AIVISC IN/A	AMSC	N/A
-------------	------	-----

1

											,	REVIS	SIONS								
					LTR				DESC	RIPTI	ON				D	ATE		/	APPR	OVED	
					·i																
				-										·							
																					ļ
Prepared	in acc	cordan	ice with	ASME `	Y14.24			, 					, 	, 	, 	, 	Ve	ndor it	tem dr	awing	
REV							!		ا ــــــــــــــــــــــــــــــــــــ	ا ا	ļ'	ļ!									
PAGE									<u>ا</u> ــــــــــــــــــــــــــــــــــــ	' ا	<u> </u>										
REV									<u>ا</u> ــــــــــــــــــــــــــــــــــــ	' ا	<u> </u>										
PAGE									<u> </u>	ا ا	<u> </u>										
REV STA	TUS		REV							ا ا	<u> </u>										
OF PAGE	ES		PAGE	Ξ	1	2	3	4	5	6	7	8	9	10							
PMIC N/	4			PREPA		, ,							_	DLA			MAR	ITIME	~~		
					F	'hu H.	Nguye	эn		ļ			ں <u>http</u>	OLUN)://ww	/IBUS, <u>w.lan</u> (dandr) 432 <u>naritir</u>	18-งษะ <mark>ne.dla</mark>	90 <mark>⊾.mil</mark> /		
Original c	late of	f drawi	ing	CHECK	KED BY							LE									
Ŷ	Y MM	DD			F	²hu H.	Nguye	en		I	міс		SIRCI	JIT, I	LINE	AR,	2.5 V	/ то ؛	5.5 V		
1	2-10-2	26		APPRC	JVED BY	, homas	≥M H∉	266		ļ	500	μA,	QUA	D VC	OLTA	GÉ (OUTF	2UT 1	12 BI	T DA	С
			F		··-	Iomac				I	IN 1	0-LE	AD P	'ACK	AGE	, MC	JNOI	_ITHI			N
				SIZE	COL)E IDE	NT. N	0.		ļ	DWC	3 NO.		、	100	140	· ~ ~	~			
				Α			162	236		ļ	1			V	/62	/12	:62	8			
REV					PAG	jE 1	OF	10													

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 2.5 V to 5.5 V, 500 μ A, quad voltage output 12 bit DAC in 10 lead package microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

	V62/12628 Drawing number	- <u>01</u> Device ty (See 1.2.	7pe Case ou 1) (See 1.2	tline Lead finish 2.2) (See 1.2.3)			
1.2.1	<u>Device type(s)</u> .						
	Device type	Generic		Circuit function			
01		AD5324-EP	2.5 12 b	2.5 V to 5.5 V, 500 μA, quad voltage output 12 bit DAC in 10 lead package			

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	10	JEDEC MO-187-BA	Mini Small Outline Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>
А	Hot solder dip
В	Tin-lead plate
С	Gold plate
D	Palladium
E	Gold flash palladium
Z	Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12628	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 2	

1.3 Absolute maximum ratings. 1/ 2/

V _{DD} to GND	-0.3 V to +7.0 V
Digital input voltage to GND	-0.3 V to V _{DD} + 0.3 V
Reference input voltage to GND	-0.3 V to V _{DD} + 0.3 V
V _{OUT} A through V _{OUT} D to GND	-0.3 V to V _{DD} + 0.3 V
Operating temperature range:	
Industrial	-55°C to +125°C
Storage temperature range	-65°C to 150°C
Junction temperature (T _J max)	150°C
Case outline X	
Power dissipation	(T _J max – T _A)/ θ _{JA}
θ _{JA} Thermal impedance	206°C/W
θ _{JC} Thermal impedance	44°C/W
Reflow soldering	
Peak temperature	220°C
Time at peak temperature	10 sec to 40 sec

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 – Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12628	
COLUMBUS, OHIO	A	16236		
		REV	PAGE	3

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

^{2/} Transient currents of up to 100 mA do not cause SCR latch up.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3 and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Terminal function</u>. The terminal function shall be as shown in figure 3.
- 3.5.4 <u>Functional block diagram</u>. The functional block diagram shall be as shown in figure 4.
- 3.5.5 <u>Serial Interface timing diagram</u>. The serial Interface timing diagram shall be as shown in figure 5.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12628	
		REV	PAGE 4	

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions	Lin	nits	Unit	
		<u>2</u> /	Min	Max		
DC Performance <u>3</u> /					•	
Resolution			12	TYP	Bits	
Relative accuracy				±10	LSB	
Differential nonlinearity <u>4</u> /		<u>5</u> /		±1	LSB	
Offset error		See FIGURE 5		±3	% of FSR	
Gain error		See FIGURE 5		±1	% of FSR	
Lower dead band		<u>6</u> /		60	mV	
Offset error drift 7/			-12	TYP	ppm of FSR/°C	
Gain error drift <u>7</u> /			-5	ΓYΡ	ppm of FSR/°C	
DC power supply rejection ratio 7/		$\Delta V_{DD} = \%10$	-60	TYP	dB	
DC crosstalk <u>7/</u>		$R_L = 2 k\Omega$ to GND or V_{DD}	200	TYP	μV	
DAC reference inputs <u>7</u> /					· ·	
V _{REF} input range			0.25	V _{DD}	V	
Vprr input impedance		Normal operation	37		kΩ	
VREF input impedance		Power down mode	>10	TYP	MΩ	
Reference feedthrough		Frequency = 10 kHz	-90	TYP	dB	
Output characteristics <u>7/</u>						
Minimum output voltage <u>8</u> /		<u>9</u> /	0.00	I TYP	V	
Maximum output voltage <u>8</u> /		<u>10</u> /	V _{DD} – 0.	001 TYP		
DC output impedance			0.5	TYP	Ω	
Short circuit current		$V_{DD} = 5 V$	25	TYP	mA	
		$V_{DD} = 3 V$	16 TYP			
Power up time		Coming out of power down mode $V_{DD} = 5 V$	2.5 TYP		μs	
		Coming out of power down mode $V_{DD} = 3 V$	5 TYP			
Logic inputs <u>7</u> /						
Input current				±1	μA	
		$V_{DD} = 5 V \pm 10\%$		0.8	V	
Input low voltage	VIL	$V_{DD} = 3 V \pm 10\%$		0.6		
		V _{DD} = 2.5 V		0.5		
		$V_{DD} = 5 V \pm 10\%$	2.4			
Input high voltage	VIH	$V_{DD} = 3 V \pm 10\%$	2.1			
		V _{DD} = 2.5 V	2.0			
Pin capacitance			3 T	ΥP	pF	
Power requirements						
V _{DD}			2.5	5.5	V	
I _{DD} (Normal mode) <u>11</u> /						
$V_{DD} = 4.5 V$ to 5.5 V		$V_{IH} = V_{DD}$ and $V_{IL} = GND$		900	μA	
$V_{DD} = 2.5 \text{ V} \text{ to } 3.6 \text{ V}$		$V_{IH} = V_{DD}$ and $V_{IL} = GND$		700	μA	
I _{DD} (Power down mode)						
V_{DD} = 4.5 V to 5.5 V		$V_{IH} = V_{DD}$ and $V_{IL} = GND$		1	μA	
$V_{DD} = 2.5 \text{ V} \text{ to } 3.6 \text{ V}$		$V_{IH} = V_{DD}$ and $V_{IL} = GND$		1	μA	

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12628
		REV	PAGE 5

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions	Lin	Unit	
		<u>2</u> /	Min	Max	
AC characteristics					
Output voltage settling time		$V_{REF} = V_{DD} = 5 V;$ 1/4 scale to 3/4 scale change (0x400 to 0xC00)		10	μs
Slew rate			0.7	TYP	V/µs
Major code transition glitch energy		1 LSB change around major carry	12	TYP	nV-sec
Digital feedthrough			1 T	ΥP	
Digital crosstalk			1 T	ΥP	
DAC to DAC crosstalk			3 T	ΥP	
Multiplying bandwidth		$V_{REF} = 2 V \pm 0.1 V_{p-p}$	200	TYP	kHz
Total harmonic distortion		$V_{REF} = 2.5 \text{ V} \pm 0.1 \text{ V}_{p-p}$, frequency = 10 kHz	-70	TYP	dB

Test	Symbol	Test conditions	$2.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$		$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		Unit
		<u>2</u> /	Min	Max	Min	Max	
Timing characteristics 7/ 12/ (see F	IGURE 5)						
SCLK cycle time	t ₁		40		33		ns
SCLK high time	t ₂		16		13		
SCLK low time	t ₃		16		13		
SYNC to SCLK falling edge setup time	t ₄		16		13		
Data setup time	t ₅		5		5		
Data hold time	t ₆		4.5		4.5		
SCLK falling edge to SYNC rising edge	t ₇		0		0		
Minimum SYNC high time	t ₈		80		33		

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- $V_{DD} = 2.5 \text{ V}$ to 5.5 V; $V_{REF} = 2 \text{ V}$; $R_L = 2 \text{ k}\Omega$ to GND; $C_L = 200 \text{ pF}$ to GND; $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$; $T_A = 25^{\circ}\text{C}$ for typical (TYP) <u>2</u>/ value; unless otherwise noted.
- DC specifications tested with the output unloaded.
- Linearity is tested using a reduced code range: Code 115 to Code 3981.
- Guaranteed monotonic by design over all code.
- 3/ 4/ 5/ 6/ 7/ 8/ Lower dead band exits only if offset error is negative.
- Guaranteed by design and characterization, not production test.
- For the amplifier output to reach its minimum voltage, offset error must be negative. For the amplifier output to reach its maximum voltage, $V_{REF} = V_{DD}$ and offsets plus gain error must be positive.
- Measurement of the minimum and maximum. <u>9</u>/
- <u>10</u>/ V drive capability of the output amplifier.
- <u>11</u>/ IDD specification is valid for all DAC codes; interface inactive; load currents excluded.
- 12/ All input signals are specified with tr = tf = 5 ns (10% to 90% of V_{DD}) and timed from a voltage level of ($V_{IL} + V_{IH}$)/2.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12628
COLUMBUS, OHIO	A	16236	
		REV	PAGE 6

Dimensions					
Symbol	Millimeters		Symbol	Millimeters	
	Min	Max		Min	Max
А		1.10	D/E	2.90	3.10
A1	0.05	0.15	E1	4.65	5.15
A2	0.75	0.95	е	0.50 BSC	
b	0.17	0.33	L	0.40	0.80
с	080	0.23			

NOTES:

- All linear dimensions are in millimeters.
 Falls within JEDEC MO-15-AB3.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12628
		REV	PAGE 7

Case X

Case outline X					
Terminal number	Terminal symbol	Terminal number	Terminal symbol		
1	V _{DD}	10	SYNC		
2	V _{OUT} A	9	SCLK		
3	VoutB	8	DIN		
4	V _{OUT} C	7	GND		
5	REFIN	6	V _{OUT} D		

FIGURE 2. Terminal connections.

Terminal		Description
Number	Mnemonic	Becomption
1	V_{DD}	Power supply input. This part can be operated from 2.5 V to 5.5 V and the supply can be decoupled to GND
2	V _{OUT} A	Buffered analog output voltage from DAC A. The output amplifier has rail to rail operation.
3	VoutB	Buffered analog output voltage from DAC B. The output amplifier has rail to rail operation.
4	V _{OUT} C	Buffered analog output voltage from DAC C. The output amplifier has rail to rail operation.
5	REFIN	Reference input pin for all four DACs. It is an input range from 0.25 V to V _{DD} .
6	VoutD	Buffered analog output voltage from DAC D. The output amplifier has rail to rail operation.
7	GND	Ground reference point for all circuitry on the part.
8	DIN	Serial data input. This device has a 16 bit shift register on the falling edge of the serial clock input. Data can be transferred at clock speeds up to 30 MHz. The SCLK input buffer is powered down after each writer cycle.
9	SCLK	Serial clock input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at clock speeds up to 30 MHz. The SCLK input buffer is powered down after each write cycle.
10	SYNC	Active low control input. This is the frame synchronization signal for the input data. When <u>SYNC</u> goes low, it enables the input shift register and data is transferred in on the falling edge of the foolowing 16 clocks. If <u>SYNC</u> is taken high before 16 th falling edge of SCLK. the rising edge of <u>SYNC</u> acts as an interrupt and the write sequence is ignored by the device.

FIGURE 3. Terminal function.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12628	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 8	

FIGURE 4. Functional block diagram.

FIGURE 5. Serial interface timing diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12628
		REV	PAGE 9

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>http://www.landandmaritime.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/12628-01XE	24355	AD5324SRMZ-EP-RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices 1 Technology Way P.O. Box 9106 Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12628
		REV	PAGE 10