
								t t	REVISI	ONS										
LTR	DESCRIPTION										DATE (YR-MO-DA)			APPROVED						
А	Char	nges in	accord	lance w	ith NO	R 5962	2-R032-	-95. – c	drw				94-11-08				Michael A. Frye		e	
В	Char	nges in	accord	lance w	rith NO	R 5962	2-R074-	-96. – s	sbr					96-0)3-08			Michae	l A. Fry	e
С	Incor	porate	rev. A	and rev	. B NC	DR's. L	Jpdate	drawinę	g to refl	lect cur	rent			02-0	8-07				nd Monr	
D		rement			anhe to	MII - P	PE-38	535 rec	uiromo	ents d	r14/			1/-1	2-19			barles	F. Saf	ام
REV SHEET																				
	D	D	D	D	D	D	D													
SHEET REV SHEET	15	D 16	D 17	18	19	D 20	21													
SHEET REV SHEET REV STATUS	15		-	18 REV	19 ,		21 D			D	D	D	D	D	D	D 10	D 11	D 12		
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA	15 NDAF	16 RD	-	18 REV SHE PRE	19 ,	20 D BY Dan W	21	2	D 3	D 4	D 5	6 CC	7 DLA I DLUM	8 LAND IBUS,	9 AND OHIO	10 0 MAF 0 432	11 RITIM 218-39	12 E 990	13	D 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U DEPA AND AGE	NDAF DCIRC AWIN NG IS A ISE BY NCIES (16 RD CUIT G VAILAI ALL ITS DF THE	3LE	18 REV SHE PRE	19 ET PARED CKED S ROVED	20 D BY Dan W BY Sandra D BY Michae	21 D (onnell Roone	2 y e		4	5 ROC	6 CC	7 DLA I DLUM //www	8 BUS, w.land	9 AND OHIO dandi	10 0 MAF 0 432 mariti	11 RITIMI 218-39 ime.d	12 E 990 la.mil	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U DEPA AND AGEI DEPARTME	NDAF DCIRC AWIN NG IS A ISE BY NCIES (16 RD CUIT G VAILAI ITS DF THE DEFEN	3LE	18 REV SHE PRE CHE APPI DRA	19 FET PARED CKED S ROVED	20 D BY Dan W BY Sandra D BY Michae 93-0 LEVEL	21 D (onnell Roone I A. Fry DVAL D	2 y e		4 MIC CO	5 ROC	6 CC http: CIRCU RTEF	7 DLA I DLUM //www	8 BUS, w.land	9 AND OHIO dandi	2-BIT	11 RITIMI 218-39 ime.d	12 E 990 Ia.mil	13 D/A	

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device types</u>. The device types identify the circuit function as follows:

Device type	Generic number	Circuit function
01	AD664TD-UNI	D/A converter, 12-bit, unipolar
02	AD664TD-BIP	D/A converter, 12-bit, bipolar
03	AD664TE	D/A converter, 12-bit, unipolar/bipolar

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class	Device requirements documentation
Μ	Vendor self-certification to the requirements for MIL-STD-883 compliant, non- JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A
Q or V	Certification and qualification to MIL-PRF-38535

1.2.4 Case outlines. The case outlines are as designated in MIL-STD-1835 as follows:

Outline letter	Descriptive designator	Terminals	Package style
X	GDIP1-T28 or CDIP2-T28	28	Dual-in line
Y	CQCC1-N44	44	Square leadless chip carrier

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 2

1.3 Absolute maximum ratings. 1/

V _{LL} to DGND	0 V dc to +18 V dc -18 V dc to 0 V dc 1000 mW -1 V dc to +1 V dc $V_{REF} \le \pm 10$ V dc and $V_{REF} \le (V_{CC} - 2$ V, $V_{EE} + 2$ V) 0 V dc to +36 V dc -0.3 V dc to +7 V dc Indefinite shorts to V_{CC} , V_{LL} , V_{EE} and GND
Lead temperature (soldering, 10 seconds)	+300°C

1.4 Recommended operating conditions.

Input voltage requirements:

V _{LL} max	+5.0 V dc
V _{CC} /V _{EE}	±15 V dc
Ambient temperature range (T _A)	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://quicksearch.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	3

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.

3.2.4 Block diagram. The block diagram shall be as specified on figure 3.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DLA Land and Maritime -VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.

3.9 <u>Verification and review for device class M</u>. For device class M, DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 92 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	4

	T	ABLE I. Electrical per	formance	characte	ristics				
Test	$\begin{array}{ c c c } & Conditions \\ & -55^\circ C \leq T_A \leq + \\ & unless \ otherwise \end{array}$		25°C Group A			Device type	Lin	nits	Unit
							Min	Max	
Resolution	RES			1, 2, 3	3	All		12	Bits
Relative accuracy	RA			1		01, 02		±3/4	LSB
						03		±1/2	
				2, 3		01, 02		±1	
						03		±3/4	
				12		01, 02		±1/2	
Differential nonlinearity	DNL	Major carry errors		1		01, 02		±3/4	LSB
						03		±1/2	
				2, 3		All		±1	
				12		01,02		±1/2	
Gain error	A _E	All bits on		1		01, 02		±7	LSB
						03		±5	
				12		01, 02		±5	
Gain temperature coefficient	TCA _E	All bits on		1, 2, 3	3	All		±10	ppm/°C
Unipolar offset error	V _{OS}	All bits off		1		01		±2	LSB
						03		±1	
				12		01		±1	
Unipolar offset temperature coefficient	TCV _{OS}	All bits off		1, 2, 3	3	01, 03		±2	ppm/°C
Bipolar zero error <u>2</u> /	B _{PZE}	MSB on, all others o	ff	1		02		±3	LSB
					F	03		±2	
				12		02		±2	
Bipolar zero temperature coefficient	TCPZE	MSB 0n, all others o	ff	1, 2, 3	3	02, 03		±10	ppm/°C
Reference input resistance	R _{IN}	<u>3</u> /		1		All	1.3	2.6	kΩ
Reference voltage range <u>4</u> /	V_{REF}	<u>3</u> /		1		All	V _{EE} +2	V _{CC} -2	V
Voltage output, UNI <u>5</u> /	V _{OU}	<u>3</u> /		1		01, 03	0	V _{CC} -2	V
Voltage output, BPI	V _{OB}	<u>3</u> /		1		02, 03	V _{CC} -2	V _{EE} +2	V
See footnotes at end of table.		1							
STANDARD				ZE				596	62-88719
MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990				•	REVIS	SION LEVE D	ĒL	SHEET	

	IABL	E I. Electrical performation	nce chara	acteristics	- continued.			
Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_A \leq +125\\ unless \ otherwise \ spectrum$	5°C	Group / subgrou		e L	imits	Unit
						Min	Max	
Output current	lo	<u>3</u> /		1	All	5		mA
Current, short circuit	Isc	<u>3/</u>	40.5.1/	1	All		40	mA
Power supply current	ILL	$V_{CC} = +16.5 \text{ V}, V_{EE} = -$ $V_{IH} = +2.4 \text{ V}, V_{IL} = +0.4$	4 V	1	All		6	mA
		$V_{CC} = +16.5 \text{ V}, \text{ V}_{EE} = -$ $V_{IH} = V_{LL}, \text{ V}_{IL} = 0 \text{ V}$	16.5 V,				1	
	Icc	I _{CC} : All bits on					15	
	I _{EE}	I _{EE} : All bits on					19	
Gain matching error <u>6</u> /	mA _E			1	01, 02	2	±6	LSB
					03		±4	
				12	01, 02	2	±4	
Bipolar zero matching	mB _{PZE}			1	02		±3	LSB
Error <u>7</u> /					03		±2	
				12	02		±2	
Offset matching error <u>8</u> /	mV _{OS}			1	01		±2	LSB
					03		±1	
				12	01		±1	
Digital input high voltage	V _{IH}			1, 2, 3	All	2.0		V
Digital input low voltage	V _{IL}			1, 2, 3	All		0.8	V
Digital inputs high current	I _{IH}	$V_{IN} = V_{LL}$: Data inputs		1, 2, 3	All		±10	μΑ
		$V_{IN} = V_{LL}: \overline{CS} / DS0 / DS1 / \overline{RST} / \overline{RD} / \overline{LS}$ $V_{IN} = V_{LL}: \overline{MS} / \overline{TR} \underline{9} / \overline{CS} / \overline{TR} \overline{9} / \overline{CS} / \overline{TR} \overline{9} / \overline{CS} / \overline{TR} \overline{9} / \overline{CS} / \overline{TS} / \overline{TR} \overline{9} / \overline{CS} / \overline{TS} / \overline{TS} - \overline{9} / \overline{CS} / \overline{TS} / \overline{TS} - \overline{9} / \overline{CS} / \overline{TS} - \overline{10} / \overline{CS} -$					±10	
						±10		
		$V_{IN} = V_{LL}$: $\overline{QS0} / \overline{QS1} / \frac{9}{2}$	QS2				±10	
Digital inputs low current	lı∟	V _{IN} = DGND: Data inputs		1, 2, 3	All		±10	μA
		$V_{IN} = DGND: \overline{CS}/DS0/DS1/$ $\overline{RST}/\overline{RD}/\overline{LS}$					±10	
		$V_{IN} = DGND: \overline{MS} / \overline{TR}$	<u>9</u> /				-10	
		$V_{IN} = DGND: \overline{QS0} / \overline{Q}$ $\overline{QS2} \underline{9/}$					±10	
See footnotes at end of tab	le.							<u> </u>
STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SCC FORM 2234				ZE A			59	62-88719
					REVISION LE [SHEET	6

TABLE I. Electrical performance characteristics - continued.

Test Symbol		$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_A \leq +125^{\circ}C\\ unless \ otherwise \ specified \end{array}$	Group A subgroups	Device type	Limits		Unit
			Ŭ I		Min	Max	
Digital out low voltage	V _{OL}		1, 2, 3	All		+0.4	V
Digital out high voltage	V _{OH}		1, 2, 3	All	+2.4		V
Power supply gain	PSGS	11.4 V ≤ V _{CC} ≤ 16.5 V	1	All	±5		ppm/%
sensitivity		-16.5 V ≤ V _{EE} ≤ -11.4 V					
		$4.5 \text{ V} \leq \text{V}_{LL} \leq 5.5 \text{ V}$					
CS pulse width	t _{CW}	Data input mode <u>10</u> /	9	All	80		ns
		(figure 4 diagram A and B)	10, 11		100		
Data setup	t _{DS}	Data input mode <u>10</u> /	9, 10, 11	All	0		ns
Data hold	t _{DH}	(figure 4 diagram A)	9, 10, 11		15		
Address setup	t _{AS}		9, 10, 11		0		
Address hold	t _{AH}		9, 10, 11		15		
LS setup	t _{LS}		9, 10, 11		0		
LS hold	t _{LH}		9, 10, 11		15		
Data setup	t _{DS}	Data input mode <u>10</u> /	9, 10, 11	All	0		ns
Data hold	t _{DH}	(figure 4 diagram C)	9, 10, 11		0		
LS width	t _{LW}		9		60		
			10, 11		80		
LS setup	t _{LS} <u>11</u> /		9, 10, 11		0		
CS hold	t _{CH}		9		30		
			10, 11		50		-
Address setup	t _{AS}		9, 10, 11		0		
Address hold	t _{AH}		9, 10, 11		0		
See footnotes at end of ta	ble.						

TABLE I. Electrical performance characteristics - continued.

STANDARD
MICROCIRCUIT DRAWINGSIZE
ASIZE
A5962-88719DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990REVISION LEVEL
DSHEET
7

Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_A \leq +125^{\circ}C\\ unless \ otherwise \ specified \end{array}$	Group A subgroups	Device type	Limits		Unit
					Min	Max	
MS setup	t _{MS}	Mode select <u>10</u> /	9, 10, 11	All	0		ns
Address setup	t _{LS} <u>11</u> /	(figure 4 diagram D)	9, 10, 11		0		
Data setup	t _{DS}		9, 10, 11		0		
LS width	t _{LW}		9		60		
			10, 11		70		
CS hold	t _{CH}		9		70		
			10, 11		80		
Data hold	t _{DH}		9, 10, 11		0		
MS hold	t _{MH}		9, 10, 11		0		
Mode select	t _{MS}	Mode select <u>10</u> /	9, 10, 11	All	0		ns
MS hold	t _{MH}	(figure 4 diagram E)	9, 10, 11		15		
LS setup	t _{LS} <u>11</u> /		9, 10, 11		0		
Data setup	t _{DS}		9, 10, 11		0		
CS width	t _W		9		80		
			10, 11		100		
LS hold	t _{LH}		9, 10, 11		15		
Data hold	t _{DH}		9, 10, 11		15		
Reset width		Asynchronous mode <u>10</u> /	9		80		ns
		(figure 4 diagram F)	10, 11		100		
Functional tests	FT	See paragraph 4.4.1b	7, 8	All			

TABLE I. <u>Electrical performance characteristics</u> - continued.

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	8

Test	Test Symbol Conditions $1/$ -55°C \leq T _A \leq +125°C unless otherwise specified		Group A subgroups	Device type	Limits		Unit
		-		Min	Max		
Address setup	t _{AS}	Readback mode <u>10</u> /	9, 10, 11	All	0		ns
Address hold	t _{AH}	(figure 4 diagram G and H)	9, 10, 11		0		
RD setup	t _{RS}		9, 10, 11		0		
RD hold	t _{RH}		9, 10, 11		0		
MS setup	t _{MS}		9, 10, 11		0		
MS hold	t _{MH}		9, 10, 11		0		
Data access	t _{DV}		9		150		
			10, 11		180		
Data release	t _{DF}		9		60		
			10, 11		75		
Address setup	t _{AS}	Transparent mode <u>10</u> /	9, 10, 11	03	0		ns
Quad select setup	t _{QS}	(figure 4 diagram I)	9, 10, 11		0		
Transparent setup	t _{TS}		9, 10, 11		0		
Transparent width	t _{TW}		9		80		1
			10, 11		90		
Chip select hold	t _{CH}		9		90		
			10, 11		110		
Data hold	t _{DH}		9, 10, 11		0		

TABLE I. Electrical performance characteristics - continued.

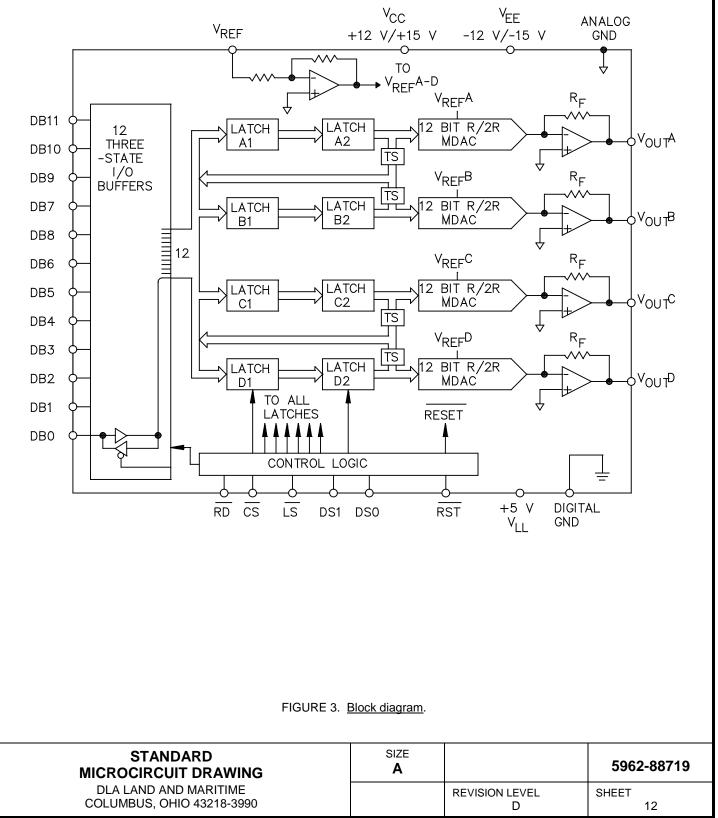
- <u>1</u>/ $V_{CC} = +15 \text{ V}, \text{ V}_{EE} = -15 \text{ V}, 50\Omega \text{ resistor pin 6 to pin 7, A0, A1, A2, A3, } \overline{CS} = \text{logic "0", V}_{IH} = 2.0 \text{ V}, \text{ V}_{IL} = 0.8 \text{ V}, \text{ unipolar configuration.}$
- 2/ Bipolar zero error is the difference from the ideal output (0 volts) and the actual output voltage with code 100 000 000 000 applied to the inputs.
- 3/ Parameter is guaranteed by design, not tested.
- $\frac{1}{4}$ A minimum power supply of ±12.0 V is required for a 10 V reference voltage.
- 5/ A minimum power supply of ±12.0 V is required for 0 to +10 V and ±10 V operation. A minimum power supply of ±11.4 V is required for –5 V to +5 V operation.
- 6/ Gain error matching is the largest difference in gain error between any two DACs in one package.
- $\overline{\underline{7}}$ / Bipolar zero matching is the largest difference in bipolar zero error between any two DACs in one package.
- 8/ Offset error matching is the largest difference in offset error between any two DACs in one package.
- 9/ Device type 03 only.
- <u>10</u>/ Timing specifications are relative to CS, V_{CC} = +15 V, V_{EE} = -15 V, V_{REF} = +10 V, V_{IH} = 2.4 V, V_{IL} = 0.4 V. Specifications are guaranteed but not tested. Refer to figure 4.
- <u>11</u>/ For $t_{LS} > 0$, the width of \overline{LS} must be increased by the same amount that t_{LS} is greater than 0 ns.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	9

