

MSP430FW42x ScanIF Demo Box Hardware and Software Description

Zack Mak

Smart Grid Applications

ABSTRACT

This application report describes the specific information of the demo box that detects the disc rotation using Scan Interface in MSP430FW42x. Both hardware and software are covered to help the developer understand the working principle of this demo box in a short time.

This document is based on *Rotation Detection With the MSP430 Scan Interface* (SLAA222). Detailed technical information can be found in that document.

Contents

1	The De	emo Box	2
2	Demo	Source Code	3
3	Refere	nces	12
Append	dix A	Schematic	13

List of Figures

1	Demo Box	2
2	The LCD	3
3	Graphical Illustration for the Criteria of Updating SIFCNT1	6
4	Relationship Between the Excitation Level, the DAC Level and SIFxOUT	8
5	Value of SIFxOUT at the Same Excitation Level With Different DAC Value	8
6	Startup Calibration Flowchart	9
7	Coarse to Fine Calibration for System Startup	10
8	Relationship Between Different Parameters	11
9	Example of Run Time Calibration When Excitation Level Became Higher	12
10	Simplified Schematic of the Demo Box	13

List of Tables

1	Pin Connection	3
2	ScanIF Initialization	3
3	TSM Setup	5
4	State Table Setting of the Demo Source Code	7

All trademarks are the property of their respective owners.

1 The Demo Box

Figure 1 shows different parts of the demo box. The target demo board is equipped with an MSP430FW429 for ScanIF operation.

Figure 1. Demo Box

NOTE:

- To power the board, short the external jumper or connect the JTAG to the FET tool.
- To measure the current consumption (using battery power), connect the external jumper pin to a multi-meter.
- The JTAG and the battery share the same V_{cc} . Do not power the board using the JTAG and the battery at the same time.
- For the demo source code once the board is powered up, the LCD shows "CAL" for initialization. If there is nothing shown on the LCD, there may be some bad contacts between the MCU and the target board. Opening and closing the cover of the MCU socket should solve the problem.
- The LCD takes roughly 3 µA. Disconnect the LCD resister ladder to eliminate that current consumption. Of course, the LCD will not display numbers anymore.

1.1 LCD

2

The LCD layout is shown in Figure 2. Only the 3 digits on the left (A1, A2 and A3) are used and only the corresponding pins are connected to the MCU.

MSP430FW42x ScanIF Demo Box Hardware and Software Description

Figure 2. The LCD

Table 1. Pin Connection

LCD	1	2	5	6	9	10	25	26	27	28
MSP430F W42x	S6	S7	S8	S9	S10	S11	COM3	COM2	COM1	COM0

2 Demo Source Code

The source code is divided into 3 files: lcd.c, main.c and scanif.c. This section focuses on the operation of rotation detection using ScanIF only.

2.1 ScanIF Initialization

The initialization code is modified from *Rotation Detection With the MSP430 Scan Interface* (SLAA222). The main difference is that the demo source code adds test cycle settings for calibration. The setting is shown in Table 2. Some unrelated parameters are not shown.

Register Setting	Bitwise Value	Meaning				
SIFCTL2 = 0x0150;	SIFDACON = 0	DAC is controlled by TSM				
	SIFCAON = 0	Comparator is controlled by TSM				
	SIFCAINV = 0	Comparator output is non-inverted				
	SIFCAX = 0	Comparator input from SIFCHx				
	SIFVSS = 0	Sample capacitor is grounded to SIFVss				
	SIFVCC2 = 1	AVcc/2 on				
	SIFSH = 0	Sample and hold disabled				
	SIFEN = 1	Excitation circuitry is enabled				
	SIFTCH1x = 01	Test channel 1 is mapped to SIFCH1				
	SIFTCH0x = 00	Test channel 0 is mapped to SIFCH0				

Table 2. ScanIF Initialization

TEXAS INSTRUMENTS

www.ti.com

Demo Source Code

Register Setting	Bitwise Value	Meaning				
SIFCTL3 = 0x4000;	SIFS2x = 01	SIF1OUT is the S2 source				
	SIFS1x = 00	SIF0OUT is the S1 source				
	SIFIS1x = 00	SIFIFG3 is set with each count, up or down, of SIFCNT1				
SIFCTL4 = 0x33D0;	SIFCNT1ENM = 1	SIFCNT1 decrement is enabled				
	SIFCNT1ENP = 1	SIFCNT1 increment is enabled				
	SIFQ7EN = 0	Q7 is not used to determine next PSM state				
	SIFQ6EN = 0	Q6 is not used to determine next PSM state				
	SIFDIV3Bx = 111	TSM restart after 330 ACLK cycle. At 32768Hz, that would be				
	SIFDIV3Ax = 101	0.01sec. This reflects the sampling rate of the LC sensor.				
SIFCTL5 = 0x0045;	SIFTSMRP = 0	Each TSM sequence is triggered by ACLK divider				
	SIFCLKFQx = 1000	Internal oscillator frequency = Nominal				
	SIFFNOM = 1	Internal oscillator frequency = 1MHz				
	SIFCLKEN = 1	TSM high frequency clock source = internal oscillator				

Table 2. ScanIF Initialization (continued)

2.2 TSM Setup

The SIFTSMx is modified from the *Rotation Detection With the MSP430 Scan Interface* (SLAA222) source code for calibration. The setting is shown in Table 3.

