{9 TeEXAS
INSTRUMENTS

Interfacing Memory to the
TMS320C32 DSP

Application

Report

1996 Digital Signal Processing Solutions

‘? TEXAS
INSTRUMENTS

Printed in U.S.A., June 1996 SPRA040A

_____ > e Interfacing Memory
Feeport to the TMS320C32 DSP

1995

&

PRINTED WITH

SOYINK|_

Interfacing Memory to the
TMS320C32 DSP

Peter Galicki
Digital Signal Processing Solutions—Semiconductor Group

SPRAO40A
June 1996

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1996, Texas Instruments Incorporated

Contents

AB ST RA T o 1
INTRODUCTION .. e e e 1..
OVERVIEW OF THE ENHANCED MEMORY INTERFACE 2..
FUNCTIONAL DESCRIPTION OF THE ENHANCED MEMORY INTERFACE A .
LOGICAL VERSUS PHYSICAL ADDRESS e 12..
32-BIT MEMORY CONFIGURATION DESIGN EXAMPLES 14
16/8-BIT MEMORY CONFIGURATION DESIGN EXAMPLES 20.
ONE BANK/TWO STROBES (32-BIT-WIDE MEMORY) DESIGN EXAMPLES 28
RDY SIGNAL GENERATION e e e e 37.. ..

© 00 N O 0o~ WN P

N NNRPERRRERRRRPR
NP O ®© ow~NO® UM wiNHPEF O

© 00N O Ol WN P

R S S
w N P O

List of lllustrations

STRBOand STRBI1Control Registers andthe PRGW Pin 3
STRBOand STRBIData Access: Data Size =Memory Width 5
STRBOand STRB1Data Access: Data SizeMemory Width 7.
Program Fetch From 16-Bit STRBIBMOIY oo ot vttt e e 9..
Program Fetch From 32-Bit STRBAEMOIYo oot e e e e et 11.
Description of Terms Involved in TMS320C32 Memory Interface 13
32-Bit Memory Configuration (STRBaNd IOSTRB 15.
32-Bit Memory Address Translation: Data Size = Memory Width. 16
32-Bit Memory Configuration (STRB&Nd STRBY 18.
32-Bit Memory Address Translation: Data Size < Memory Width 19
16/8-Bit Memory Configuration: A Complete Minimum Design. 21
16/8-Bit Memory Address Translation: Data Size = Memory Width. 23
16/8-Bit Memory Address Translation: Data Size > Memory Width 25
16/8-Bit Memory Address Translation: Data Size < Memory Width. 27
One Bank/Two Strobes Memory Configuration: Memory Width =32 Bits.......... 29
One Bank/Two Strobes Address Translation: Data Size = 16 and 8 Bits. 31
One Bank/Two Strobes Address Translation: Data Size =32 and 8 Bits. 33
One Bank/Two Strobes Address Translation: Data Size = 16 and 32 Bits. 35
'RDY Signal Timing for STRBGN STRBICYCIES, 38

'RDY Signal Generation for STRBOYCIESottt e e e 40.

'RDY Signal Generation Timing Waveforms. 41
Address Decode for Multiple Memory Banks. 43

List of Examples

STRBOand STRB1Data Access: Data Size = Memory Width 4
STRBOand STRBIData Access: Data SizeMemory Width | 6.
Program Fetch From 16-Bit STRBOBMOIY oo ettt et e et e 8..
Program Fetch From 32-Bit STRBAEMOIY. oot e 10.
32-Bit Memory Address Translation for Data Size = Memory Width 14
32-Bit Memory Address Translation for Data Size < Memory Width 17
16/8-Bit Memory Address Translation for Data Size = Memory Width 22
16/8-Bit Memory Address Translation for Data Size > Memory Width 24
16/8-Bit Memory Address Translation for Data Size < Memory Width 26
One Bank/Two Strobes Address Translation for Data Size = 16 and 8 Bits. 30
One Bank/Two Strobes Address Translation for Data Size =32 and 8 Bits. 32
One Bank/Two Strobes Address Translation for Data Size = 16 and 32.Bits 34

RDY Signal Generation.t 39..

