

Engineer-to-Engineer Note EE-386

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using the Security Packet Engine to Protect Data

Contributed by Yi, Gabby. Rev 1 – April 14, 2016

Copyright 2016, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

Both the ADSP-BF70x Blackfin+ processors and the ADSP-SC58x/ADSP-2158x SHARC+ processors

contain a security packet engine (PKTE), which is a hardware accelerator that helps to offload some of the

common cryptographic functions like symmetric ciphers, hash functions, and message authentication code

(MAC) transforms from having to be performed in software on the host processor. The security packet

engine also contains a pseudo-random number generator (PRNG). This EE-Note reviews how to configure

and use the security packet engine to perform AES-128 encryption and decryption in various operational

modes.

Security Packet Engine (PKTE) Overview

Supported Algorithms

The PKTE supports many cipher algorithms, as shown in Table 1.

Cipher Algorithm Modes Key length

DES ECB, CBC 56-bit

Triple DES ECB, CBC 3 x 56-bit

AES ECB, CBC, ICM, CTR 128-, 192- and 256-bit

ARC4∏ Stateful and Stateless Mode Up to 128-bit

Table 1. Supported Ciphers in the Security Packet Engine

It can also perform the SHA-1, SHA-2 (224-bit and 256-bit) and MD5∏ hash functions, as well as supporting

the HMAC transforms for SHA-1, SHA-2 and MD5∏.

Modes of Operation

In Direct Host Mode (DHM), jobs for the packet engine can be configured to be performed individually

while the host processor waits for the results before configuring the packet engine for the next job. In

Autonomous Ring Mode (ARM), a list of jobs can be configured in a queue and presented to the packet

engine all at once.

http://www.analog.com/processors

Using the Security Packet Engine to Protect Data (EE-386) Page 2 of 11

Direct Host Mode (DHM)

In this mode, all the details of the job are configured by writing to the memory-mapped registers (MMRs)

of the packet engine. Even the input data is written directly to the packet engine’s input buffer, which is part

of the packet engine’s MMR space. The same is said for the output results, which need to be read out directly

from the memory-mapped output buffer of the packet engine. In this mode, no Direct Memory Access

(DMA) is used at all.

Autonomous Ring Mode (ARM)

In this mode, the segments of the packet engine’s registers are mirrored in host memory structures. These

structures, known as descriptors, are configured to define the job for the packet engine. Multiple descriptors

can be defined as an array prior to starting the PKTE, and when this descriptor array is presented to the

PKTE, it will run through each descriptor and perform the job as configured without any further assistance

or interruption from the host processor.

Configuring the PKTE for AES Encryption/Decryption

Input and Output Data Arrangement

Figure 1 shows the expected arrangement of the input data. The packet engine consumes the data depending

on how the job is configured.

Figure 1. Input Data Formatting for the Security Packet Engine

As can be seen, the data to be encrypted is actually the third piece of data in the input, depending on how

the job is configured. The first piece of input is the bypass data, which the PKTE directly copies from the

input source to the output destination. An optional second piece of input is the Initialization Vector (IV). If

the descriptor is configured to load the IV from the input, this IV will be the second piece of input. Otherwise,

Bypass Data IIV
Payload

(plain text)

0…n bytes 16 bytes 1…1048575 bytes

Source Address
Load the IV from the Input

PKTE_SA_CMD0.IVSRC = 0b01

Input

Bypass Offset

PKTE_LEN.BYPASS

Packet Length

PKTE_LEN.TOTLEN

IIV

IV State Address

State

16 bytes

Load the IV from State

PKTE_SA_CMD0.IVSRC = 0b10

Using the Security Packet Engine to Protect Data (EE-386) Page 3 of 11

if the descriptor is configured to load the IV from state, the IV will be read from the state structure in host

memory (ARM) or from the state MMRs (DHM) instead.

Figure 2 shows how the PKTE consumes the input data and how the results are output. First, whether the

IV comes from the state structure or as part of the input data (or even if it’s generated from the PRNG), it

is processed along with the input plaintext data. The PKTE will also generate the needed padding, depending

on the descriptor configuration and the selection of the algorithm.

