangement of the trigger routing. In this case, the 
ADCC timers are triggered from a GP timer trigger, which 
is itself triggered from PWM sync. This sequence can be seen 
in Figure 11.  

 

 

DATA ACCESS AND MEMORY ALLOCATION 
As illustrated in Figure 14 and Figure 15, the ADC data can be 
accessed either via core MMR reads or by making it available in 
SRAM by DMA transfer. In core mode, no specific memory 
allocation needs to be configured for the data apart from the 
variables to which the core MMR reads are being written. 
However, in DMA mode, specific memory area must be 
allocated and then configured for the DMA access, and this 
must be performed for each timer. The memory size required 
depends on the size of the frame associated with each timer and 
on how many frames need to be stored in memory before being 
overwritten by new frames.  

Figure 19 shows a conceptual SRAM map along with relevant 
ADCC registers that control the configuration of the SRAM. 
The ADCC_BPTR register must store a pointer to the memory 
base address for ADC samples to be stored. If more than one 
frame needs to be stored in the memory buffer, the ADCC_FRINC 
register contains the offset for the pointer to the base of the next 
frame. In linear buffering mode, which is activated by writing 
zero to the ADCC_CBSIZ register, additional frames are stored 
in the memory in a continuously increasing linear manner, 
spaced by the frame increment value. If a nonzero value, M, is 
written to the ADCC_CBSIZ, circular buffering is activated, 
and M frames are written to the memory before the frame base 
pointer returns to the ADCC_BPTR value and begins to 
overwrite the existing frames. 
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Figure 19. Memory Configuration for ADC DMA Transfers 

In the motor control application example in Figure 17, the ADC 
samples are gathered every PWM cycle and are used immediately 
within the control and monitoring application. Therefore, it 
does not make sense to store the samples in a linear manner 
because memory is very quickly overloaded. In such an 
application, it is better to enable circular buffering with M 
limited to 1 or some small value, or to set the ADCC_FRINC 
value to 0 and overwrite the frame every PWM cycle. The 
driver application programming interfaces (APIs) that simplify 
this task are outlined in the ADCC Software Support section. 
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ADCC SOFTWARE SUPPORT 
The Analog Devices enablement software package provided with 
the ADSP-CM40x EZKIT contains a number of API function 
calls that simplify the setup of the ADCC module discussed in 
this application note. These calls monitor correct configuration 
of the various register, as well as any status acknowledgments 
that need to take place. 

EXAMPLE CODE 
The example code in this application note illustrates a step-by-step 
approach to configuring and using the motor control application, 
shown in Figure 17. The device driver adds some overhead but 
significantly simplifies the programming of the ADCC module 
registers. 

The first section of code defines a number of parameter and 
configuration constants used in the driver API calls.  

Line 1 through Line 10 define the frame and associated data 
buffer sizes for each timer. The factor 2 is included in allocating 
the sample buffer lengths as a safety measure for debugging 
purposes. Because ADC sample transfer to memory is entirely 
hardware triggered (including DMA), inserting a software 
breakpoint at Line 122, before a new buffer is submitted to the 
driver and ADC buffer pointer are reset, can cause memory to 
be overwritten. Allowing an additional buffer for headroom 
prevents this debugging related issue from occurring. The 
number of frames in the buffer is defined as 1, which means 
that the API overwrites the memory buffer every time a new 
frame is submitted to it, that is, memory allocation is required 
for only one frame for each timer.  

Line 11 through Line 16 define the sample times for each event 
in ACLK cycle numbers as shown in Table 3. Note the 
separation of SMP_TIME1, SMP_TIME2, and SMP_TIME3 by 
only one ACLK cycle. This setup causes these events to be 
pipelined within ADC0.  

Line 17 to Line 44 define the control words for each ADC 
channel, the channel mapping for the six sampling events, and 
the array indices for each event within its data buffer. 