	Device types	01 and 02	03	3		
	Case outlines	X	Y			
	Terminal number	Termina				
	1					
	2	V _{REF} V _{OUT} C	RI			
	3	V _{OUT} D				
	4		AGI			
	5	DS0	Vc			
	6	DS1	VE			
	7	DGND	R _F			
	8	RST	Vou			
	9	DB0(LSB)	Vou			
	10	DB1	RF			
	11	DB2	V _R			
	12	DB3	R _F			
	13	DB4	Vou			
	14 15	DB5	V _{OU}			
	15 16	DB6 DB7	R _F			
	17	DB7 DB8	N			
	18	DB9				
	19	DB10	DS			
	20	DB11(MSB)	DS			
	21	V _{LL}	DGI			
	22	RD	RS			
	23	LS	QS			
	24	AGND				
	25	Vcc				
			QS			
	26	VEE	TF			
	27	V _{OUT} A	M			
	28	V _{OUT} B	DB0(I			
	29 30		DE			
	31		DE			
	32		DE			
	33		DE			
	34		N			
	35		DE			
	36		DE			
	37		DE			
	38 39		DE DB			
	40		DB11(
	41		N			
	42		VL			
	43		N			
	44		N	C		
	FIGURE 1	Terminal conne	ections			
STANDARD		SIZE				
MICROCIRCUIT DRA	WING	A				5962-88719
DLA LAND AND MARI				REVISION LEVE		SHEET
COLUMBUS, OHIO 4321				D	-	10
DSCC FORM 2234		1				

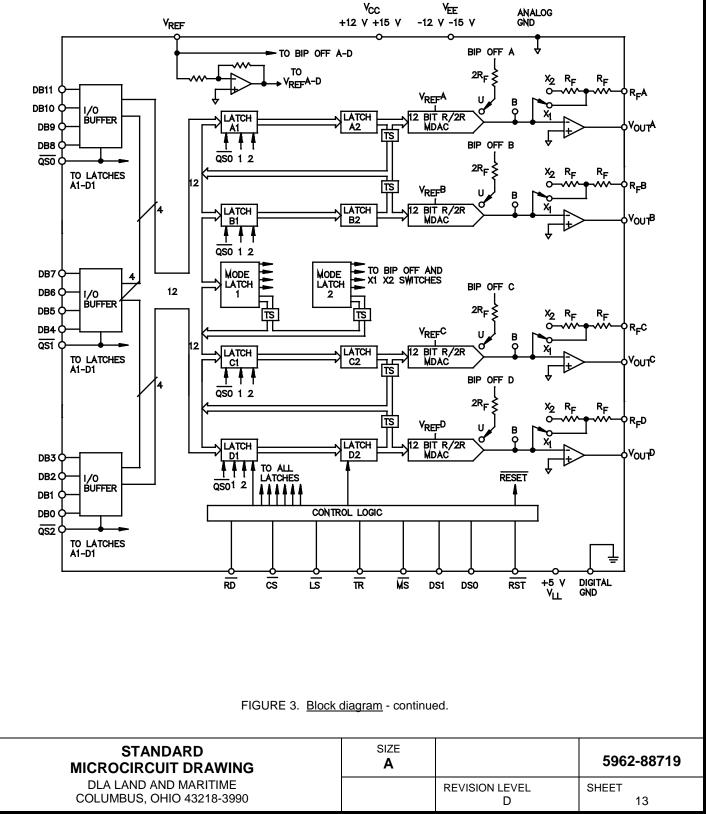
Function	DS1, DS0	LS	MS	TR	$\overline{\text{QS0}}$, $\overline{1}$, $\overline{2}$ (see note 1)	RD	cs	RST
Load 1 st rank								
DAC A	00	0	1	1	Select quad	1	1→0	1
DAC B	01	0	1	1	Select quad	1	1→0	1
DAC C	10	0	1	1	Select quad	1	1→0	1
DAC D	11	0	1	1	Select quad	1	1→0	1
Load 2 nd rank	XX	1	1	1	XXX	1	1→0	1
Read 2 nd rank	Select D/A	Х	1	1	Select quad	0	1→0	1
Reset	XX	Х	Х	Х	XXX	Х	Х	0
Transparent (see note 1)								
All DACs	XX	1	1	0	000	1	1→0	1
DAC A	00	0	1	0	000	1	1→0	1
DAC B	01	0	1	0	000	1	1→0	1
DAC C	10	0	1	0	000	1	1→0	1
DAC D	11	0	1	0	000	1	1→0	1
Mode select (see notes 1 and 2)								
1 st rank	XX	0	0	1	00X	1	1→0	1
2 nd rank	XX	1	0	1	XXX	1	1→0	1
Readback mode (see note 1)	XX	Х	0	1	00X	0	1→0	1

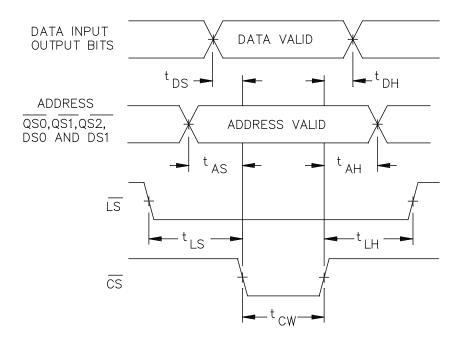
NOTES: 1. For device type 03 only.


2. For $\overline{\text{MS}}$, $\overline{\text{TR}}$, $\overline{\text{LS}}$ = 0, a $\overline{\text{MS}}$ 1st write occurs.

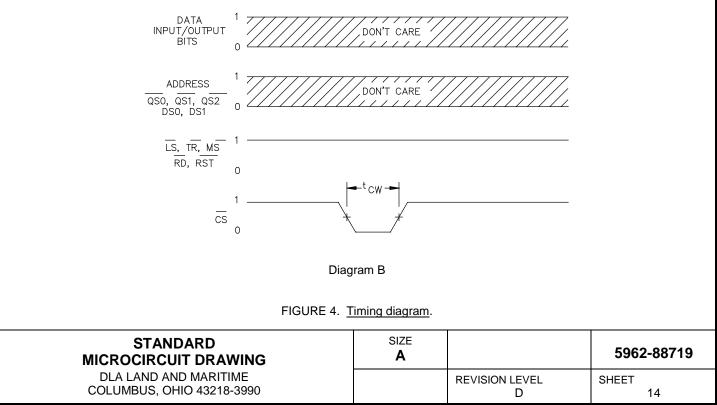
3. X = Don't care.

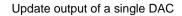
FIGURE 2. Truth table.

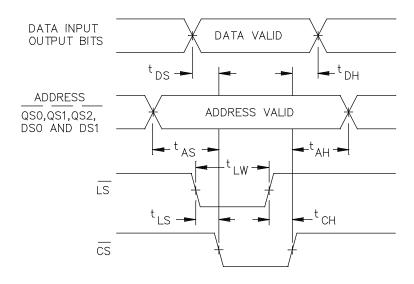

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	11

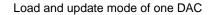


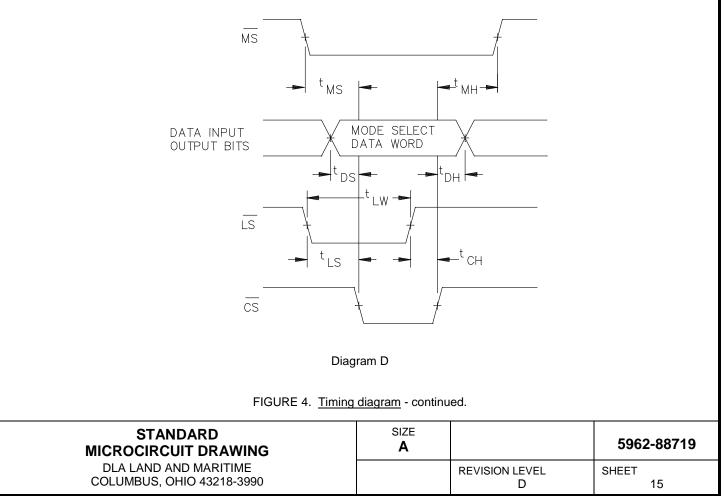
DSCC FORM 2234 APR 97

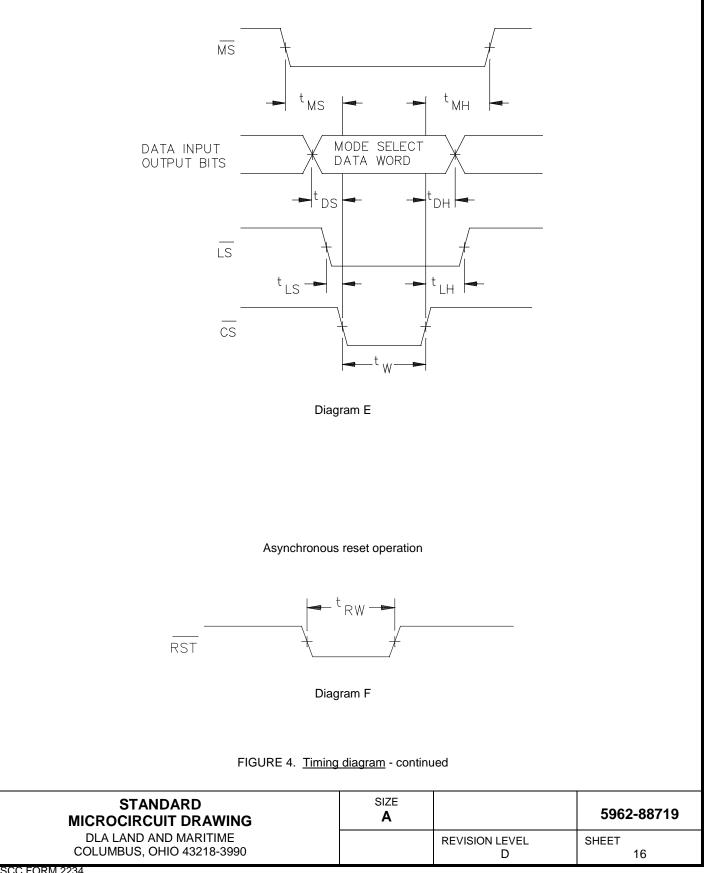


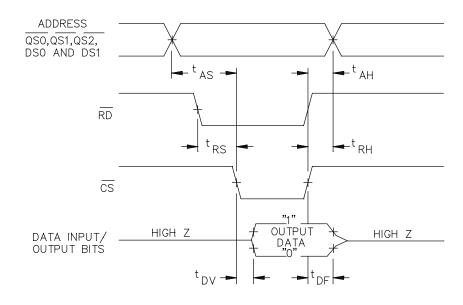

Preload first rank of DAC

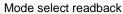


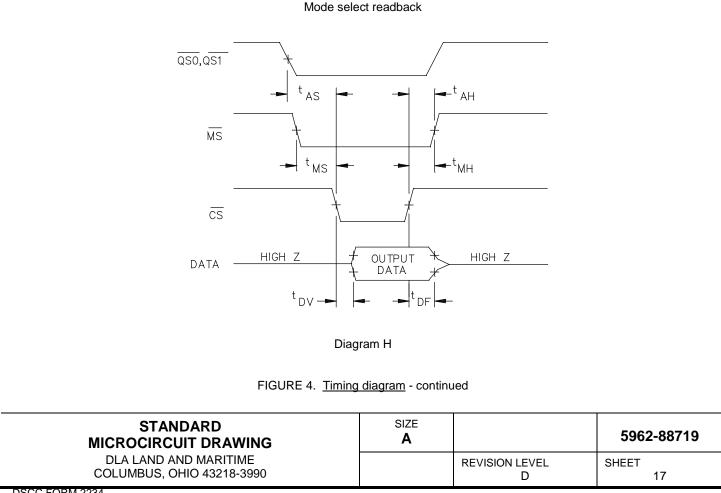

Update second rank of a DAC



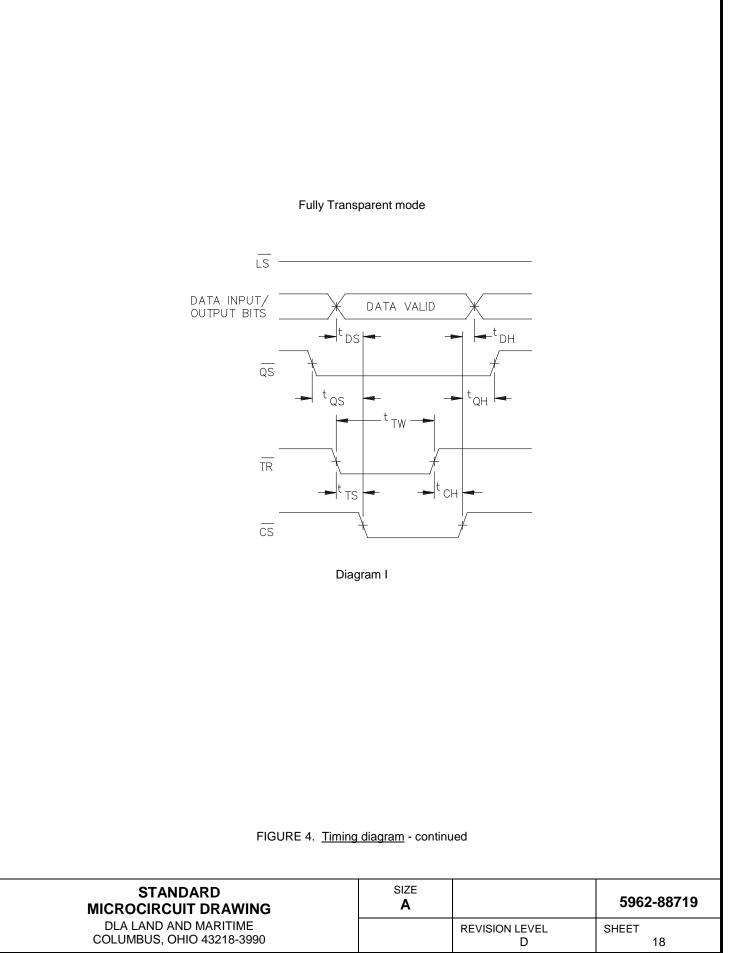





Preload mode select register



DAC input code readback



DSCC FORM 2234 APR 97

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A or B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	19

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
- d. Special subgroup 12 (as referenced in table I) added for grading and selection tests at +25°C.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)	
	Device	Device	Device
	class M	class Q	class V
Interim electrical parameters (see 4.2)	1	1	1
Final electrical parameters (see 4.2)	1, 2, 3, 9, 10, 11 <u>1</u> /	1, 2, 3, 9, 10, 11 <u>1</u> /	1, 2, 3, 9, 10, 11 <u>1</u> /
Group A test requirements (see 4.4)	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	1	1	1, 2, 3, 9, 10, 11
Group D end-point electrical parameters (see 4.4)	1	1	1
Group E end-point electrical parameters (see 4.4)			

TABLE II. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.

4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A or B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.

STANDARD
MICROCIRCUIT DRAWINGSIZE
ASIZE
A5962-88719DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990REVISION LEVEL
DSHEET
20

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime -VA, telephone (614) 692-8108.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime -VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime -VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88719
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 21

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 14-12-19

Approved sources of supply for SMD 5962-88719 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN 1/	Vendor CAGE number	Vendor similar PIN 2/
	24355	AD664TD-UNI/883B
5962-8871902MXA	24355	AD664TD-BIP/883B
5962-8871903MYA	24355	AD664TE/883B

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

24355

Analog Devices Rt 1 Industrial Park PO Box 9106 Norwood, MA 02062 Point of contact: 804 Woburn Street Wilmington, MA 01887-3462

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.