Figure 2. Data Consumption and Output Data Formatting by Security Packet Engine

IIV
Payload

(plaintext)
IV Pad

Generated pad

Payload

(ciphertext)
Pad

Packet Engine Processing

Bypass Data IIV

Pad Length

Encrypted

Packet Length

Bypass Offset

PKTE_LEN.BYPASS

Output

IV

Destination Address

Save IV STate

PKTE_SA_CMD0.SVIV = 0b1 IV State Address

Updated

State

0…n bytes 16 bytes 1…1048575 bytes 0…257 bytes

16 bytes

IIV

Load IV from PRNG

PKTE_SA_CMD0.IVSRC = 0b11

16 bytes

Using the Security Packet Engine to Protect Data (EE-386) Page 4 of 11

For the output, the PKTE will directly copy any bypass data from the input source to the result destination.

If the descriptor is configured to Copy Header (PKTE_SA_CMD1.CPYHDR = 0b1), the IV will also be copied

to the destination after the bypass data from whatever source the IV is configured to come from. Following

this is the encrypted plaintext, otherwise known as ciphertext, which is the encryption of the original input

data and any generated padding that follows.

Finally, if the Save IV State is chosen (PKTE_SA_CMD0.SVIV = 0b1), the state structure buffer will be

updated with the IV. Either Copy Header or Save IV State should be selected if the PRNG is used to generate

an IV. Since the IV is needed to perform decryption, the IV should be saved using any of these methods.

AES Example Code

Included with this EE-Note is example code[1] to set up the PKTE to perform AES encryption and decryption

with different configurations. The first example is a call to the function aes_dhm_example1(), passing the

Boolean value of false as input. This example sets up the PKTE to encrypt input

0x00112233445566778899aabbccddeeff using key 0x000102030405060708090a0b0c0d0e0f in ECB

mode. This input/output example is presented in the AES Specification[2]. If calculated correctly, the output

is 0x69c4e0d86a7b0430d8cdb78070b4c55a. After calculating the ciphertext, the example then sets up the

PKTE to take in the ciphertext as input and decrypt it. If successful, the output is the original plaintext input.

Code Review of aes_dhm_example1() Example

The first thing this function does is configure the engine for DHM, as shown in. Listing 1.

/* Configure Engine */

 *pREG_PKTE0_CFG = 3; // reset engine and release

 ssync(); // ensure write propagates through before releasing

 // engine out of reset

 *pREG_PKTE0_CFG = 0; // release out of reset and put into DHM

Listing 1. aes_dhm_example1 Engine Configuration

PKTE0_CFG is set to 0x3 to reset the engine, and then a ssync() is performed to ensure that the write to reset

the engine propagates through before releasing the engine from reset. The ssync() intrinsic decodes to a

native system synchronization instruction (SSYNC;) on the Blackfin+ processor, and this function is

redefined for SHARC+ and ARM compilations to those cores’ respective synchronization instructions. The

engine is then taken out of reset and set for DHM by setting PKTE0_CFG back to 0.

Next, the command descriptor registers are directly configured, as shown in Listing 2.

/* Write Command Descriptor Regs */

 *pREG_PKTE0_CTL_STAT = 0x1; // host ready

 *pREG_PKTE0_LEN = SZ_INPUT1 | 0x400000; // set length. Set sync bits

 // PE_READY=0, HOST_READY=1

 *pREG_PKTE0_CDSC_CNT = 1; // cmd desc cnt =1. Trigger

 // PKTE to validate cmd desc

Listing 2. aes_dhm_example1 Command Descriptor Configuration

Using the Security Packet Engine to Protect Data (EE-386) Page 5 of 11

For DHM, only a subset of the command descriptor registers is used. Specifically, the control/status register

(PKTE0_CTL_STAT), the packet length register (PKTE0_LEN), and the command descriptor count register

(PKTE0_CDSC_CNT) are used.

PKTE0_CTL_STAT is first set to 0b01 to indicate that the host is ready for the PKTE to process another job.

This also resets the status from the PKTE, indicating that it has finished with any previous job.