Line 45 to Line 59 declare the variables and function prototypes 
required for the ADC operation. The memory allocation sizes 
for the ADCC memory buffer and ADCC timer memory 
buffers are predefined by the API and must not be changed. 
One ADCC setup function, one TRU setup function, and two 
ISR callbacks (one for each ADCC timer) are registered. 

Line 60 to Line 91 contain the main ADCC configuration 
function SetupADC(). The first step is to set up the event 
configuration table, a struct that contains the event number, 
ADC control word, ADC timer, simultaneous sampling, and 
memory offset for each event.  

 

 

Following successful configuration of the ADCC events, an 
instance of the ADCC must be opened, as well as any ADCC 
timers associated with that instance. The callback function 
names for each timer frame interrupt must then be registered 
with the driver (Line 72 to Line 73). Following this, DMA mode 
is enabled (Line 74), and the ADCC clocks and chip selects are 
configured (Line 75 to Line 78).  

The timers are then configured, both with the ADCC_TRIG0 
input as the trigger source. The ADCC_TRIG0 trigger is 
separately connected as a trigger slave to the PWM sync pulse 
trigger master in the SetupTRU() function (Line 92 to Line 97) 
and as shown graphically in Figure 18. The data enumerations 
used in these function calls are listed in the Analog Devices 
Enablement Software package driver documentation.  

In Line 81, the EventCFG struct defined in Line 62 is passed 
to the adi_adcc_ConfigEvent driver function, and the 
adi_adcc_SetEventMask driver function then enables or masks 
the events as required. In this case, all events are enabled. For 
maximum ADC throughput, it is important to enable the dual 
bit data interface as per Line 83, meaning that 16-bit data can be 
transferred from the ADC in eight ADC clock cycles. (Note that 
if the dual-bit interface is not enabled, NCK in Line 76 and tCSCS 
in Line 77 and Line 78 must be set to 16 and 17, respectively.) 
Memory is then allocated for the data buffers, and the data 
buffers are submitted to the ADCC for filling via the 
adi_adcc_SubmitBuffer call. The adi_adcc_SubmitBuffer API 
only works in DMA mode; therefore, DMA mode must be set 
first before using this API. This driver function is called again 
by the main application in Line 105 to return the buffer to the 
ADCC control once data is extracted from it by the application. 
Finally, when all configurations are completed, the instances of 
the timers and ADCC itself need to be enabled. 

Line 92 to Line 97 contain the setup of the TRU, which involves 
opening an instance of the TRU, routing the trigger from the 
PWM sync master to the ADCC slave, and enabling the TRU. 

As described previously, the processing of the ADC data at the 
application level is handled via ADCC timer callbacks following 
an interrupt on completion of the timer events and associated 
DMA transfers.  

Line 98 to Line 127 provide the implementation of the 
callbacks. The buffered data is extracted from the relevant 
locations within the buffer and saved to the appropriate global 
variables. In this example, the updated phase current data is 
then used immediately within the motor control algorithm, 
which is called from the Timer 1 callback via the algorithm call 
MotorControl() in Line 117.  
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Note that the servicing of the ADCC event timer interrupt is 
the only software call that takes place to access the ADCC data. 
Synchronization and timing all take place at the hardware level. 

Line 128 to Line 136 provide additional code snippets that can 
be inserted into the TRU and ADCC setup functions to enable 
the enhanced precision sample timing functionality depicted in 
Figure 11. In Line 128 to Line 129, the hardware trigger routing 

path from PWM sync to GP timer TMR7 to ADCC Timer 0 
trigger is set up. Line 130 to Line 136 provide sample code that can 
be inserted within the ADC setup function to correctly configure 
and enable the GP timer TMR7 to provide the correct delay. 