SIFTSM0 = 0x8800	All off. Idle for 18xSMCLK
(SIFTSM1 – 4: settings for SIFCH0)	SIFCHx = 00
	SIFTESTS1 = 0 (Test cycle uses SIFDACR6 for DAC)
	SIFLCEN = 1 (LC enabled)
	SIFCLKON = 1 (Hi-Freq clock on)
SIFTSM1 = 0x002C	LC excitation for 1xSIFCLK
	SIFEX = 1 (Excitation)
SIFTSM2 = 0x0424	Wait for 1xACLK
	SIFACLK = 1 (use ACLK)
SIFTSM3 = 0x6934	Enable AFE for 14xSIFCLK
	SIFREPEATx = 13
	SIFDAC = 1 (DAC on)
	SIFCA = 1 (Comparator on)
SIFTSM4 = 0x2174	Measurement for 5xSIFCLK
	SIFREPEATx = 4
	SIFDAC = 1
	SIFRSON = 1 (Enable output latch) SIFCA = 1
(SIFTSM5 – 8: settings for SIFCH1)	SIFCHx = 01
	SIFTESTS1 = 1 (Test cycle uses SIFDACR7 for DAC)
	SIFLCEN = 1 (LC enabled)
	SIFCLKON = 1 (Hi-Freq clock on)
SIFTSM5 = 0x00AD	LC excitation for 1xSIFCLK
	SIFEX = 1 (Excitation)
SIFTSM6 = 0x04A5	Wait for 1xACLK
	SIFACLK = 1 (use ACLK)
SIFTSM7 = 0x69B5	Enable AFE for 14xSIFCLK
	SIFREPEATx = 13
	SIFDAC = 1 (DAC on)
	SIFCA = 1 (Comparator on)
SIFTSM8 = 0x21F5	Measurement for 5xSIFCLK
	SIFREPEATx = 4
	SIFDAC = 1
	SIFRSON = 1 (Enable output latch)
	SIFCA = 1
SIFTSM9 = 0x0200	SIFSTOP = 1 (End of TSM sequence)

Table 3. TSM Setup

Demo Source Code

2.3 PSM Table Design

Rotation Detection With the MSP430 Scan Interface (SLAA222) points out that the 16-state table causes a bouncing problem and suggested a 32-state table. However, if the 16-state table is carefully designed, the bouncing problem can be solved so that the PSM table can be kept simple.

Figure 3. Graphical Illustration for the Criteria of Updating SIFCNT1

From Figure 3, imagine the blue circle is the rotating disc for rotation measurement. The arrow on the blue circle shows the rotating position. When that arrow is lying on any quadrates, the SCANIF gets the specific sensor state. For example, when the arrow lies on the yellow quadrate, S2 = 1 and S1 = 0. (State 10).

The arrows outside the square shows the different increment and decrement criteria based on two implementations: the implementation in *Rotation Detection With the MSP430 Scan Interface* (SLAA222) and the suggested implementation. The pointing direction of the arrows refers to the direction where the disc is rotating and that state change updates the SIFCNT1 value. For example, suggested: + 1 means when the disc rotates from state 10 to state 00, the SIFCNT1 will be +1.

It shows that in the application report implementation, the increment and the decrement of the counter is done on different disc position. For the *Quadrature Transitions for 2-Sensor Implementation* table in *Rotation Detection With the MSP430 Scan Interface* (SLAA222), if the disc rotates back and forth between 00 and 01, the state change of 00->01 increases the counter by 1. But it will not decrease by 1 when the state changes from 01 to 00. That will cause only +1 in this situation, which is the bouncing problem on 16- state table stated in *Rotation Detection With the MSP430 Scan Interface* (SLAA222).

To solve that problem, set the increment and the decrement on the same position. In order to design the state table, pair up the previous state and the current state, so that the increment and the decrement can be occurred at the same position.

Table 4 shows the state table setting of the demo source code.