Next, the packet length is programmed along with synchronization bits mirrored from PKTE0_CTL_STAT

into the PKTE_LEN register. If there were any bypass data, its length would also be programmed into this

register, but this example doesn’t have any bypass data.

Finally, PKTE0_CDSC_CNT must be written with a ‘1’ to indicate that the command descriptor for the packet

engine is valid.

The next step is to program the Security Association (SA) Record registers. For this example, the command

registers and key registers are all that’s needed to be programmed, as shown in Listing 3.

/*

 * Configure SA regs to define operation and State regs

 * to provide any extra input

 */

 *pREG_PKTE0_SA_CMD0 =

 (((null_hash) << BITP_PKTE_SA_CMD0_HASH) & BITM_PKTE_SA_CMD0_HASH) |

 (((aes) << BITP_PKTE_SA_CMD0_CIPHER) & BITM_PKTE_SA_CMD0_CIPHER) |

 (((zero) << BITP_PKTE_SA_CMD0_PADTYPE)& BITM_PKTE_SA_CMD0_PADTYPE)|

 (((basic) << BITP_PKTE_SA_CMD0_OPGRP) & BITM_PKTE_SA_CMD0_OPGRP) |

 (((outbound) << BITP_PKTE_SA_CMD0_DIR) & BITM_PKTE_SA_CMD0_DIR) |

 (((encrypt) << BITP_PKTE_SA_CMD0_OPCD) & BITM_PKTE_SA_CMD0_OPCD);

 *pREG_PKTE0_SA_CMD1 =

 (((bits_128)<< BITP_PKTE_SA_CMD1_AESKEYLEN)&BITM_PKTE_SA_CMD1_AESKEYLEN) |

 (((ecb) << BITP_PKTE_SA_CMD1_CIPHERMD) & BITM_PKTE_SA_CMD1_CIPHERMD) ;

 /*

 * Program in the key for encryption

 */

 *pREG_PKTE0_SA_KEY0 = ((uint32_t *)key1)[0];

 *pREG_PKTE0_SA_KEY1 = ((uint32_t *)key1)[1];

 *pREG_PKTE0_SA_KEY2 = ((uint32_t *)key1)[2];

 *pREG_PKTE0_SA_KEY3 = ((uint32_t *)key1)[3];

 /*

 * trigger operation to begin and have it wait for input

 */

 *pREG_PKTE0_SA_RDY = 1;

Listing 3-aes_dhm_example1 security association record configuration

The Command 0 (PKTE0_SA_CMD0) register is programmed to identify the type of function the PKTE is

being configured for. In this case, the example code is doing a basic encryption (outbound) using the AES

algorithm without the need for any padding. The Command 1 (PKTE0_SA_CMD1) register is programmed

Using the Security Packet Engine to Protect Data (EE-386) Page 6 of 11

with ancillary details about the function. In this case, the key length for AES is 128 bits, and ECB (Electronic

Cookbook) mode is being used.

After this, the 128-bit key is written to the first four 32-bit key registers (PKTE0_SA_KEY0-3), which are also

part of the SA Record, and a ‘1’ is written to PKTE0_SA_RDY to trigger the operation.

At this point, the PKTE knows what operation to do, but it has no input to perform the operations on. So,

the input data is copied from the source buffer to the PKTE’s input buffer whose starting address is shared

with the PKTE0_DATAIO_BUF MMR. Once the data is filled in, the input buffer counter register

(PKTE0_INBUF_CNT) is updated with the number of bytes copied to the input buffer, rounded up to the next

multiple of four.

Now, the PKTE will begin processing the data. The host processor can either wait for an interrupt or poll

for status bits to see whether an error has occurred or to see if the operation has completed. In this example,

the Operation Done (PKTE_STAT.OPDN) bit is polled.

Once the operation is done, the number of output words available is obtained from the Output Buffer Full

Count field in the PKTE0_STAT register. Since this is a cipher example and the input size is within the size

limitations of the packet engine’s IO buffer, the output count should be the same as the input size. When

reading the output, the same data buffer that the input was written to is read from. In other words, the PKTE

input buffer and output buffer share the same memory. When written to, the data will go to its input buffer.

When read from, the data will come from the output buffer.

Once the data is read out, the number of bytes read from the output buffer is written to PKTE0_OUTBUF_CNT

by the host processor as an acknowledgement. A ‘1’ is also written to the result descriptor count register

(PKTE_RDSC_CNT) so that the PKTE can accept a new command descriptor.

For sanity, the result is compared against the known answer provided by the specification.

The second part of this example basically follows the same steps, but it configures the engine to perform a

decryption. Since the engine was not reset, the key used for encryption still remains in the key registers and

does not need to be reprogrammed unless the decryption key is to be used. In the AES algorithm, an input

block of 128 bits is processed in multiple “rounds”. The key used for encryption is actually a seed to spawn

new keys for each round, which is known as the key schedule. When decrypting, the engine needs to

recalculate this schedule to find the last key of the last round. If this is already known, the key registers can

be programmed with this key instead, thus saving some cycles needed to compute the key schedule. When

using this option, the AES Decryption Key bit (PKTE0_SA_CMD1.AESDECKEY) needs to be set. The example

code runs through the aes_dhm_example1() function twice, once using only the cipher key for both

encryption and decryption, and a second time using the cipher key for encryption and the decryption key

(obtained from the example in the specification) for decryption.

Code Review of aes_dhm_example2() Example

In aes_dhm_example2(), AES encryption is performed in DHM as in the first example, but with two

notable differences.

First, CBC mode is used instead of ECB mode, as programmed in the PKTE0_SA_CMD1 register. For CBC

mode, an IV is needed. The IV is the same size as an AES block size of 128 bits. Since PKTE0_SA_CMD0 is

programmed to load the IV from state and the engine is operating in DHM, the 128-bit IV is programmed

into the first four 32-bit state IV registers (PKTE0_STATE_IV0-3).

Using the Security Packet Engine to Protect Data (EE-386) Page 7 of 11

The second difference is the size of the input, which is 320 bytes in this example. The data set used was

taken from a FIPS Cryptographic Algorithm Validation Program test set and doubled. Using a host utility,

OpenSSL, the expected output was calculated. Since the PKTE’s data IO buffer is only 256 bytes, this

example performs the encryption in two pieces. It loads the entire data IO buffer and programs the input

buffer count (PKTE0_INBUF_CNT) to 256. The PKTE will perform the encryption on this portion of the input,

and then the host processor will read out the results in the same manner as in the first example. The next

time through the loop, the host will write in the rest of the input and then program PKTE0_INBUF_CNT with

the 64 bytes that remains of the original 320-byte input so that it can also be processed.

Code Review of aes_arm_example1() Example

The aes_arm_example1() example demonstrates the same AES encryptions performed in the

aes_dhm_example1() and aes_dhm_example2() examples, but it uses ARM instead of DHM.

Additionally, the second encryption passes the IV in along with the input data instead of doing so in the SA

state structure. Finally, the example also demonstrates bypass functionality.

Because the first two examples used DHM, the registers had to be written directly. When the PKTE uses

ARM, the registers for the command descriptor, the SA record, and the SA state are mirrored in structures

in memory, the #typedefs for which can be found in the AesExamples.h header file. The command and

result descriptors are defined as cd_t and rd_t, respectively, while the SA record is defined as sa_t and

the SA state is defined as state_t.

Using the command descriptor structure type, cd_t, and the result descriptor structure type, rd_t, an array

was created. Since only two separate encryptions are being performed, the size of the array is two. These

two arrays form the command and result descriptor ring, respectively. A developer doesn’t need to know

the number of jobs beforehand to define the size of the ring. The size should be big enough such that while

the PKTE is processing current jobs, the host processor can define and add more jobs to the ring, as needed;

however, this example only shows a simplified use case.

Figure 3 illustrates how all the structures are organized in the host processor’s memory.

Figure 3. Representation of Command Descriptor Ring

Command

Descriptor 1

Command
Descriptor Ring

Pointer to SA

Record

Pointer to SA

State

SA Record

SA State

Command

Descriptor 2

Pointer to SA

Record

Pointer to SA

State

SA Record

SA State

Using the Security Packet Engine to Protect Data (EE-386) Page 8 of 11

As shown, the command descriptors are arranged as an array. Elements in the command descriptors include

pointers to hold the address of where the SA record and SA state structures are in memory.

Separate SA record structures and SA state structures are also declared for each job. Depending on the use

case, SA record structures and SA state structures can be reused and correlated to multiple command

descriptors, though this example does not demonstrate this.

Listing 4 shows the configuration code for the aes_arm_example1() example.

 *pREG_PKTE0_CFG = 0x300; // release out of reset and put into AR mode

/*

 * Configure rings

 */

 *pREG_PKTE0_RING_CFG = RING_SIZE-1; // tell engine ring size

 *pREG_PKTE0_CDRBASE_ADDR = (uint32_t)(c_ring); // tell engine where base of

 // command desc ring is

 *pREG_PKTE0_RDRBASE_ADDR = (uint32_t)(r_ring); // tell engine where base of

 // result desc ring is

Listing 4-aes_arm_example1 Mode and Ring Configuration

As in the previous examples, the packet engine can be reset and then set again for the new mode of operation.

This time, PKTE0_CFG is programmed with 0x300 to take the engine out of reset and configure it for ARM.

After this, the engine needs to know the size and location of the command and result descriptor rings. Note

that PKTE0_RING_CFG is programmed with the size of the ring minus one, then the PKTE0_CDRBASE_ADDR

and PKTE0_RDRBASE_ADDR registers are set to the base addresses of the command and result descriptor rings,

respectively.

Next, the command descriptor and the SA record are configured for the first job, as shown in Listing 5.

/*

* Configure descriptor for 1st example

*/

/*

 * set up command descriptor

 */

 cmdDesc = &c_ring[0];

 cmdDesc->CTRL_STAT = BITM_PKTE_CTL_STAT_HOSTRDY; // transfer ownership from

 // host to PE of the desc

 cmdDesc->SRC_ADDR = plaintext1;

 cmdDesc->DEST_ADDR = output1;

 cmdDesc->SA_ADDR = (unsigned long)(&saRec[0]);

 cmdDesc->SA_STATE_ADDR = (unsigned long)(&saState[0]);

 cmdDesc->USERID = EXAMPLE1_ID;

 cmdDesc->LENGTH = SZ_INPUT1 | BITM_PKTE_LEN_HSTRDY;

Listing 5-aes_arm_example1 Command Descriptor Configuration for 1st Encryption Job

Using the Security Packet Engine to Protect Data (EE-386) Page 9 of 11

There isn’t much difference than before, except now the values are programmed into structures in host

memory. All the elements in the descriptor need to be programmed, including indicating where the input

data is stored, where the output is going to, the address of the SA record, and the address of the SA state

structure. The command descriptor also includes a field for a User ID, which is applicable for advanced use

cases such as network security protocols. The PKTE copies the USERID field to the result descriptor USERID

field. This helps to identify what the result was associated with when there are multiple threads and jobs

occurring in the system.

The set up for the second encryption is similar except that it uses bypass data and the IV is included in the

input buffer. As shown in Listing 6, the length field in the command descriptor for the second job is the

summation of the input size, the IV size, and the bypass data size. The mirrored synchronization bits are

ORed in as well.

cmdDesc->LENGTH = (SZ_INPUT2 + AES_IV_SZ + BYPASS_SZ_WDS * sizeof(uint32_t)) |

 ((BYPASS_SZ_WDS<<BITP_PKTE_LEN_BYPASS) & BITM_PKTE_LEN_BYPASS) |

 BITM_PKTE_LEN_HSTRDY;

Listing 6-aes_arm_example1 Packet Length Configuration for 2nd Encryption Job

Once everything is configured, the PKTE can start, which is accomplished by incrementing the command

descriptor count. In this case, two descriptors were set up, so PKTE0_CDSC_INCR is programmed to 2. Just

as in the DHM examples, once the engine is started, the host processor can either poll or set up interrupts to

trigger on either completion or errors. Here, the example polls on the count of the result descriptor ring

(PKTE0_RDSC_CNT). Since the command descriptor ring count started with zero and was incremented by

two, the result descriptor ring count will be two once both of the command descriptors have been processed.

The host processor can then analyze the result descriptors to see if any errors occurred and find where the

results are stored.

Using the Security Packet Engine to Protect Data (EE-386) Page 10 of 11

Benchmarks

Table 2 shows the PKTE performance for the various algorithms it supports, and these measurements are

identical between the ADSP-BF70x Blackfin+ processors and the ADSP-SC58x/ADSP-2158x SHARC+

processors.

Security Algorithm Mode Performance [bits/cycle]

Cipher Cores

AES 128-bit key ECB, CTR/ICM 2.46

AES 192-bit key ECB, CTR/ICM 2.06

AES 256-bit key ECB, CTR/ICM 1.78

AES 128-bit key CBC with 128-bit Encrypt 2.42

AES 128-bit key CBC with 128-bit Decrypt 2.46

AES 192-bit key CBC with 192-bit Encrypt 2.03

AES 192-bit key CBC with 192-bit Decrypt 2.06

AES 256-bit key CBC with 256-bit Encrypt 1.75

AES 256-bit key CBC with 256-bit Decrypt 1.78

DES ECB, CBC 8

Triple-DES ECB, CBC 2.67

ARC4∏ - 3.2

Hash Cores

SHA-1 - 6.23

SHA-2 (224bit and 256bit) - 7.88

MD5∏ - 7.88

∏Only available on ADSP-SC58x/ADSP-2158x SHARC+ processors.

Table 2- Benchmarks for Security Packet Engine


The PKTE resides on different clock domains between the two architectures, so actual

benchmark times may vary. On the ADSP-BF70x Blackfin+ processors, the PKTE runs

on SCLK1, whereas SCLK0 is the correct clock domain for the ADSP-SC58x/ADSP-

2158x SHARC+ processors. Please see the Blackfin+ datasheet[3] and the SHARC+

datasheet[4] for details regarding specific models and associated timing specifications.

Using the Security Packet Engine to Protect Data (EE-386) Page 11 of 11

Conclusion

This EE-Note explored some of the functionality and flexibility of the PKTE by reviewing code that sets up

the packet engine to perform AES encryption and decryption in different operating modes and

configurations.

References

[1] Associated Code for Using the Security Packet Engine to Protect Data (EE-386). Rev 1, April 2016. Analog Devices, Inc.

[2] Federal Information Processing Standards Publication 197. Announcing the Advanced Encryption Standard

(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf). Nov. 26, 2001.

[3] ADSP-BF700/701/702/703/704/705/706/707 Blackfin+ Core Embedded Processor Datasheet. Rev A. September 2015.

Analog Devices, Inc.

[4] ADSP-SC582/583/584/587/589/ADSP-21583/584/587 SHARC+ Dual-Core DSP with ARM Cortex-A5 Datasheet. Rev

PrF. February 2016. Analog Devices, Inc.

Readings

[1] ADSP-BF70x Blackfin+ Processor Programming Reference. Rev 0.2. May 2014. Analog Devices, Inc.

[2] ADSP-BF70x Blackfin+ Processor Hardware Reference. Rev 0.2, May 2014. Analog Devices, Inc.

[3] ADSP-SC58x SHARC Processor Hardware Reference. Rev 0.2, June 2015. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – April 14, 2016

by G. Yi

Initial Release

	Introduction
	Security Packet Engine (PKTE) Overview
	Supported Algorithms
	Modes of Operation
	Direct Host Mode (DHM)
	Autonomous Ring Mode (ARM)

	Configuring the PKTE for AES Encryption/Decryption
	Input and Output Data Arrangement

	AES Example Code
	Code Review of aes_dhm_example1() Example
	Code Review of aes_dhm_example2() Example
	Code Review of aes_arm_example1() Example

	Benchmarks
	Conclusion
	References
	Readings
	Document History