In all cases, the SetupTRU function call must occur prior to 
calling the SetupADC function. 
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/************************************************* 

ADCC Module Setup Code Example 
*************************************************/ 
 
/********************Defines*********************/ 
1. #define ADCC_DEVICE_NUM         0 
2. #define TRU_DEV_NUM             0 
3. #define ADI_TRU_REQ_MEMORY 
4. #define NUM_SAMPLES0       4              
5. #define NUM_SAMPLES1       2           /* 

Length of ADC buffers */ 
6. #define FRAME_INC0    

2*NUM_SAMPLES0*sizeof(short)   
7. #define FRAME_INC1    

2*NUM_SAMPLES1*sizeof(short)  /* Frame 
increment in number of bytes for each buffer*/ 

8. #define FRAMES_IN_BUFFER  1   /*Number of 
frames in buffer */  

9. #define NO_OF_EVENTS     6         /* Total 
number of events */ 

10. #define EVENT_MASK              0xFFFF 
 
/*Event Times in ACLK Cycles*/ 
11. #define SMP_TIME0            950       
12. #define SMP_TIME1            950            
13. #define SMP_TIME2            951            
14. #define SMP_TIME3            952            
15. #define SMP_TIME4            0                 
16. #define SMP_TIME5            0                 

 
/* Control Words for All ADC Channels */ 
/*Upper Nibble = Chan No. Lower Nibble = 0xF for 
Sim Sampling, 0xD Otherwise*/ 
17. #define ADC0_VIN00_CTL          0x0F 
18. #define ADC0_VIN01_CTL          0x1F 
19. #define ADC0_VIN02_CTL          0x2D 
20. #define ADC0_VIN03_CTL          0x3D 
21. #define ADC0_VIN04_CTL          0x4D 
22. #define ADC0_VIN05_CTL          0x5D 
23. #define ADC0_VIN06_CTL          0x6D 
24. #define ADC0_VIN07_CTL          0x7D   
 
25. #define ADC1_VIN00_CTL          0x0F 
26. #define ADC1_VIN01_CTL          0x1F 
27. #define ADC1_VIN02_CTL          0x2D 
28. #define ADC1_VIN03_CTL          0x3D 
29. #define ADC1_VIN04_CTL          0x4D 
30. #define ADC1_VIN05_CTL          0x5D 
31. #define ADC1_VIN06_CTL          0x6D 
32. #define ADC1_VIN07_CTL          0x7D 
 
/*Mapping the Signals to the Appropriate ADC 
Channels*/ 
33. #define ES_CTL                 ADC0_VIN00_CTL 
34. #define EC_CTL                 ADC1_VIN00_CTL 
35. #define VDC_CTL                ADC0_VIN02_CTL 
36. #define THS_CTL                ADC0_VIN03_CTL 
37. #define IV_CTL                 ADC0_VIN01_CTL 
38. #define IW_CTL                 ADC1_VIN01_CTL 
 
/*Locations of ADC Signals in Data Buffer Index*/ 
39. #define IV_ADC                  0 
40. #define IW_ADC                  1 
41. #define ES_ADC                  0 
42. #define EC_ADC                  1 
43. #define VDC_ADC                 2 
44. #define THS_ADC                 3 
 
 
 
 
 
 

/*******************Variables********************/ 
45. static ADI_ADCC_HANDLE hADCC;             /* 

ADCC Handle */ 
46. static ADI_ADCC_HANDLE hADCCTimer0, 

hADCCTimer1;   /*ADCC Timer Handles*/ 
47. static uint8_t ADCCMemory[ADI_ADCC_MEMORY];                    

/* Memory buffer for the ADCC device - 
predefined */ 

48. static uint8_t 
ADCCTmr0Memory[ADI_ADCC_TMR_MEMORY]; 

49. static uint8_t 
ADCCTmr1Memory[ADI_ADCC_TMR_MEMORY];    /* 
Memory buffer for the ADCC Timers - 
predefined*/ 

50. static uint16_t SampleBuffer0[NUM_SAMPLES0]; 
51. static uint16_t SampleBuffer1[NUM_SAMPLES1];  

/* Memory buffer for the ADC samples */ 
52. static uint16_t Iv_adc, Iw_adc; 
53. static uint16_t Es_adc, Ec_adc, Vdc_adc, 

Ths_adc;  
/*Variables for ADC data*/ 

54. static uint8_t  
TruDevMemory[ADI_TRU_REQ_MEMORY]; 

