LTR	DESCRIPTION	DATE	APPROVED
A	Add nominal dimension limits under figure 1. Update document paragraphs to current requirements. - ro	$17-06-15$	C. SAFFLE

Prepared in accordance with ASME Y14.24
Vendor item drawing

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance 8 channel CMOS multiplexer microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type

01

Generic

ADG1408-EP

Circuit function

8 channel CMOS multiplexer
1.2.2 Case outline(s). The case outline(s) are as specified herein.

Outline letter
X

Number of pins

16

JEDEC PUB 95
MO-153-AB

Package style
Plastic thin shrink small outline
1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

A
B
C
D
E
Z

Material

Hot solder dip
Tin-lead plate
Gold plate
Palladium
Gold flash palladium
Other

1.3 Absolute maximum ratings. 1/

Positive supply voltage (VDD) to negative supply voltage (VSS) 35 V
VDD to ground (GND) -0.3 V to +25 V
Vss to GND +0.3 V to -25 V
Analog inputs, digital inputs $2 /$ Vss - 0.3 V to VDD +0.3 V or30 mA , whichever occurs first
Continuous current, source (S) or drain (D) Table I data + 10\%
Peak current, S or D (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum) 350 mA
Storage temperature range (TSTG) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction temperature (TJ) $+150^{\circ} \mathrm{C}$
Lead temperature, soldering
Vapor phase (60 seconds) $215^{\circ} \mathrm{C}$
Infared (15 seconds) $220^{\circ} \mathrm{C}$
Thermal resistance, junction to ambient ($\theta \mathrm{JC}$) $50^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction to ambient ($\theta \mathrm{JA}$) $150.4^{\circ} \mathrm{C} / \mathrm{W}$
1.4 Recommended operating conditions. 3/ 4/
Operating free-air temperature range (TA) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2/ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
3/ Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

4/ All ratings and specifications, please refer to relevant EP datasheet.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association
JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices
(Applications for copies should be addressed to the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington, VA 22201-3834 or online at http://www.jedec.org).
3. REQUIREMENTS
3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1 .
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Truth table. The truth table shall be as shown in figure 3.
3.5.4 Timing waveforms and test circuits. The timing waveforms and test circuits shall be as shown in figures 4 through 14.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/11612			
		REV	A

TABLE I. Electrical performance characteristics. 1//

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
15 V dual supply.							
Unless otherwise specified, VDD $=+15 \mathrm{~V} \pm 10 \%$, VSS $=-15 \mathrm{~V}, \pm 10 \%$, GND $=0 \mathrm{~V}$.							
Analog switch section.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		Vss to VDD	V
On resistance	Ron	$\mathrm{Vs}= \pm 10 \mathrm{~V}, \mathrm{Is}=-10 \mathrm{~mA}$ VDD = +13.5 V, VSS = -13.5 V, see figure 4	$+25^{\circ} \mathrm{C}$	01		4.7	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			6.7	
On resistance match between channels	$\triangle \mathrm{RON}$	$\mathrm{VS}= \pm 10 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$,	$+25^{\circ} \mathrm{C}$	01		0.78	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.1	
On resistance flatness	RFLAT(ON)	$\mathrm{VS}= \pm 10 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$,	$+25^{\circ} \mathrm{C}$	01		0.72	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.92	
Leakage current sectio		$\mathrm{V} D \mathrm{D}=+16.5 \mathrm{~V}, \mathrm{VSS}=-16.5 \mathrm{~V}$					
Source off leakage	IS(off)	$\mathrm{VS}= \pm 10 \mathrm{~V}, \mathrm{VD}=\mp 10 \mathrm{~V}$ see figure 5	$+25^{\circ} \mathrm{C}$	01		± 0.2	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 5	
Drain off leakage	ID(off)	$\mathrm{VS}= \pm 10 \mathrm{~V}, \mathrm{VD}=\mp 10 \mathrm{~V}$ see figure 5	$+25^{\circ} \mathrm{C}$	01		± 0.45	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	
Channel on leakage	ID, IS(on)	$V S=V D= \pm 10 \mathrm{~V}$ see figure 6	$+25^{\circ} \mathrm{C}$	01		± 1.5	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	
Digital inputs section.							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		0.8	V
Input current	IIN	VIN $=$ VGND or VDD	$+25^{\circ} \mathrm{C}$	01	± 0.005 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	CIN		$+25^{\circ} \mathrm{C}$	01		ical	pF

See footnotes at end of table.