Look Up Position	Previous State		Previous State		Previous Curre State Stat			State Table Value		Value		Next	
(Offset by Current S1 S2)	Q3	Q0	S1	S2	Q6	Q3	Q0	Q2 (-1)	Q1 (+1)	Binary (Q6Q0)	Byte Code	Look Up Position	Moving Direction
P0	0	0	0	0	0	0	0	0	0	000 0000	0x00	P0	No movement
	0	0	0	1	0	0	1	0	0	000 0001	0x01	P1	Turn Right
	0	0	1	0	0	1	0	1	0	000 1100	0x0C	P2	Turn Left (-1)
	0	0	1	1	1	1	1	0	0	100 1001	0x49	P3	Error (Opposite)
P1	0	1	0	0	0	0	0	0	0	000 0000	0x00	P0	Turn Left
	0	1	0	1	0	0	1	0	0	000 0001	0x01	P1	No movement
	0	1	1	0	1	1	0	0	0	100 1000	0x48	P2	Error (Opposite)
	0	1	1	1	0	1	1	0	0	000 1001	0x09	P3	Turn Right
P2	1	0	0	0	0	0	0	0	1	000 0010	0x02	P0	Turn Right (+1)
	1	0	0	1	1	0	1	0	0	100 0001	0x41	P1	Error (Opposite)
	1	0	1	0	0	1	0	0	0	000 1000	0x08	P2	No movement
	1	0	1	1	0	1	1	0	0	000 1001	0x09	P3	Turn Left
P3	1	1	0	0	1	0	0	0	0	100 0000	0x40	P0	Error (Opposite)
	1	1	0	1	0	0	1	0	0	000 0001	0x01	P1	Turn Left
	1	1	1	0	0	1	0	0	0	000 1000	0x08	P2	Turn Right
	1	1	1	1	0	1	1	0	0	000 1001	0x09	P3	No movement

2.4 Calibration

The demo source code consists of two different calibration codes. One is for system initialization and one is for run time calibration. The basic principle of both calibration codes are the same.

Figure 4 and Figure 5 show the relationship between the LC excitation level, the DAC value, and the measured output SIFxOUT. The SIFxOUT is the comparator output of the DAC and the LC excitation. When the LC excitation stays at a certain level, if the DAC value is above the excitation level (DAC value 1), the SIFxOUT becomes 0. If the DAC value is below the excitation level (DAC value 2), the SIFxOUT becomes 1.

Based on this relationship, the MCU can find the excitation level (threshold value) by adjusting the DAC value and check the SIFxOUT. For rotation detection, there are two excitation levels: with and without metal covers the LC sensors. The excitation level is lower when there is metal covers the LC sensors and it is higher when there is no metal covers the LC sensors.

Figure 4. Relationship Between the Excitation Level, the DAC Level and SIFxOUT

Figure 5. Value of SIFxOUT at the Same Excitation Level With Different DAC Value

2.4.1 System Initial Calibration

When the system starts up, there is no reference for the LC excitation levels. If there is no predefined value, it is not able to determine whether or not the LC sensor is covered by metal. In this situation, the system should find out the excitation level of those two states.

After the ScanIF setup, it sets different DAC values to SIFDACR(0-4) and check the SIFxOUT on each sampling cycle. The calibration starts from coarse step size to fine step size in order to minimize the number of iteration. The calibration step is shown in Figure 6.

Figure 6. Startup Calibration Flowchart

Figure 7. Coarse to Fine Calibration for System Startup

The threshold is continuously found. The maximum and the minimum value are recorded. When the disc rotates, the MCU eventually finds the thresholds of two states. The two states are determined by the difference (separation) of the maximum and the minimum value. If the difference is large enough, it is said that the two states are found. The final DAC value, SIFDACR0/2 and SIFDACR1/3 are calculated by averaging the upper and the lower threshold, plus hysteresis.

After the calibration is done, the sampling rate can be lowered by modifying SIFCTL4 in order to lower the power consumption.

Figure 8. Relationship Between Different Parameters

2.4.2 Run Time Calibration

When the system runs, the calibration is done by using test cycle insertion (TCI) method. The TCI mechanism is built inside the ScanIF module. It inserts test cycles between normal cycles that allows for easy integration of calibration to occur without impacting the normal measurement cycle.

The TCI method uses SIFDACR6/7 for DAC output and SIFTCHxOUT for the measured result. It makes sure that the testing process will not affect the normal operation.

In the demo code, it starts searching for upper threshold by setting the testing DAC value SIFDAC6/7 to the stored upper threshold. It inserts test cycle and gets the SIFTCHxOUT for SIFDAC6/7. When SIFxOUT is 1, it also checks SIFTCHxOUT. If SIFTCHxOUT is 0, it shows that the excitation level became lower. So SIFDAC6/7 decreases and the test is done again, until SIFTCHxOUT becomes 1. Alternately, if SIFTCHxOUT is 1, it means that the excitation became higher. So SIFDAC6/7 increases and the test is done again, until SIFTCHxOUT becomes 0. The final SIFDAC6/7 is the new upper threshold. The same action is then being done for lower threshold by setting the initial SIFDAC6/7 to the stored lower threshold and by checking the SIFTCHxOUT when SIFxOUT is 0.

Once the new upper and the lower threshold have been found, the averaged threshold can be updated.

References

www.ti.com

Figure 9. Example of Run Time Calibration When Excitation Level Became Higher

3 References

Rotation Detection With the MSP430 Scan Interface (SLAA222)

Appendix A Schematic

MSP430FW42x ScanIF Demo Box Hardware and Software Description 13

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated