
1SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Application Report
SPRABL7C–September 2011–Revised April 2016

Using the TMS320C5545/35/34/33/32 Bootloader

ABSTRACT
This application report describes the features of the on-chip ROM for the TMS320C5545/35/34/33/32
device. Included is a description of the bootloader and how to interface with it for each of the possible boot
devices, as well as instructions for generating a boot image to store on an external device.

Download the related executable file for the C5545/35/34/33/32 bootloader from:

http://www.ti.com/lit/zip/sprabl7.

Contents
1 Introduction ... 2
2 Bootloader Operation.. 4
3 Boot Images .. 7
4 References .. 19

List of Figures

1 Creating an Encrypted Boot Image: Not Bound to Device.. 13
2 Creating an Encrypted Boot Image: Re-Authorization and Bound to Device 13
3 Creating an Encrypted Boot Image: Bound to Device... 14

List of Tables

1 ROM Memory Map .. 2
2 Unencrypted Boot Image Format .. 7
3 Encrypted Boot Image Format.. 10

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C
http://www.ti.com/lit/zip/sprabl7

Introduction www.ti.com

2 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1 Introduction

1.1 On-Chip ROM
The on-chip ROM contains several factory-programmed sections:
• Algorithm tables to be referenced by drivers to reduce application data size
• Application programming interface (API) tables for referencing ROM API functions in applications
• Bootloader program

Table 1. ROM Memory Map

Starting Byte Address Contents
FE_0000h LCD Table
FE_0860h WMA Encode Table
FE_9FA0h WMA Decode Table
FE_D4C4h MP3 Table
FE_F978h Equalization Table
FE_FB14h API Table
FE_FE9Ch Bootloader Code (and other built-in API functions)
FF_FEFCh Bootloader ID
FF_FF00h Bootloader Interrupt Vector Table

1.2 Bootloader Features
The major features of the bootloader are:
• Booting both encrypted and unencrypted images from supported external devices (see Section 1.3.1).
• Support for unencrypted external devices (see Section 1.3.1).

The bootloader also has the following features:
• Port-addressed register configuration during boot
• Programmable delay during register configuration

The bootloader is always invoked after reset. The function of the bootloader is to transfer user code from
an external source to RAM. Once the transfer is completed, the bootloader transfers control to this user
code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Introduction

3SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

1.3 Supported External Devices
The bootloader is responsible for bootloading the code from an unencrypted or encrypted external device.

1.3.1 Unencrypted External Devices
All external devices support unencrypted booting.

1.3.2 Encrypted External Devices
128-bit encrypted booting is available using three encrypted boot image formats:
• Not Bound to Device
• Re-Authorization and Bound to Device
• Bound to Device

All external devices support all three encrypted boot image formats, except McSPI, 24-Bit SPI, UART, and
USB do not support Re-Authorization and Bound to Device.

After bootloading from an external device, the bootloader decrypts the boot image, if necessary, and
writes it into DSP memory (on-chip or off-chip).

NOTE: SARAM31 (byte address 0x4E000 – 0x4FFFF) is reserved for the bootloader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Bootloader Operation www.ti.com

4 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

2 Bootloader Operation

2.1 Bootloader Initialization
When the bootloader begins execution, it performs some initialization before attempting to load code:
• All peripherals are idled (the bootloader un-idles peripherals as it uses them).
• CPU Clock setup

– If CLK_SEL = 0, the bootloader powers up the PLL and sets its output frequency to 12.288 MHz
(multiply 32 768 Hz RTC Clock by 375).

– If CLK_SEL = 1, the bootloader bypasses the PLL and uses CLKIN. Note that CLKIN is expected to
be 11.2896 MHz, 12.0 MHz, or 12.288 MHz.

• The low-voltage detection circuit is disabled to prevent trim setup (next step) from causing an
unnecessary reset.

• The bootloader reads the trim values from the e-fuse farm and writes them into the analog trim
registers.

2.2 Boot Devices
Each device has a fixed order in which it checks for a valid boot image on each supported boot device.
The device order is 16-bit SPI EEPROM, 24-bit SPI serial flash, I2C EEPROM, and
SD/SDHC/eMMC/moviNAND. The first device with a valid boot image will be used to load and execute
user code.