	16236
REV	A

TABLE I. Electrical performance characteristics - Continued. 1

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
15 V dual supply - continued.							
Unless otherwise specified, VDD $=+15 \mathrm{~V} \pm 10 \%$, VSS $=-15 \mathrm{~V}, \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$.							
Dynamic characteristics section. $2 /$							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{VS}=10 \mathrm{~V}, \mathrm{RL}=100 \Omega \\ & \mathrm{CL}=35 \mathrm{pF}, \text { see figure } 7 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		170	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			240	
Break before make time delay	tBBM	$\begin{aligned} & \mathrm{V} 11=\mathrm{V} 22=10 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF} \text {, see figure } 8 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01	50 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		19		
Active high digital input on time	tON(EN)	$\begin{aligned} & \mathrm{VS}=10 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		120	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			165	
Active high digital input off time	toFF(EN)	$\begin{aligned} & \mathrm{VS}=10 \mathrm{~V}, \mathrm{RL}=100 \Omega \\ & \mathrm{CL}=35 \mathrm{pF}, \text { see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		120	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			170	
Charge injection		$\mathrm{VS}=0 \mathrm{~V}, \mathrm{RS}=0 \Omega, \mathrm{CL}=1 \mathrm{nF},$ see figure 10	$+25^{\circ} \mathrm{C}$	01	-50	ical	pC
Off isolation		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 11	$+25^{\circ} \mathrm{C}$	01	-70	ical	dB
Channel to channel crosstalk		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 12	$+25^{\circ} \mathrm{C}$	01	-70	ical	dB
Total harmonic distortion,	THD+N	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{RL}=110 \Omega, 15 \mathrm{VPP} \text {, see figure } 13 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01	0.025	pical	\%
-3 dB bandwidth		$\mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 14	$+25^{\circ} \mathrm{C}$	01	60	cal	MHz
Insertion loss		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 14	$+25^{\circ} \mathrm{C}$	01	0.24	ical	dB

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

	16236
REV	A

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
15 V dual supply - continued.							
Unless otherwise specified, VDD $=+15 \mathrm{~V} \pm 10 \%$, VSS $=-15 \mathrm{~V}, \pm 10 \%$, GND $=0 \mathrm{~V}$.							
Dynamic characteristics section - continued. 2/							
Source capacitance off	Cs(off)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01		ical	pF
Drain capacitance off	CD(off)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01		ical	pF
Drain and source capacitance (on)	CD, Cs (on)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01			pF
Power requirements section. $\quad \mathrm{V} D \mathrm{LD}=+16.5 \mathrm{~V}, \mathrm{VSS}=-16.5 \mathrm{~V}$							
Positive supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or VDD	$+25^{\circ} \mathrm{C}$	01	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
		Digital inputs $=5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		220 typical		
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			420	
Negative supply current	ISS	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or VDD	$+25^{\circ} \mathrm{C}$	01	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
Positive power supply voltage	VDD		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01	± 4.5		V
Negative power supply voltage	Vss		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		± 16.5	V

See footnotes at end of table.

SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612	
	REV	A	PAGE 7

TABLE I. Electrical performance characteristics - Continued. 1

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
12 V single supply .							
Unless otherwise specified, VDD $=+12 \mathrm{~V} \pm 10 \%$, VSS $=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.							
Analog switch section.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		$\begin{gathered} 0 \text { to } \\ \text { VDD } \end{gathered}$	V
On resistance	Ron	$\begin{aligned} & \mathrm{VS}=0 \mathrm{~V} \text { to } 10 \mathrm{~V} \text {, } \mathrm{IS}=-10 \mathrm{~mA}, \\ & \mathrm{VDD}=10.8 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \\ & \text { see figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		8	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			11.2	
On resistance match between channels	$\Delta \mathrm{RON}$	$\mathrm{VS}=0 \mathrm{~V}$ to 10 V , $\mathrm{IS}=-10 \mathrm{~mA}$,	$+25^{\circ} \mathrm{C}$	01		0.82	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.1	
On resistance flatness	$\mathrm{RF}(\mathrm{ON})$	$\mathrm{VS}=0 \mathrm{~V}$ to10 V , $\mathrm{IS}=-10 \mathrm{~mA}$,	$+25^{\circ} \mathrm{C}$	01		2.5	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			2.8	
Leakage current section.		$\mathrm{V} D \mathrm{D}=13.2 \mathrm{~V}$					
Source off leakage	IS(off)	$\begin{aligned} & \mathrm{Vs}=1 \mathrm{~V} \text { and } 10 \mathrm{~V}, \\ & \mathrm{VD}=10 \mathrm{~V} \text { and } 1 \mathrm{~V} \text {, see figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		± 0.2	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 5	
Drain off leakage	ID(off)	$\begin{aligned} & \mathrm{VS}=1 \mathrm{~V} \text { and } 10 \mathrm{~V}, \\ & \mathrm{VD}=10 \mathrm{~V} \text { and } 1 \mathrm{~V} \text {, see figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		± 0.45	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 37	
Channel on leakage	ID, IS(on)	$\mathrm{Vs}=\mathrm{VD}=1 \mathrm{~V} \text { or } 10 \mathrm{~V},$ see figure 6	$+25^{\circ} \mathrm{C}$	01		± 0.44	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 32	
Digital inputs section.							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		0.8	V
Input current	IIN	VIN $=$ VGND or V DD	$+25^{\circ} \mathrm{C}$	01	± 0.005 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	CIN		$+25^{\circ} \mathrm{C}$	01			pF