55. static ADI_TRU_HANDLE hTru; 
   /*TRU Device Memory and Handle*/ 
 
/*************Function Prototypes****************/ 
56. void SetupADC(void); 
57. void SetupTRU(void); 
58. static void AdccTmr0Callback(void *pCBParam, 

uint32_t Event, void *pArg); 
59. static void AdccTmr1Callback(void *pCBParam, 

uint32_t Event, void *pArg); 
 
/******Function to Configure ADCC***************/ 
60. void SetupADC(void) { 
61. static ADI_ADCC_RESULT result;   
 
/*Set Up Event Configuration Table*/ 
62. ADI_ADCC_EVENT_CFG  EventCFG[NO_OF_EVENTS] = {  
63. {0,  ES_CTL, ADI_ADCC_ADCIF0, ADI_ADCC_TIMER0, 

true,  0, SMP_TIME0}, 
64. {1,  EC_CTL, ADI_ADCC_ADCIF1, ADI_ADCC_TIMER0, 

true,  2, SMP_TIME1},  
65. {2,  VDC_CTL, ADI_ADCC_ADCIF0, 

ADI_ADCC_TIMER0, false,  4, SMP_TIME2 }, 
66. {3,  THS_CTL, ADI_ADCC_ADCIF0, 

ADI_ADCC_TIMER0, false,  6, SMP_TIME3 }, 
67. {4,  IV_CTL, ADI_ADCC_ADCIF0, ADI_ADCC_TIMER1, 

true,  8, SMP_TIME4 }, 
68. {5,  IW_CTL, ADI_ADCC_ADCIF1, ADI_ADCC_TIMER1, 

true, 10, SMP_TIME5 }}; /*Event#, CTL_WORD, 
ADC Interface, Timer ID, sim. samp, Mem offset 
in frame, Event time */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rev. A | Page 15 of 18 



AN-1267 Application Note 
 
/*ADCC Setup API Functions*/ 
69. result = adi_adcc_OpenDevice(ADCC_DEVICE_NUM, 

ADCCMemory, &hADCC);   
70. result = adi_adcc_OpenTimer(hADCC, 

ADI_ADCC_TIMER0, ADCCTmr0Memory, 
&hADCCTimer0);  

71. result = adi_adcc_OpenTimer(hADCC, 
ADI_ADCC_TIMER1, ADCCTmr1Memory, 
&hADCCTimer1); /* ADCC Device handle, Timer to 
open, Timer memory, Pointer to the timer 
handle */   

72. result = adi_adcc_RegisterTmrCallback 
(hADCCTimer0, AdccTmr0Callback, hADCCTimer0);  

73. result = adi_adcc_RegisterTmrCallback 
(hADCCTimer1, AdccTmr1Callback, 
hADCCTimer1);/*Register callback functions*/ 

74. result = adi_adcc_EnableDMAMode(hADCC,true);   
  

75. result = adi_adcc_ConfigADCCClock(hADCC, 
ADI_ADCC_ADCIF0, false,1u, 8u ); 

76. result = adi_adcc_ConfigADCCClock(hADCC, 
ADI_ADCC_ADCIF1, false,1u, 8u ); /*For each 
ADC interface: ADCC handle, ADC Interface 
number, falling edge, ACLK Clock divide, NCK*/ 

77. result = adi_adcc_ConfigChipSelect(hADCC, 
ADI_ADCC_ADCIF0, false, 1u, 0u, 9);  

78. result = adi_adcc_ConfigChipSelect(hADCC, 
ADI_ADCC_ADCIF1, false, 1u, 0u, 9);/*For each 
interface: ADCC handle, ADC interface, active 
low, TCSCK, TCKCS, TCSCS*/ 

79. result = adi_adcc_ConfigTimer(hADCCTimer0, 
ADI_ADCC_TRIG0, true, false);  

80. result = adi_adcc_ConfigTimer(hADCCTimer1, 
ADI_ADCC_TRIG0, true, false); /*For each 
timer: Timer handle, Timer trigger source, 
falling edge trigger, No trigger output */  

81. result = adi_adcc_ConfigEvent(hADCC, 
&EventCFG[0], NO_OF_EVENTS);  /*ADCC handle, 
Pointer to the event configuration table, 
Number of events in the table */ 

82. result = adi_adcc_SetEventMask(hADCC, 
EVENT_MASK);                             /* 
Handle to the device, Enable all events */ 

83. adi_adcc_EnableDualBitDataIF(hADCC, true); 
/*Dual bit interface allows highest 
throughput*/ 

84. memset((void *)SampleBuffer0, 0, NUM_SAMPLES0 
* sizeof(short)); 

85. memset((void *) SampleBuffer1, 0, NUM_SAMPLES1 
* sizeof(short)); 

86. result = adi_adcc_SubmitBuffer(hADCCTimer0, 
SampleBuffer0, FRAME_INC0, FRAMES_IN_BUFFER);  

87. result = adi_adcc_SubmitBuffer(hADCCTimer1, 
SampleBuffer1, FRAME_INC1, FRAMES_IN_BUFFER);  

/*For each timer: timer handle, Pointer to the 
buffer, Frame increment,  Number of frames 
that fits into the given buffer */ 

 
88. result = adi_adcc_EnableTimer(hADCCTimer0, 

true); 
89. result = adi_adcc_EnableTimer(hADCCTimer1, 

true); 
90. result = adi_adcc_EnableDevice(hADCC, true); 
    /*Enable everything*/ 
91. } 
 
 
 
 
 
 
 
 

/*******Function to Configure TRU****************/ 
92. void SetupTRU(void){ 
93. ADI_TRU_RESULT result; 
94. result = adi_tru_Open (TRU_DEV_NUM, 

&TruDevMemory[0], ADI_TRU_REQ_MEMORY, &hTru); 
/* Setup TRU for ADCC. Slave is ADCC0 trig 1 
and master is PWM0 SYNC pulse*/ 

95. result = adi_tru_TriggerRoute (hTru, 
TRGS_ADCC0_TRIG0, TRGM_PWM0_SYNC);  /*TRU 
device, slave, master*/ 

96. result = adi_tru_Enable (hTru, true); /*Enable 
TRU*/ 

97. } 
 
/***********ADCC Timer Callbacks*****************/ 
98. static void AdccTmr0Callback(void *pCBParam, 

uint32_t Event, void *pArg){ 
99.   switch(Event){ 
100.      case ADI_ADCC_EVENT_FRAME_PROCESSED: 
101.        Es_adc= SampleBuffer0[ES_ADC]; 
102.        Ec_adc = SampleBuffer0[EC_ADC]; 
103.        Vdc_adc = SampleBuffer0[VDC_ADC]; 
104.        Ths_adc = SampleBuffer0[THS_ADC];  

/*Store all of the data sampled in appropriate 
global variables*/ 

105. _adcc_SubmitBuffer(hADCCTimer0, 
SampleBuffer0, FRAME_INC0, FRAMES_IN_BUFFER); 
/*Return the buffer to the ADCC for use in the 
next events*/ 

106.        break;   
107.    case ADI_ADCC_EVENT_BUFFER_PROCESSED: 
108.        break;                                          
109.    default: 
110.       break;               
111.   } 
 
112. static void AdccTmr1Callback(void 

*pCBParam, uint32_t Event, void *pArg){ 
 
113.   switch(Event){ 
114.      case ADI_ADCC_EVENT_FRAME_PROCESSED: 
115.        Iv_adc = SampleBuffer1[IV_ADC]; 
116.        Iw_adc = SampleBuffer1[IW_ADC]; 
117.        MotorControl();     /*Run the 

current control algorithm*/ 
118.         
119.         
120.        break;   
 
121.    case ADI_ADCC_EVENT_BUFFER_PROCESSED: 
122. adi_adcc_SubmitBuffer(hADCCTimer1, 

SampleBuffer1, FRAME_INC1, FRAMES_IN_BUFFER); 
123.        break;                                          
124.    default: 
125.       break;               
126.   } 
127. return; 
   } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rev. A | Page 16 of 18 



Application Note AN-1267 
 
/************************************************* 

Enhanced Precision Timing Code 
*************************************************/ 
/*Setup TRU for ADCC enhanced timing precision. 
Slave is ADCC0 trig 1 and master is GP timer 7 
Added to SetpTRU() function in place of line 95 */ 
 
128. result = adi_tru_TriggerRoute(hTru, 

TRGS_ADCC0_TRIG0, TRGM_TIMER0_TMR7);  // TRU 
device, slave, master   

129. result = adi_tru_TriggerRoute(hTru, 
TRGS_TIMER0_TMR7, TRGM_PWM0_SYNC);  // TRU 
device, slave, master 

 
/*Setup GP timer 7 timer used to advance frame by 
one CS. Add to SetupADC() function after line 91*/ 
 
130. *pREG_TIMER0_STOP_CFG_SET = 

BITM_TIMER_STOP_CFG_TMR07;   
131. *pREG_TIMER0_RUN_CLR = 

BITM_TIMER_RUN_SET_TMR07; /*Disable Timer 
First*/ 

132. *pREG_TIMER0_TMR7_CFG = 
ENUM_TIMER_TMR_CFG_PWMSING_MODE|ENUM_TIMER_TMR
_CFG_IRQMODE1 |ENUM_TIMER_TMR_CFG_TRIGSTART | 
ENUM_TIMER_TMR_CFG_POS_EDGE|ENUM_TIMER_TMR_CFG
_PADOUT_EN | ENUM_TIMER_TMR_CFG_EMU_CNT;   

133. *pREG_TIMER0_TMR7_DLY = (uint32_t)(fsysclk 
/ F_SW - 0.00000045 * fsysclk); /* Delay must 
be Tsw minus one ADC chip-select. Chip select 
is 18 ACLKs*/ 

134. *pREG_TIMER0_TMR7_WID = 16; /*Be careful 
here... DLY+WID must be smaller than one PWM 
period. In other words, WID must be smaller 
than one ADC chip select. If WID>CS, trigger 
pulse stretches into next PWM period. */ 

135. *pREG_TIMER0_TRG_MSK &= 
~(BITM_TIMER_TRG_MSK_TMR07); 

136. *pREG_TIMER0_TRG_IE |= 
BITM_TIMER_TRG_IE_TMR07; /*Enable TMR7*/ 
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EXAMPLE EXPERIMENTAL RESULTS 
The current sampling portions of the code described in the 
Example Code section have been tested in a closed-loop, 
permanent magnet synchronous motor control application 
circuit. The application circuit operates over a universal ac line 
input and over a controlled motor current range of −6.8 A to 
+6.8 A, using the current transducer referred to in the current 
scaling data in Figure 4. Sample results from the application 
circuit are shown in Figure 20 to Figure 23.  

Figure 20 displays the measured motor phase current with a 
1500 rpm speed reference and no load on the motor. The motor 
current level is very low and highly discontinuous.  

The averaging effect of the correctly synchronized sampling 
approach is shown in Figure 21, where the smooth sinusoidal 
averaged shape of the motor phase currents is evident, even at 
current levels <2% of maximum. Figure 21, as well as Figure 22, 
which shows the operation of the control loop in tracking the IQ 
reference current, is generated from data streamed from the 
ADSP-CM408F over an RS-232 to a MATLAB® interface. 

In Figure 23, the location of the PWM sync pulse, and 
consequent triggering of sampling, is shown at the center of the 
phase current PWM cycle where the current is equal to the 
instantaneous average. This plot is shown at a higher load for 
ease of illustration. 
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Figure 20. Measured Motor Phase Current 
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Figure 21. ADC Sampled Motor Phase Current: (Top) Scaled to Real-World 
Value and (Bottom) Digital Word Output 
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Figure 22. Q-Axis Reference Current and Actual Current 
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Figure 23. Sampling in Relation to Phase Current 
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