If none of these devices has a valid boot image, the bootloader will modify the CPU Clock setup as
follows:
• If CLK_SEL = 0, the bootloader powers up the PLL and sets its output frequency to 36.864 MHz

(multiply 32 768 Hz RTC Clock by 1125).
• If CLK_SEL = 1, the bootloader powers up the PLL and sets it to multiply CLKIN by 3.

This CPU clock setup change is required to meet the minimum frequency needed by the USB module.

Next the bootloader goes into an endless loop checking for data received on either the UART or USB. If a
valid boot image is received from either device, it will be used to load and execute user code. If no valid
boot image is received, the bootloader will simply continue to monitor these two devices. During this
endless loop, if the time since the trim setup exceeds 200 ms, then the bootloader will re-enable the low-
voltage detection circuit. This is done to prevent leaving the low-voltage detection disabled for an
extended period of time.

See Section 3 for a description of the valid boot image formats.

The following subsections describe details for each supported boot device.

2.2.1 16-Bit SPI EEPROM
The bootloader supports booting from an SPI EEPROM with the following requirements for the external
device:
• The device must support at least a 500-kHz SPI clock.
• The device must be connected to SPI CS0 and act as an SPI slave.
• The device uses two bytes (16 bits) for internal addressing (up to 64KB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.
• The device may be connected to either of the two available pin-mappings for SPI. The bootloader

attempts to communicate on each SPI pin-mapping, one at a time.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Bootloader Operation

5SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

2.2.2 24-Bit SPI Serial Flash
The bootloader supports booting from an SPI Flash with the following requirements for the external
device:
• The device must support at least a 500-kHz SPI clock.
• The device must be connected to SPI CS0 and act as an SPI slave.
• The device uses three bytes (24 bits) for internal addressing (up to 16MB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.
• The device may be connected to either valid pin-mapping for SPI (there are two distinct pin-mappings

available). The bootloader attempts to communicate on each SPI pin-mapping, one at a time.
• Any and all write-protect features must be disabled if re-authoring is needed. The Bootloader will not

attempt to disable these features.

2.2.3 I2C EEPROM
The bootloader supports booting from an I2C EEPROM with the following requirements for the external
device:
• The device must support the fast I2C specification (400 kHz).
• The device must respond to slave address 0x50 (7-bit address).
• The device uses two bytes for internal addressing (up to 64KB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.

2.2.4 SD
The bootloader supports booting from an SD device with the following requirements for the external
device:
• The device must be connected to the eMMC/SD0 interface.
• The SD device must comply with SD Specifications Part 1 Physical Layer Simplified Specification v1.1

or v2.0 and formatted in FAT16/32.
• The SD device must use the SD insecure mode (see SD specification). Note that this does not refer to

the boot image security. Boot images can be either the encrypted image or unencrypted image for use
with SD.

• The boot image must be in the first partition with a filename of “bootimg.bin”.

2.2.5 eMMC/moviNAND
The bootloader supports booting from an eMMC/moviNAND device with the following requirements for the
external device:
• The device must be connected to the eMMC/SD0 interface.
• The eMMC/moviNAND device must comply with eMMC Specification v4.3, or later, and formatted in

FAT16/32.
• The boot images can be in either the boot partition (with boot-from-partition enabled) or in the user

data area formatted in FAT16/32. The boot image must be in the first data partition with filename
“bootimg.bin”. Both an encrypted image and unencrypted image are supported for use with
eMMC/moviNAND.

• The bootloader will check for user data partition first. If there is no valid boot image, then it will check
for the boot from partition option.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Bootloader Operation www.ti.com

6 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

2.2.6 UART
The bootloader supports booting from the UART. The bootloader sets up to receive data using the
following UART parameters: 8-bit data, odd-parity, 1 stop-bit, and 57 600 baud rate.

To reduce the probability of a receive error, the external transmitter should set up to use two stop-bits.

Note that this setup may result in data receive errors if CLK_SEL is set to use CLKIN when CLKIN is
11.2896 MHz. The error rate may be reduced by the external device by adding additional time between
frames (bytes).

2.2.7 USB
The bootloader supports booting from the USB. The bootloader uses bulk-endpoint 1 (OUT), vendor-id
0x0451, and product-id 0x9010.

2.3 Register Configuration
Once the bootloader detects a valid boot image signature (see Section 3), the first data that is used from
the boot image is the optional register configuration data. This data allows the user to set up peripheral
port-addressed registers during the boot process and before the code sections are copied. This feature
provides the capability to change peripheral registers for specific purposes.

NOTE: Using the register configuration feature to reprogram register settings may cause the
bootloader to fail.

Since some register configurations may have an associated latency that must be observed before
continuing, a delay feature is also available as part of the register configuration data.

For a description of how to insert register configuration data, including delays, into a boot image, see:
• Section 3.1.1, Creating an Unencrypted Boot Image
• Section 3.2.4, Creating an Encrypted Boot Image

2.4 Code Sections
After the optional register configuration is complete, the bootloader will copy all of the code sections from
the boot image to RAM. Each of these code sections may be actual code or just data. These sections are
typically defined by the link-control file.

2.5 Bootloader Completion
After all code sections have been copied, the bootloader will wait to ensure that at least 200 ms have
elapsed since the trim setup. Re-enable the low-voltage detection circuit, and then branch to the entry-
point address specified in the boot image.

At this point, the bootloader’s task is complete and the user application is executing.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Boot Images

7SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

3 Boot Images
The bootloader’s primary function is to transfer user code into RAM and then transfer control to this user
code. The user code must be formatted into a boot image format supported by the bootloader.

There are two distinct formats supported by the bootloader: An unencrypted boot image format, and an
encrypted boot image format. These two formats store the same information, with the only difference
being the encrypted format uses encryption to protect the user’s data or code.

The following sections describe these two boot image formats and how to create boot images.

3.1 Unencrypted Boot Image Format
The unencrypted boot image format contains the following information:
• All user code/data sections to be loaded to RAM
• Register configuration data for setting up peripheral registers prior to loading code
• The entry-point of the user’s application
• A boot signature to distinguish unencrypted from encrypted boot images. The unencrypted boot image

boot signature is 0x09AA.

Table 2 shows the unencrypted boot image format.

Table 2. Unencrypted Boot Image Format

Word Content Valid Data Entries
1 Boot Signature (16-bits) 0x09AA
2

Entry Point (32 bits)
Byte address to begin execution (MSW)

3 Byte address to begin execution (LSW)
4 Register Configuration Count (16 bits, N = count) 1 to 216 - 1
5 Register Config #1 Address in I/O space Repeated according to register

configuration count. Register configuration
address is any valid register in I/O space.
Address 0xFFFF is reserved as a delay
indicator to create delay in between
register writes or at end of register writes.

6 Register Config #1 Value or delay count
7 Register Config #2 Address in I/O space
8 Register Config #2 Value or delay count

. . .
Register Config #N Address in I/O space

4+2N Register Config #N Value or delay count 0 to 216 - 1
5+2N Section 1 word count (16 bits)

Size is the number of valid (non-pad) data words in block
M = (size + 2) rounded up to nearest multiple of 64-bit boundary

1 to 216-1

6+2N Destination MSW address to load Section 1 (32 bits) 16-bit word address MSW
7+2N Destination LSW address to load Section 1 (32 bits) 16-bit word address LSW
8+2N First word of Section 1 (16 bits)

. . .
5+2N+M Last word of Section 1, often pad data (padded to 64-bit boundary)

. . .
X Section X word count (16 bits)

Size is the number of valid (non-pad) data words in block
N' = (size + 2) rounded up to nearest multiple of 64-bit boundary

1 to 216-1

X+1 Destination MSW address to load Section X (32 bits) 16-bit word address MSW
X+2 Destination LSW address to load Section X (32 bits) 16-bit word address LSW
X+3 First word of Section X (16 bits)

. . .
X+N' Last word of Section X, often pad data (padded to 64-bit boundary)

X+N'+1 Zero word. Note that if more than one source block was read, word
X+N' shown above would be the last word of the last source block.
Each block would have the format shown in the shaded entries.

0x0000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Boot Images www.ti.com

8 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

3.1.1 Creating an Unencrypted Boot Image
A boot image can be created using the hex conversion utility (hex55) utility. The hex55 utility is intended
for creating a unencrypted boot image.

For detailed information on the available hex conversion utility output formats, see the TMS320C55x DSP
Assembly Language Tools User’s Guide (SPRU280).

Use the hex conversion utility (hex55.exe) revision 4.3.5 or later. Earlier versions may not support the boot
table features correctly.

3.1.1.1 Creating an Unencrypted Boot Image Using hex55
To create a boot table for the application (my_app.out) with the following conditions:
• Desired boot mode is 8-bit standard serial boot
• No registers are configured during the boot
• No programmed delays will occur during the boot
• Desired output is binary format in a file called my_app.bin

Use the following options on the hex conversion utility command line or command file:
hex55 -boot -v5505 -serial8 -b -o my_app.bin my_app.out

-boot ;option to create a boot table
-v5505 ;use C55x boot table format
-serial8 ;boot mode is 8-bit standard serial boot
-b ;desired output format is binary format
-o my_app.bin ;specify the output filename
my_app.out ;specify the input file

3.1.1.2 Creating an Unencrypted Boot Image with I/O Register Configuration
To create a boot table for the application my_app.out with the following conditions:
• Desired boot mode is from 8-bit standard serial boot
• Configure the register address 0x1C8C with the value 0x0001
• After the register is configured, wait 256 cycles before continuing the boot
• Desired output is binary format in file a called my_app.bin

Use the following options on the hex conversion utility command line or command file.

Note: If using the reg_config option, ensure there is no space between the address and value.
hex55 -boot -v5505 -serial8 -reg_config 0x1c8c,0x0001 -delay 0x100 -b -o my_app.bin my_app.out

-boot ;option to create a boot table
-v5505 ;use C55x boot table format
-serial8 ;boot mode is 8-bit standard serial boot
-reg_config 0x1c8c,0x0001 ;write 0x0001 to peripheral register at address 0x1C8C.

This can be repeated to program multiple registers.
-delay 0x100 ;delay for 256 CPU clock cycles
-b ;desired output format is binary format
-o my_app.bin ;specify the output filename
my_app.out ;specify the input file

NOTE: Using the register configuration feature to reprogram register settings may cause the
bootloader to fail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C
http://www.ti.com/lit/pdf/SPRU280

www.ti.com Boot Images

9SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

3.1.1.3 Section Alignment Restrictions When Using Hex55 Utility
All code sections must be aligned on a word boundary. Sections that are not properly aligned will be
flagged by the hex55 utility.

To align a code section, use the align command in the linker command file as shown below. Note that if
any function included in a code output section has an alignment associated with it (in C via CODE_ALIGN
pragma) the whole section will inherit that alignment.

.text > ROM PAGE 0 align 2

3.1.1.4 DOS Command Line for Generating Boot Image Using Hex55
hex55 -boot -v5505 -b -serial8 -o USBKey_LED.bin USBKey_LED.out

3.2 Encrypted Boot Image Format
Note: The encrypted and unencrypted boot image format is fully supported on normal versions of this
device. TI provides a PC-based Encrypted Boot Image Generator tool and a 128-bit development SEED
and KEY here. To obtain the Encrypted Boot Image Generator tool, contact your local TI sales
representative.

The encrypted boot image format contains the following information:
• All user code and data sections to be loaded to RAM (encrypted).
• Register configuration data for setting up peripheral registers prior to loading code (encrypted).
• The entry-point of the user’s application (encrypted).
• The file-key used for encrypting the remainder of the file (encrypted). The encryption-seed, device-id (if

this is a bound image), and a random number are combined to create the file-key.
• The seed-offset for the encryption-seed used. This is an index into the ROM seed table (value = 0 to

127).
• A boot signature to distinguish encrypted boot images from unencrypted boot images, and to indicate

the type of encrypted boot image.

Encrypted booting is supported with three types of encrypted boot images:
• Not Bound to Device
• Re-Authorization and Bound to Device
• Bound to Device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Boot Images www.ti.com

10 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Table 3. Encrypted Boot Image Format

Word Content Valid Data Entries
1 Boot Signature (16 bits) 0x09A4, 0x09A5, 0x09A6
2 Encryption Seed Offset (16 bits) 0 to 127 (assigned by TI)

3:10 Encrypted File Key (128 bits) Safer (SHA1(Seed OR Seed + ID),File Key)
11:14 Two pad words (0x00000) and entry point (32 bits) all

encrypted
Safer encrypted byte address to begin execution

15 Register configuration count (16 bits, N = count) 1 to 216 – 1 (not encrypted)
16 Register configuration #1 address in I/O space Repeated according to register configuration count. Register

configuration address is any valid register in I/O space.
Address 0xFFFF is reserved as a delay indicator to create
delay in between register writes or at end of register writes.
This section is encrypted and padded to 64-bit boundary.

17 Register configuration #1 value or delay count
18 Register configuration #2 address in I/O space
19 Register configuration #2 value or delay count

. . .
Register configuration #N address in I/O space

15+2N Register configuration #N value or delay count 0 to 216 - 1
16+2N Section 1 word count (16 bits)

Size is the number of valid (non-pad) data words in block
M = (size + 2) rounded up to nearest multiple of 64-bit
boundary

1 to 216-1 (not encrypted)

17+2N Destination MSW address to load Section 1 (32-bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) MSW

18+2N Destination LSW address to load Section 1 (32-bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) LSW

19+2N First word of Section 1 (16 bits) Safer encrypted C55x instructions or any 16 bit wide data
value

16+2N+M . . . Safer encrypted C55x instructions or any 16 bit wide data
value

Last word of Section 1, often pad data (padded to 64-bit
boundary)

Safer encrypted C55x instructions or any 16 bit wide data
value

. . .
X Section X word count (16-bits)

Size is the number of valid (non-pad) data words in block
N' = (size + 2) rounded up to nearest multiple of 64-bit
boundary

1 to 216-1 (not encrypted)

X+1 Destination MSW address to load Section X (32 bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) MSW

X+3 Destination LSW address to load Section X (32 bits) Safer encrypted C55x 16-bit word address (0x000060 to
0x097FFF) LSW

First word of Section X (16 bits) Safer encrypted C55x instructions or any 16 bit wide data
value

X+N' . . . Safer encrypted C55x instructions or any 16 bit wide data
value

Last word of Section X, often pad data (padded to 64-bit
boundary)

Safer encrypted C55x instructions or any 16 bit wide data
value

X+N'+1 Zero word. Note that if more than one source block was
read, word X+N' shown above would be the last word of the
last source block. Each block would have the format shown
in the shaded entries.

0x0000

X+N'+2 Hash (160 bits) SHA1-HMAC(SHA1(Seed + ID, File Key + data[11: X+N'+1])

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Boot Images

11SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

3.2.1 Not Bound to Device
The boot signature is 0x09A5.

The bootloader decrypts the boot image based on the SEED and KEY information (128-bit) every time but
does not modify the original boot image. The steps to decrypt are:
1. Detect signature from a Boot Source (0x09A5).
2. Receive SEED_OFFSET (0–127) from the boot image.
3. Receive the SEED from ROM.
4. Receive the encrypted file KEY from the boot image.
5. Decrypt the file KEY with the SEED.
6. Decrypt image with the file KEY and store to RAM.
7. Disable ROM only if valid signature is found. If no valid signature is found, ROM remains unlocked.
8. Jump to Entry Point.

3.2.2 Re-Authorization and Bound to Device
The boot signature is 0x09A6.

The encryption is based on the SEED and KEY information. But at first power up, the bootloader decrypts
the boot image based on the SEED and KEY information and then re-encrypts the image with SEED +
DEVICE-ID from the device ID registers (DIEIDR0–DIEIDR3) which are unique values per device and the
KEY. The original boot image is then written to the boot media. Now the boot image has become “bound
to device”. From the second time, the bootloader decrypts the boot image based on the SEED + DEVICE-
ID (128-bit) and the KEY.

The steps to decrypt are:
1. Detect signature from a Boot Source (0x09A6).
2. Receive SEED_OFFSET (0–127) from the boot image.
3. Receive the SEED from ROM.
4. Receive the encrypted file KEY from the boot image.
5. Decrypt the file KEY with the SEED.
6. Decrypt image with the file KEY and store to RAM.
7. Read the unique Device ID from Die Registers (128-bit).
8. Encrypt the KEY and boot image with the SEED + Die ID.
9. Write back to the boot media with the new signature (0x09A5).
10. Boot from the new boot image.
11. Disable ROM.
12. Jump to Entry Point.

3.2.3 Bound to Device
The boot signature is 0x09A4.

This encryption is used to bind the boot image to a device with the unique DIEID. Each device has a
unique DIEID that must be read before encrypting an image.

Use only the first 64 bits (DIEIDR0-DIEIDR3) of the device DIEID registers are used. Enter the values of
the DIEID registers in the Encrypted Boot Image Generator tool, C55BootImage.exe, available by
contacting your local TI sales respresentative.

For the example in the following section, we will assume the DIEID values are 0x20230502 and
0x26B2068D. Your DIEID values will be different.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Boot Images www.ti.com

12 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

3.2.4 Creating an Encrypted Boot Image
TI provides an encrypted Boot Image Generator tool, C55BootImage.exe, which is a graphical user
interface (GUI) that uses *.out COFF files created by Code Composer Studio™ and converts them to
encrypted binary files used by the bootloader program.

The following steps explain how to use the GUI.
1. Enter Boot Image Option:

• Encrypt Output
– Not Bound to Device (Figure 1)
– Re-Authorization and Bound to Device (Figure 2)
– Bound to Device (Figure 3)

• Register File
– Choose an appropriately formatted register file. The following format is an example of an

appropriate format:
• SIZE: 0x03
• ADDRESS: 0x1c0c
• CONTENT: 0x8765
• ADDRESS: 0xFFFF Note: Address 0xFFFF is to wait the number of cycles before executing

next instruction.
• CONTENT: 0x0100
• ADDRESS: 0x1c0d
• CONTENT: 0x4321

2. Enter Encrypt Parameters:
(a) Type the customer KEY.

• The key is 64-bit and the key windows are each 32-bit.
• The customer key for development is 0x1000000000000100.

– Type 0x10000000 in the left field.
– Type 0x00000100 in the right field.

(b) Type the Identifier. The identifier is the unique device ID which the boot image is meant to be
bound to (see Figure 3).
• For Bound to Device only.
• Type the most significant bit in the left field.

Assuming the value for DIEID0 is 0x2023 and DIEID1 is 0x0502, type 0x20230502.
• Type the least significant bit in the right field.

Assuming the value for DIEID2 is 0x26B2 and DIEID3 is 0x068D, type 0x26B2068D.
(c) Type the SEED offset. The seed offset for the development key is 0.
(d) Type the SEED.

• The seed is 56-bit and the SEED windows are 64-bit.
• The SEED should be left-aligned: the development SEED is 0x2F71C554EEDF65.

– Type 0x2F71C554 in the left field.
– Type 0xEEDF6500 in the right field.

3. Select the Output Directory. The User specified option will ask for the directory after pressing Generate
Boot Image File >>.

C55BootImage can also be used with command-line parameters (e.g., as part of a batch file) instead of
the graphical window. To see the command-line parameter formats that are available, with examples, type
C55BootImage /? from a DOS prompt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Boot Images

13SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Figure 1. Creating an Encrypted Boot Image: Not Bound to Device

Figure 2. Creating an Encrypted Boot Image: Re-Authorization and Bound to Device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Boot Images www.ti.com

14 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Figure 3. Creating an Encrypted Boot Image: Bound to Device

3.3 Burn a Boot Image
Once a boot image (*.bin) is generated, customers can burn the boot image into the SPI EEPROM (16-bit
or 24-bit), I2C EEPROM, SPI serial flash or SD/SDHC/eMMC/moviNAND. It is done by a utility called
programmer which runs on each device using an emulator with CCS. First you will need to load the
program, programmer_C5535_eZdsp.out. For writing to SPI serial flash, at the “C5535 eZdsp … input
<file_path>” prompt, input the path name for the boot image<enter>. The following display will be shown:

SPI Flash…
Erase chip (SPI Flash)…
Open <file-path>
Input file opened
Programming Complete

3.4 Boot from Micro SD/SDHC Card
To boot from micro SD/SDHC card:
1. Ensure there is no boot image in the SPI serial flash.
2. Format the micro SD/SDHC to FAT16/32.
3. Copy the boot image into the root directory and rename it to “bootimg.bin”.
4. Insert the micro SD/SDHC in the micro SD slot (J6).
5. Power cycle the C5535 eZdsp.

The bootloader will boot from the micro SD/SDHC card.

3.5 Boot from UART
To boot from UART:
1. Ensure there is no boot image in the SPI serial flash or micro SD slot.

The J2 of the C5535 eZdsp should be connected to a PC USB port via USB cable. It will use the virtual
COM port (the COM port number varies by system) through TI XDS100 Channel B.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Boot Images

15SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

2. Ensure pin 2 of SW3 is on and the Load VCP is checked for TI XDS100 Channel B (Enable the Virtual
COM Port).

To see the properties for TI XDS100 Channel B, open Control Panel→System→Hardware→Device
Manager→USB Controller→TI XDS100 Channel B→Properties→Advanced.

Enable the Virtual COM Port

To see the properties of a particular COM port, open Control Panel→System→Hardware→Device
Manager→Ports (COM & LPT)→USB Serial Port (COMxx).
The properties dialog box is shown in Get the Virtual COM Port Number.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Boot Images www.ti.com

16 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Enable the Virtual COM Port (continued)

Get the Virtual COM Port Number

3. Run the UartBoot.exe (Running UartBoot.exe) and select the 57600 in “Baud Rate”.
4. Enter the correct COM port number in “PC COM Port” and check the “Serial Port”.
5. Click “Send File >>”.

Running UartBoot.exe

In the file selection dialog box (Select the Boot Image File):
6. Select the file to upload: demo.bin, in this case.
7. Click "Open" to start uploading.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com Boot Images

17SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

Running UartBoot.exe (continued)

Select the Boot Image File

After the uploading is complete, a message box appears, as in UART Boot is Completed.

UART Boot is Completed

The demo.bin now runs on the C5535 eZdsp.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

Boot Images www.ti.com

18 SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Using the TMS320C5545/35/34/33/32 Bootloader

3.6 Boot from USB
To boot from USB:
1. Ensure there is no boot image in the SPI serial flash or micro SD slot.

The J1 of the C5535 eZdsp should be connected to a PC USB port via a USB cable.
2. Execute usb_boot.exe and enter option 3 for BootImage Test.
3. Input the boot image path name: demo.bin, in this case.

Running usb_boot.exe

After <enter>, the following dialog box appears.

USB Boot is Completed

The demo.bin now runs on the C5535 eZdsp.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C

www.ti.com References

19SPRABL7C–September 2011–Revised April 2016
Submit Documentation Feedback

Copyright © 2011–2016, Texas Instruments Incorporated

Revision History

4 References
• TMS320C55x DSP Assembly Language Tools User’s Guide (SPRU280)

Revision History

Changes from B Revision (January 2014) to C Revision ... Page

• Added C5545 device.. 1
• TI No longer supports the secure version of the device with customer unique secure SEED,KEY and JTAG disabled 1
• Removed any references to "Secure ROM" ... 1
• Updated intro paragraph of Section 3.2 .. 9

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABL7C
http://www.ti.com/lit/pdf/SPRU280

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Using the TMS320C5545/35/34/33/32 Bootloader
	1 Introduction
	1.1 On-Chip ROM
	1.2 Bootloader Features
	1.3 Supported External Devices
	1.3.1 Unencrypted External Devices
	1.3.2 Encrypted External Devices

	2 Bootloader Operation
	2.1 Bootloader Initialization
	2.2 Boot Devices
	2.2.1 16-Bit SPI EEPROM
	2.2.2 24-Bit SPI Serial Flash
	2.2.3 I2C EEPROM
	2.2.4 SD
	2.2.5 eMMC/moviNAND
	2.2.6 UART
	2.2.7 USB

	2.3 Register Configuration
	2.4 Code Sections
	2.5 Bootloader Completion

	3 Boot Images
	3.1 Unencrypted Boot Image Format
	3.1.1 Creating an Unencrypted Boot Image
	3.1.1.1 Creating an Unencrypted Boot Image Using hex55
	3.1.1.2 Creating an Unencrypted Boot Image with I/O Register Configuration
	3.1.1.3 Section Alignment Restrictions When Using Hex55 Utility
	3.1.1.4 DOS Command Line for Generating Boot Image Using Hex55

	3.2 Encrypted Boot Image Format
	3.2.1 Not Bound to Device
	3.2.2 Re-Authorization and Bound to Device
	3.2.3 Bound to Device
	3.2.4 Creating an Encrypted Boot Image

	3.3 Burn a Boot Image
	3.4 Boot from Micro SD/SDHC Card
	3.5 Boot from UART
	3.6 Boot from USB

	4 References

	Revision History
	Important Notice