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

	16236
REV	A

TABLE I. Electrical performance characteristics - Continued. 1

Test	Symbol	Conditions	Temperature,TA	Device type	Limits		Unit
					Min	Max	
12 V single supply - continued.							
Unless otherwise specified, VDD $=+12 \mathrm{~V} \pm 10 \%$, VSS $=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.							
Dynamic characteristics section. $\underline{1} /$							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{VS}=8 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF}, \text { see figure } 7 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		260	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			380	
Break before make time delay	tBBM	$\begin{aligned} & \mathrm{V} 11=\mathrm{VS} 2=8 \mathrm{~V}, \mathrm{RL}=100 \Omega \\ & \mathrm{CL}=35 \mathrm{pF} \text {, see figure } 8 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01	90 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		40		
Active high digital input on time	ton(EN)	$\begin{aligned} & \mathrm{VS}=8 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF}, \text { see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		210	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			285	
Active high digital input off time	tOFF(EN)	$\begin{aligned} & \mathrm{VS}=8 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF}, \text { see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		145	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			200	
Charge injection		$\mathrm{Vs}=6 \mathrm{~V}, \mathrm{RS}=0 \Omega, \mathrm{CL}=1 \mathrm{nF},$ see figure 10	$+25^{\circ} \mathrm{C}$	01	-12	ical	pC
Off isolation		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 11	$+25^{\circ} \mathrm{C}$	01	-70	cal	dB
Channel to channel crosstalk		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 12	$+25^{\circ} \mathrm{C}$	01	-70	cal	dB
-3 dB bandwidth		$\mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 14	$+25^{\circ} \mathrm{C}$	01			MHz
Insertion loss		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 14	$+25^{\circ} \mathrm{C}$	01	0.5	cal	dB

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

	16236
REV	A

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
12 V single supply - continued.							
Unless otherwise specified, VDD $=+12 \mathrm{~V} \pm 10 \%$, VSS $=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$.							
Dynamic characteristics section - continued. $\underline{1} /$							
Source capacitance off	Cs(off)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01			pF
Drain capacitance off	CD(off)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	165	ical	pF
Drain and source capacitance (on)	CD, Cs (on)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	200	ical	pF
Power requirements section. $\quad \mathrm{VDD}=13.2 \mathrm{~V}$							
Positive supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or VDD	$+25^{\circ} \mathrm{C}$	01	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
		Digital inputs $=5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		220 typical		
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			420	
Positive power supply voltage	VDD	$\mathrm{VSS}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01	5	16.5	V

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612	
		REV	A	PAGE 10

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
5 V dual supply .							
Unless otherwise specified, VDD $=+5 \mathrm{~V} \pm 10 \%$, VSS $=-5 \mathrm{~V}, \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$.							
Analog switch section.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		Vss to VDD	V
On resistance	RoN	$\mathrm{Vs}= \pm 4.5 \mathrm{~V}, \mathrm{Is}=-10 \mathrm{~mA},$ VDD = +4.5 V, VSS = -4.5 V, see figure 4	$+25^{\circ} \mathrm{C}$	01		9	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			12	
On resistance match between channels	$\Delta \mathrm{RON}$	$\mathrm{VS}= \pm 4.5 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$,	$+25^{\circ} \mathrm{C}$	01		0.78	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.1	
On resistance flatness	RFLAT(ON)	$\mathrm{VS}= \pm 4.5 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$,	$+25^{\circ} \mathrm{C}$	01		2.5	Ω
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			3	
Leakage current section.		$\mathrm{V} D \mathrm{D}=+5.5 \mathrm{~V}, \mathrm{VSS}=-5.5 \mathrm{~V}$					
Source off leakage	IS(off)	$\mathrm{VS}= \pm 4.5 \mathrm{~V}, \mathrm{VD}=\mp 4.5 \mathrm{~V}$ see figure 5	$+25^{\circ} \mathrm{C}$	01		± 0.2	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 5	
Drain off leakage	ID(off)	$\mathrm{Vs}= \pm 4.5 \mathrm{~V}, \mathrm{VD}=-4.5 \mathrm{~V}$ see figure 5	$+25^{\circ} \mathrm{C}$	01		± 0.45	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 20	
Channel on leakage	ID, Is(on)	$\mathrm{VS}=\mathrm{VD}= \pm 4.5 \mathrm{~V},$ see figure 6	$+25^{\circ} \mathrm{C}$	01		± 0.3	nA
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 22	
Digital inputs section.							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		0.8	V
Input current	IIN	VIN = VGND or VDD	$+25^{\circ} \mathrm{C}$	01	± 0.005 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	CIN		$+25^{\circ} \mathrm{C}$	01		ical	pF

See footnotes at end of table.

	16236
REV	A

TABLE I. Electrical performance characteristics - Continued. 1

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
5 V dual supply - continued.							
Unless otherwise specified, VDD $=+5 \mathrm{~V} \pm 10 \%$, VSS $=-5 \mathrm{~V}, \pm 10 \%$, GND $=0 \mathrm{~V}$.							
Dynamic characteristics section. 2/							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{VS}=5 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF} \text {, see figure } 7 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		440	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			550	
Break before make time delay	tBBM	$\mathrm{VS} 1=\mathrm{VS} 2=5 \mathrm{~V}, \mathrm{RL}=100 \Omega,$ $C L=35 \mathrm{pF}$, see figure 8	$+25^{\circ} \mathrm{C}$	01	100 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		45		
Active high digital input on time	ton(EN)	$\begin{aligned} & \mathrm{VS}=5 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		330	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			440	
Active high digital input off time	tOFF(EN)	$\begin{aligned} & \mathrm{VS}=5 \mathrm{~V}, \mathrm{RL}=100 \Omega, \\ & \mathrm{CL}=35 \mathrm{pF}, \text { see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01		285	ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			370	
Charge injection		$\mathrm{Vs}=0 \mathrm{~V}, \mathrm{RS}=0 \Omega, \mathrm{CL}=1 \mathrm{nF},$ see figure 10	$+25^{\circ} \mathrm{C}$	01	-10	cal	pC
Off isolation		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF},$ see figure 11	$+25^{\circ} \mathrm{C}$	01	-70	cal	dB
Channel to channel crosstalk		$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, C L=5 \mathrm{pF} \text {, } \\ & \text { see figure } 12 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01	-70	cal	dB
Total harmonic distortion,	THD +N	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{RL}=110 \Omega, 5 \mathrm{VPP} \text {, see figure } 13 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01	0.06	ical	\%
-3 dB bandwidth		$\mathrm{RL}=50 \Omega, \mathrm{CL}=5 \mathrm{pF},$ see figure 14	$+25^{\circ} \mathrm{C}$	01	40		MHz
Insertion loss		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF},$ see figure 14	$+25^{\circ} \mathrm{C}$	01	0.5	cal	dB

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

	16236
REV	A

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
5 V dual supply - continued.							
Unless otherwise specified, VDD $=+5 \mathrm{~V} \pm 10 \%$, VSS $=-5 \mathrm{~V}, \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$.							
Dynamic characteristics section - continued. 2/							
Source capacitance off	Cs(off)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01		ical	pF
Drain capacitance off	CD(off)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01		ical	pF
Drain and source capacitance (on)	CD, Cs (on)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01		cal	pF
Power requirements section. $\quad \mathrm{V} D \mathrm{LD}=+5.5 \mathrm{~V}, \mathrm{VSS}=-5.5 \mathrm{~V}$							
Positive supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or VDD	$+25^{\circ} \mathrm{C}$	01	0.001 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
Negative supply current	ISS	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or VDD	$+25^{\circ} \mathrm{C}$	01	0.001 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
Positive power supply voltage	VDD		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01	± 4.5		V
Negative power supply voltage	Vss		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01		± 16.5	V

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions	Temperature, TA	Device type	Limits		Unit
					Min	Max	
Continuous current, per channel, source (S) or drain (D). 2/							
Continuous current, 15 V dual supply		$\mathrm{VDD}=+13.5 \mathrm{~V}, \mathrm{VSS}=-13.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	01		190	mA
			$85^{\circ} \mathrm{C}$			105	
			$125^{\circ} \mathrm{C}$			50	
Continuous current, 12 V single supply		$\mathrm{V} D \mathrm{~L}=10.8 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	01		160	mA
			$85^{\circ} \mathrm{C}$			95	
			$125^{\circ} \mathrm{C}$			50	
Continuous current, 5 V dual supply		$\mathrm{V} D \mathrm{LD}=+4.5, \mathrm{VSS}=-4.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	01		155	mA
			$85^{\circ} \mathrm{C}$			90	
			$125^{\circ} \mathrm{C}$			45	

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

2/ Guaranteed by design, not subject to production test.

DLA LAND AND MARITIME COLUMBUS, OHIO	$\begin{gathered} \text { SIZE } \\ \text { A } \end{gathered}$	CODE IDENT NO. 16236		$\begin{aligned} & \text { DWG NO. } \\ & \text { V62/11612 } \end{aligned}$	
		REV	A	PAGE	14

Case X

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

Case X - continued.

Symbol	Dimensions					
	Inches			Millimeters		
	Minimum	Nominal	Maximum	Minimum	Nominal	Maximum
A	---	---	. 047	---	---	1.20
A1	. 001	---	. 005	0.05	---	0.15
b	. 007	---	. 011	0.19	---	0.30
c	. 003	---	. 007	0.09	---	0.20
D	. 192	. 196	. 200	4.90	5.00	5.10
E	. 169	. 173	. 177	4.30	4.40	4.50
E1	. 251 BSC			6.40 BSC		
e	. 025 BSC			0.65 BSC		
L	. 017	. 023	. 029	0.45	0.60	0.75

NOTES:

1. Controlling dimensions are millimeter, inch dimensions are given for reference only.
2. Falls within reference to JEDEC MO-153-AB.

FIGURE 1. Case outline - Continued.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

Device type	01	
Case outline	X	
Terminal number	Terminal symbol	Description
1	A0	Logic control input.
2	EN	Active high digital input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	VSS	Most negative power supply potential. In supply single applications, it can be connected to ground.
4	S1	Source terminal 1. Can be an input or an output.
5	S2	Source terminal 2. Can be an input or an output.
6	S3	Source terminal 3. Can be an input or an output.
7	S4	Source terminal 4. Can be an input or an output.
8	D	Drain terminal. Can be an input or an output.
9	S8	Source terminal 8. Can be an input or an output.
10	S7	Source terminal 7. Can be an input or an output.
11	S6	Source terminal 6. Can be an input or an output.
12	S5	Source terminal 5. Can be an input or an output.
13	VDD	Most positive power supply potential.
14	GND	Ground (0 V) reference.
15	A2	Logic control input.
16	A1	Logic control input.

FIGURE 2. Terminal connections.

A2	A1	A0	EN	On switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	1	0	1	6
1	1		1	7
1				

FIGURE 3. Truth table.
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { DLA LAND AND MARITIME } \\
\text { COLUMBUS, OHIO }\end{array}
$$ $$
\begin{array}{c}\text { SIZE } \\
\text { A }\end{array}
$$ \begin{array}{c}CODE IDENT NO.

\mathbf{1 6 2 3 6}\end{array}\right]\)| DWG NO. |
| :---: |

FIGURE 4. On resistance.

FIGURE 5. Off leakage.

FIGURE 6. On leakage.

| DLA LAND AND MARITIME |
| :---: | :---: | :---: | :---: |
| COLUMBUS, OHIO |\quad| SIZE |
| :---: |
| A | | CODE IDENT NO. |
| :---: |
| $\mathbf{1 6 2 3 6}$ |\quad| DWG NO. |
| :---: |
| V62/11612 |

FIGURE 7. Address to output switching times, tTRANSITIONS.

FIGURE 8. Break before make delay, tBBM.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

FIGURE 9. Enable delay, toN (EN), toFF (EN).

FIGURE 10. Charge injection.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

FIGURE 11. Off isolation.

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$

FIGURE 12. Channel to channel crosstalk.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

FIGURE 13. THD + noise.

FIGURE 14. Insertion loss.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/11612
		REV	A

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/11612-01XB	24355	ADG1408SRU-EP-RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO.
V62/11612			
		REV	A