ABSTRACT

The TMS320C32, a low-cost floating-point digital signal processor, makes the advanced 32-bit
architecture of the TMS320C3x family available to a wider variety of applications than ever before. This
application report explains the features of the 'C32 enhanced memory interface and gives examples of ways
to interface external memory to the 'C32. These examples include interfacing to 32-, 16-, and 8-bit-wide
external memories. Also discussed is generation of the &l when a single strobe controls multiple
external memory banks or peripherals, with some of them requiring wait states.

INTRODUCTION

The TMS320C32 digital signal processor is a low-cost member of the TMS320C3x generation of 32-bit
floating-point processors. The features of the TMS320C32 reduce the chip and system costs and increase
system performance, making the advanced 32-bit floating-point architecture of the 'C3x DSPs available
to a wide spectrum of cost-sensitive applications. This application report explains the features of the
TMS320C32 enhanced memory interface, and, by using design examples, it applies these features to
illustrate the many possible ways to interface external memory to the 'C32. By emphasizing system
solutions, this report also highlights the inherent flexibility of the memory interface to adapt efficiently to

a variety of low-cost applications.

In addition to interfacing to 32-bit-wide memory, the 'C32 fully supports program fetches from 16-bit-wide
memory and data access cycles from 16- and 8-bit-wide memory. Memory of any width (8, 16, or 32 bits)
can be used to store data of any size (8, 16, or 32 bits); that is, memory width and data size need not be the
same. Multiple strobes of the enhanced memory interface give the 'C32 the flexibility to directly access
several memory banks of different widths and speeds. Up to three banks can be simultaneously interfaced
without any glue logic. The 'C32’s ability to internally pack and unpack individual bytes of data can
significantly reduce the external memory chip count to just one 8-bit-wide SRAM (with programs running
internally).

Like the previous members of the 'C3x generation, the TMS320C32 is a 32-bit device with 32-bit internal
memory, 32/40-bit internal registers, 32-bit internal buses, and other features. In fact, the 8/16-bit external
memory interface can be completely transparent to the programmer after initializing two control registers.
For example, an application running on the 'C32 can operate exclusively on 32-bit data types, but the
external memory can be limited to one 8-bit-wide SRAM. In this case, the 'C32 processes the data just like
the’'C300r’'C31, butwhen it reads or stores the 32-bit words, it accesses the external memory in four cycles
(one byte at a time) instead of one cycle.

As a different example, a 'C32 program can access integer data that never exceeds a value of 256. The
enhanced memory interface can be programmed to convert the internal 32-bit words to external 8-bit words
every time this data is accessed. The external 8-bit-wide memory is accessed in one cycle, and each 32-bit
internal word is accessed as a single byte externally, resulting in memory savings of three bytes per 32-bit
word.

OVERVIEW OF THE ENHANCED MEMORY INTERFACE

The 'C32 accesses external memory with one 24-bit address bus, one 32-bit data bus, and three strobes:
IOSTRB, STRBQ and STRB1The strobes are mapped to selected portions of the memory map as shown

in Figure 1. For example, if the CPU is reading data from location 881234h, the active strobe during the
read bus cycle is STRBOnlike the other two strobes, STRBOassigned to two noncontiguous address
spaces within the memory map to provide extra flexibility in address decoding for glueless memory
interfaces.

The behavior of IOSTRBs similar to its counterpart in the TMS320C30. Its timing characteristics are
slightly relaxed in comparison with STRBihd STRB1cycles to better accommodate slower 1/0
peripherals. In contrast to STRBAd STRB1 IOSTRBuses a single signal line and accesses the external
data one full 32-bit word at a time. STR&8d STRBXre composed of four signal lines each. The multiple
signal lines per strobe enable the STRB@ STRBlcycles to access external memory one byte, a
half-word, or a full word at a time. For example, to read a single byte from a 32-bit-wide external memory
location mapped to STRBthe address on the address bus points to the selected 32-bit word and only one
STRBOsignal is activated (driven low) to select the desired byte. To access two bytes of data at the memory
location mapped to STRBfwo STRBIsignal lines are asserted during the bus cycle. Full 32-bit bus cycles
involving STRBOor STRB1memory space result in four strobe signals simultaneously accessing four
bytes of data. The 32-bit STRBMd STRB1bus cycles are no different functionally from the IOSTRB
cycles but simply have tighter timing parameters.

The STRBGand STRBTycles are not limited to just selecting bytes out of 32-bit memory locations. There
are two strobe control registers that configure the data size and memory width for &T(RBDRBbus

cycles (one control register per strobe). With proper initialization of the strobe control registers, the bus
cycles can be configured to encompass any combination of data size and physical memory widths. For
example, a byte can be read from a 16-bit-wide memory or a 32-bit word can be written to an 8-bit-wide
memory by configuring memory width and data size fields of the corresponding strobe control registers
(see Figure 1).

As is the case with the other members of the 'C3x generation, the 'C32 program, as well as data, can reside
in any portion of the memory map. The '"C32 program fetches from address space mapped tod@STRB
indistinguishable from IOSTRRlata reads or writes. However, the STR&W STRB1cycles are
configured slightly differently for program fetches than for data accesses. Program and data can still share
the same portions of the memory map, but instead of setting the memory width and data size fields in
STRBOand STRBZXontrol registers, the program fetch cycles from the memory spaces mapped to STRBO
and STRBIare configured by hardwiring the PRGW (program memory width select) pin. There is no need
to use the data size fields, because all program fetches apply only to instruction words that are 32 bits wide.
The memory width field of the strobe control register is useless at reset, when the processor is fetching the
reset vector from memory. At that point the strobe control register is always configured in the same way,
but different systems can have different memory widths. The PRGW pin indicates to the memory interface
whether the program memory is 16 or 32 bits wide. Eight-bit program memory is not supported, because
four cycles per instruction degrade the performance too much to be useful for most applications.

Applies only to
data access
cycles to/from
memory
addresses
mapped to

STRBO

TMS320C32 ENHANCED MEMORY INTERFACE

Applies only to
program fetch
cycles from
memory
addresses
mapped to

STRBO, STRB1

Applies only to
data access
cycles to/from
memory
addresses
mapped to

STRBO

16-bit
program
memory

Vece

32-bit
program
memory

PRGW pin

A0 —A23
STRB MEM DATA M
CONFIG WIDTH SIZE STRBO_B2
| I | “ STRBO_B1
— STRBO_BO
STRBO CONTROL REGISTER -
IOSTRB cycles
are always
32-bits wide IOSTRB
(data access or
program fetch)
MEM DATA
WIDTH SIZE STT]._BGS
STRBL_B2
STRB1 CONTROL REGISTER STRB1_B1
STRB1_BO
DO - D31

PHYSICAL
MEMORY

g

LOGICAL
MEMORY
MAP

g

»
> ~
IS ~
| EXTERNAL \ \\\\
»| vemory |\
P e \
> \ STRBO
» I
\
\
L
L
1
L
SR
\ _
EXTERNAL \ \ IOSTRB
MEMORY \ \
p BANK)
> A%
L
L
4
\
\
\| STrRes
STRBL
EXTERNAL
MEMORY
BANK P
I 3 -
> ~
. -

Figure 1. STRBO and STRB1 Control Registers and the PRGW Pin

Oh

7FFFFFh

810000h

82FFFFh

880000h

8FFFFFh
900000h

FFFFFFh

FUNCTIONAL DESCRIPTION OF THE ENHANCED MEMORY INTERFACE

As evident in Figure 1, Figure 2, Figure 3, and Figure 4, the enhanced memory interface controls all data
and program traffic between data buses inside the chip and the 32-bit external memory bus. For any bus
cycle involving a logical memory address range mapped to IOSTiRBmemory interface simply
connects the external data bus with an appropriate internal data bus without further data manipulation.

The memory interface is much busier when the 'C32 is accessing logical memory addresses mapped to
STRBOand STRB1Depending on the data size and external memory width (as defined by corresponding
strobe control registers), data can be packed, unpacked, truncated, or shifted on its way to and from the chip.

The following examples illustrate how the data is manipulated when the interface has to match
variable-size data with 8-, 16-, and 32-bit-wide physical memories. In these examples, five lines of code
(included in each example’s program space) read five integers from one data space, convert them to
floating-point format, and write them to another memory space that is assigned to a different strobe. Each
example has a different combination of data sizes and external memory widths to illustrate the range of
possible combinations.

For data access and program fetch cycles in which the data size exceeds the physical memory width, the
least significant bytes/half-words are always transferred first.

Example 1. STRBO and STRB1 Data Access: Data Size = Memory Width

This example illustrates a savings in external memory by using bytes and half-words to store data that is
less than 32 bits in size (see Figure 2). As in all cases, the data size and memory width foaiSTRBO
STRB1data access cycles are configured in the corresponding strobe control registers (see Table 1).

The short program stored in the internal RAMO memory begins with the LDI instruction reading an 8-bit
integer from 8-bit-wide STRBéhemory. As the integer data passes through the memory interface, it is
sign-extended to 32 bits and loaded to RO as a 32-bit integer. Next, the FLOAT instruction converts the
integer in RO to a 40-bit floating-point number and loads it to R1. Finally, the STF instruction truncates the
40-bit contents of R1 to 32 bits and stores it in the 16-bit-wide STRBory. As the data passes through

the memory interface, the 24-bit mantissa is truncated to eight bits (the 8-bit exponent remains
unmodified).

Table 1. STRBO and STRB1 Data Access: Data Size = Memory Width

Strobe Data Size le\al?;?hry
Input Data STRBO 8 8
Output Data STRB1 16 16
Program RAMO 32 32

LOGICAL
MEMORY
MAP

[

STRBO k

\

IOSTRB

RAMO ‘

STRBO /

STRB1 ‘

8 bits

TMS320C32 5
STRB MEM DATA O
CONFIG WIDTH SIZE °
STRBO CNTRL REG“ 0 - olofJofo 101 1001h
STRBO 8bits 8 bits 102 1002h
— I o <
3 104 1004h
32 bits) e) 105 1005h
32 bits £ 8 bits ®
RO 103 ¢ u|@ p—— o
EE STRBO
s (2 (data read) L)
w
: +
| | physical memory logical address
1
| | 32 bits
|| .
\ | | ®
\ | | RAMO LDI 4RC 87FES1h
CONTROL | | (program :
1003h | ARO 32bits fetch) RPTB L1 87FE82h
ALU IR : : LDI *ARO++ R0 87FE83h
87FE83h | PC FPU 32 bits [FLOAT ROR1 87FE84h
/ | | L1 STF R1,*AR1++ 87FE85h
/ 910003h | AR1 | | °
/1 [°
/| [_ _ '
/ | | physical memory logical address
/ - $ 16 bits
E °
y &S (dit;RvErilte) °
/ R1| 103.0 = °
/] 32 bits S'2| 16 bits 101.0 910001h
40 bits w
S 102.0 910002h
910003h
MEM ~ DATA 104.0 910004h
WIDTH SIZE
105.0 910005h
STRB1 CNTRL REG °
16 bits 16 bits ®
®

Figure 2. STRBO and STRB1 Data Access: Data Size = Memory Width

Example 2. STRBO and STRB1 Data Access: Data Size = Memory Width

This example shows that the input/output data does not have to be the same size as the memory from which
it is being read or to which it is being written (see Table 2). As in all cases, the data size and memory width
for STRBOand STRB1data access cycles are configured in the corresponding strobe control registers.

The short program stored in the RAM1 memory begins with the LDI instruction reading an 8-bit integer
from 16-bit-wide STRB@nemory (see Figure 3). Since each address contains two data bytes, the memory
interface uses different STRHEi@es to differentiate between the high byte and the low byte (both STRBO
and STRBI1comprise four signals each, one for each byte of the 32 bits). Next, the FLOAT instruction
converts the integer in RO to a 40-bit floating-point number and loads it to R1. Finally, the STF instruction
stores the contents of R1 to 16-bit-wide memaory as a 32-bit number. Before the data arrives at the memory
interface, the 32-bit mantissa is truncated to 24 bits (the 8-bit exponent remains unmodified). The memory
interface then stores the 24-bit mantissa and the 8-bit exponent in 16-bit-wide memory, two bytes at a time,
using two cycles and two physical memory addresses.

Table 2. STRBO and STRB1 Data Access: Data Size = Memory Width

Strobe Data Size Mvi?;?hry
Input Data STRBO 8 16
Output Data STRB1 32 16
Program RAM1 32 32

LOGICAL
MEMORY
MAP

4

STRBO W

IOSTRB
/

RAM1
/

STRBO /

Wl

TMS320C32

STRBO CNTRL REG

ARO

87FF83h| PC

/ [otoooan] vt
/
/

STRB1 CNTRL REG

16 bits
STRB MEM DATA
CONFIG WIDTH SIZE C Q
[] []
STRBO 16 bits 8 bits 102 101 1001h 4
m 103 1003h
Q
i I 105 1005h
S2bisig 32 bits | {8 bits = 2
RO[__104 & uj (& ° .
= |E STRBO & S
=y (data read)
2 4
= [physical memory | [logical address |
| | 32 bits
L[]
A [®
| | hd v
L LDI 4,RC 87FF81h
RPTB L1
[RALYL LD *ARO++,R0 giigg:
ALU contro| || (program
FPU | | 32bits fetch) FLOAT _ RORL 87FF84h
IR L1 STF R1,*AR1++ 87FF85h
32 bits [°
| .
®
[physical memory | [logical address |
JiT]
Q 16 bits
E —
i STRBL °
R E (data write) L4
La bl ®
40 bits 32 bits E 16 bits 910001h
= — — — 101.0 — — —]|
MEM DATA 910002h
WIDTH SIZE — — — 1020 — — —]|
910003h €¢—
16 bits 32 bits — — — 103.0 — — —|
910005h
— — — 105.0 — — —]|
®
®
(]

Figure 3. STRBO and STRB1 Data Access: Data Size = Memory Width

Example 3. Program Fetch From 16-Bit STRBO Memory

This example shows that program memory mapped to STHRRBI RB1space can be configured to 16
bits by hardwiring the PRGW pin to a high state (see Table 3). It also demonstrates that 32-bit data transfers
to and from the 32-bit-wide external memory do not involve any data operations in the memory interface.

The short program stored in STRB@mory begins with the LDl instruction reading a 32-bit integer from
32-bit-wide IOSTRBmemory and loading it to RO (see Figure 4). Next, the FLOAT instruction converts
the integer in RO to a 40-bit floating-point number and loads it into R1. Finally, the STF instruction
truncates the 40-bit contents of R1 to 32 bits and stores it in the 32-bit-wide $Té&Bdry. The data is

not modified as it passes through the memory interface.

The program controlling the data conversion in this example is stored in the 32-bit-wide memory bank
mapped to STRBOASs discussed earlier, program fetch cycles do not reference the strobe control register
to determine the width of the program memory. Instead, the memory interface checks the state of the PRGW
pin to determine the memory width. Because the program memory is 16 bits wide, the PRGW pin should
be pulled up to ¥ ¢, effectively directing the memory interface to fetch instructions in two bus cycles per
instruction (16 bits at a time).

Table 3. Program Fetch From 16-Bit STRBO Memory

Strobe Data Size MV?/;E?hry
Input Data STRBO 32 32
Output Data STRB1 32 32
Program IOSTRB 32 16

LOGICAL
MEMORY
MAP

IOSTRB ‘

STRBO

STRB1 ‘

16 bits
Vee O\ :
°
TMS320C32
F— LDI 4,RC 1001h
pin
RPTB L1 1002h
LDI *ARO++,R0 | 1003h
JiT]
32 bits 2 FLOAT RO,R1 1004h
32bits | & o | 16 bits
RO w2 e L1 STF RL*ARL++
ue 3 1005h
Z| STRBO
i (program ?
g fetch)
physical memory logical address
¢ 32 bits
°
°
| °
| BETEE 101 820001h
32 bits (data read) 102 820002h
\ | 820003h |ARO R | | 103 820003h
> ALU | | 32 bits 104 820004h
/ 1003h | PC FPU CONTROL | | 105 820005h
[=
910003h
/|] e o .
/ | *
/ | | physical memory logical address
/ i 32 bits
wl
Q °
/ L STRBL o
y = (data write)
w
/ r1 [1030 E E °
20 bits 32bits | S10| 32bits 101.0 910001h
g 102.0 910002h
103.0 910003h
MEM ~ DATA 104.0 910004h
WIDTH SIZE
105.0 910005h
STRB1 CNTRL REG °
32 hits 32 bits ®
®

Figure 4. Program Fetch From 16-Bit STRBO Memory

Example 4. Program Fetch From 32-Bit STRB1 Memory

This example shows that program memory mapped to STHRRBI RB1space can be configured to 32
bits by hardwiring the PRGW pin to a low state (see Table 4). It also demonstrates that 32-bit data transfers
to and from the 32-bit-wide external memory do not involve any data operations in the memory interface.

The small program stored in STRBtemory begins with the LDI instruction reading a 32-bit integer from
32-bit-wide STRBAnemory and loading it to RO (see Figure 5). Next, the FLOAT instruction converts the
integer in RO to a 40-bit floating-point number and loads it into R1. Finally, the STF instruction truncates
the 40-bit contents of R1 to 32 bits and stores it in the 32-bit-wide I0OSM&Bory. The data is not
modified as it passes through the memory interface.

The program controlling the data conversion in this example is stored in the 32-bit-wide memory bank
mapped to STRBI1As discussed earlier, program fetch cycles do not reference the strobe control register
to determine the width of the program memory. Instead, the memory interface checks the state of the PRGW
pin to determine the memory width. Because the program memory is 32 bits wide, the PRGW pin should
be grounded, effectively directing the memory interface to fetch instructions in one bus cycle per
instruction (32 bits at a time).

Table 4. Program Fetch From 32-Bit STRB1 Memory

10

Strobe Data Size MV?/;E?hry
Input Data STRBO 32 32
Output Data STRB1 32 32
Program IOSTRB 32 32

TMS320C32

LOGICAL
MEMORY
MAP

0

STRBO k

N\

AN

IOSTRB

& —

STRBO

STRB1

STRB
CONFIG

MEM

WIDTH

DATA
SIZE

STRBO CNTRL REG n 0

-1|1|1|1

STRBO

32 bits

32 bits

32 bits

32 bits

32 bits

RO 103 «

AN
AN

Nzomsn] aro
JLot0003n] pc

/Am

/
/

ALU
FPU

/

40 bits

CONTROL

IR

32 bits

MEM INTERFACE|
(STRBO)

STRBO
(data read)

IOSTRB
(data write)

32 bits

101

102
104

physical memory
‘ 32 bits

1001h
1002h
1003h
1004h
1005h

logical address

101.0

102.0

|
|
|
|
|
!
i 32 bits
|
|
|
|
|
|

STRB1
(program
fetch)

32 bits

PRGW pin

MEM INTERFACE

32 bits

(STRB1)

T

104.0

103.0

105.0

physical memory

32 bits

820001h
820002h
820003h
820004h
820005h

logical address

LDI

4,RC

RPTB

L1

LDI

*ARO0++,R0

FLOAT

RO,R1

L1 STF

R1*AR1++

Figure 5. Program Fetch From 32-Bit STRB1 Memory

910001h
910002h
910003h
910004h
910005h

LOGICAL VERSUS PHYSICAL ADDRESS

The 'C32 is a 32-hit processor. Its instruction set operates on 32-bit registers, and the CPU alone does not
understand 8- or 16-bit data or data transfers. When a 'C32 instruction writes to a physical address, it sends
all 32 bits of data to the memory interface unit via an internal bus. It is only in the memory interface that
the internal 32-bit data can assume 8-bit or 16-bit form, provided that the address is in the S RBB1

range of the memory map. The data size field of the ST&®RBURB1control register determines the actual

size of the data portion that is placed on the external memory bus of the 'C32. Likewise, when a 'C32
instruction reads a portion of data from external memory, the memory interface always converts it to 32
bits as it enters the chip. What happens to the external data as it goes through the memory interface on the
way to the CPU depends on the contents of the STRBGBTRBXontrol registers. Once again, only the

data whose address falls within the STRBSTRB1range of the memory map can be manipulated inside

the memory interface unit.

Throughout this document, the telogical addresspplies to a memory location as itis referenced by 'C32
instructions and that is a part of the processor’s logical memory majphyhieal addressefers to the

address that appears at the 'C32 address pins. The valid ranges of the logical memory map that the program
instructions can reference are determined by the external memory available in the system, how the external
memory address pins are matched with the 'C32 address pins (which depends on physical memory width),
and the contents of the STRBAd STRBIregisters (which define physical memory width and the data
size).

The logical memory map shown in Figure 6 always contains 32-bit data as far as the CPU is concerned.
It is only when the data passes through the memory-interface block that the data size can actually change
to 8 or 16 hits, as directed by the appropriate strobe control register. For example, when the processor reads
a byte (eight bits) from external memory, the 8-bit data is sign-extended or padded with Os as it passes
through the memory interface so that it becomes 32-bit data inside the 'C32. Likewise, when the processor
writes the contents of a 32-bit register to 16-bit-wide external memory, the internal 32-bit data is truncated
to 16 bits as it passes through the memory interface. The dashed lines inside the logical memory map in
Figure 6 show the internal 32-bit representation of the external data that has a physical size of 8 or 16 bits.

Figure 6 also has additional explanation of logical/physical addresses and other terms related to the 'C32
memory interface.

12

€T

LOGICAL
MEMORY MAP
(addresses as seen
by the 32-bit CPU)

for 16-bit-wide memory,
STRBx_B3 pinis

24-bit multiple STROBE assigned to address bit PH%(AfS-IbCitAL
A—SSECE/E'-S signals can select Al ADDRESS
b individual bytes from (as presented on
(etlﬁ :%EQU)V PHYSICAL MEMORY for 8-bit-wide memory, the processor’s
STRBx_B3 and STRBx_B2 address pins)
pins are assigned to
address bits A-1 and A-2
TMS320C32
DATA STROBES
SIZE = w
32 hits O
ADDR £ ADDR
o
=
Z ADDR ADDR
> >
x o
o o]
z et CPU fouem z _ _
= = €S} ©S]
- -
< <
z Z
DATA &]
SIZE = [=
8 bits £ L OvA b | &
DATA DATA
DATA DATA
A \
byte-wide
g{}Té“: EXTERNAL MEMORY
16 bits EXTERNAL DATA BUS devices
—_ be 32, 16, or 8 bit:
STRBO CNTRL REG canbe wide orepis
STRB1 CNTRL REG
/ PRGW pin
INTERNAL STRBO, STRB1 CONTROL
DATA BUSES REGISTERS and the PRGW
are always 32 pin control LOGICAL to
bits wide PHYSICAL ADDRESS
mapping and data
packing/unpacking
Figure 6. Description of Terms Involved in TMS320C32 Memory Interface

PHYSICAL
MEMORY MAP
(valid addresses
as presented on
the processor’s

address pins)

< 16 bits>

MEMORY
WIDTH =
16 bits
(for this example)

32-BIT MEMORY CONFIGURATION DESIGN EXAMPLES

The following two examples describe interfacing the 'C32 to 32-bit-wide external memory from both the
hardware and software-addressing viewpoints.

Example 5. 32-Bit Memory Address Translation for Data Size = Memory Width
This example demonstrates that when both data size and memory width are 32 bits, then8iRB0

interface has the same functionality as that for IOSTR only difference between the two is the number
of strobe lines connected to the respective memory banks: four for SaiRBthe for IOSTRB

Figure 7 is a schematic diagram of a 32-bit interface consisting of two memory banks, each controlled by

a separate strobe. The four signal lines of STRB® assigned to the chip-select pins of four

32K x 8 15-ns SRAMSs, and the single IOSTRBnal line is connected to the chip-enable pins of four

32K % 8 30-ns EPROMs. For the 60-MHz version of the 'C32, the 15-ns SRAMs operate with zero wait
states and the 30-ns EPROMSs require one wait state (software wait states can be programmed in the strobe
control registers).

Figure 8 illustrates the programmer’s view of the hardware memory configuration depicted in Figure 7.
The logical addresses (appearing in program instructions) are represented in the context of the entire
memory map to identify the respective strobes. The physical addresses are the values that actually appear
at the pins of the processor. Since |OSTapBrates exclusively on 32-bit data types, the memory interface
does not modify the address going in and out of the CPU, and the logical and physical addresses are
identical. In this example, STREOso operates on 32-bit data since the memory width field of the STRBO
control register contains a binary value of 11. Since the STRRBSical memory width is also 32 (see data

size field), there is no need for any address translation from the logical address to its physical
representation.

14

ST

(TTTT777 e TOOTTTTT S S S)
A0-A23 RIW
RESET - 1 1 1 |
HOLDA ™ WE WE WE WE
Shz HoLD w0 v INEY N W INTY N ISPy N
MCBL/MP Vcc A13 | A13 _ A13 | A13 A13 | A13 . A13 | A13 .
RS A2 K719 OE i A2 K715 OE 1 A2 K015 B A2 K105 OE i
__ ROV mfme Il oangar (L a1 s L
INTO = A9 N Al0 o P Al0 a0 N AL0 A9 D A10
INT1 ASCAQQ A8 CAQG ABCAQEE A8 tAQ@
- A7_ﬁ§>< A7_ﬁ§>< A7_ﬁ§>< A7¥ﬁ§><
INT2 A6 X D7 [\ A6 X D7 [\ A6 X D7 [\ A6 X D7 [\
NS A5\—A6&D6ﬂD3l A5¥A6§D6ﬂD23 A5\—A6aD6ﬂD15 A5¥A6§D6ﬂ
T Mg B AN RN AMNEC BN AMEc EX
TACK AR A% g Da B8 A3fAd 2 DB A3 Atz DANBIY A3 fqAd g D4
A2 A3 ¥ D3 A2 A3 ¢ D3 [A2 A3 ¢ D3 [A2 A3 ¥ D3 [
AP A2 o py [D27 a1 DM A2 o p3] D19 A D A2 o p3 [b1 A A2 o py [
— “ob4 AT p1 [D26 a0 D A p1 [~] b18 “o P A1 b1] b1o a0 I AL N
XFO N— AO po] P25 N AO po [(—J P17 N— A0 po [(—J P9 N—{ A0 DO [
XF1 — D24 _ D16 . D8 .
Cs Cs Cs Cs
B STRBO_B3
HL STRBO_B2
"3 TMS320C32 STRBO_ BT
STRBO_BO
EMU3
Ml MM o A o Mias o
A12 OE A12 OE Al12 OE A12 OE
EMUO A1l t A12 —_I_ A1l t A12 —_I_ A1l t Al2 —_I_ A1l t A12 —_I_
EMUL AL0 - ALL = ALD All = A0 All = ALD All =
A9 A10 a0 | A0 a0] AL0 A0 N AL0
ns DAY na D A9 s A9 e\ P
A = MR A7 AR 47 = N
I AB D7 A6 D7 A6 D7 A D7
TCLKO IOSTRB as 46 & e] pa1 As A6 § be] D23 s A6 & pe] p15 As 46 & Ds N
TCLK1 A A5 € ps = D30 Al A5 € ps J D22 Al A5 £ ps -\ D14 AD—HAS & ps —
AP A4 = pa = D29 A3 A4 = ps = D21 A3 A4 = psa = D13 ADA4 = pa —
A2 D A3 8 D3 D28 A2 - A3 8 D3 D20 A2 P A3 8 D3 [D12 A2 N A3 8 D3 M\
AL A2 & D2 (] D27 Al A2 & p2] D19 Al A2 & p2 DU AL A2 & D2 [
| A1 [D26]| AL O D18 N AL O D10 | A1 O
556 A0 D1 [AD D1 [AD D1 [AO D1 M
| AD bo] D25 A0 pp |~ D17 A0 po |~] D9 | A0 DO |
FSRO _ D24 _ D16 - D8 _
CLKRO CE CE CE CE
b0 STRBL B3/A_1 [— l
STRBL_B2/A_p [—
e STRBL BL —
CLKX0 STRBL BO -
bo_p3; STRBLBO
(LLCCCCT eee TTLLTTLT y. y. y. /
Figure 7. 32-Bit Memory Configuration (STRBO and IOSTRB)

9T

LOGICAL
MEMORY
MAP

LOGICAL
ADDRESS

Ve
e
e
e
STRBO
\
\
\
\
\
\
1OSTRB ~—
\
\
\
\
\
\
\
\
STRBO \
\
\
STRBI \

32766

32767
32768

STRB MEM DATA
CONFIG WIDTH SIZE
| | |
STRBO CNTRL REG | [o] [11] 11] eeoe
STRBO 32Bits 32 Bits
oh oh
A14 Ao

Logical Address |

,——’1001 0000 0111 1111 1111 1111
1001 0000 O —

I 1

I

I

I

I

| Physical Address | |

A14 Ao |

7FFFh 7FFFh
32-bit Data Size — Address Not Shifted

IOSTRB — Address Not Shifted
810000h 0Oh

Logical / Physical Address

111 1111 1111 1111 .
g ECLIIIENG - i B
I I I |
| A14 Ao |
| I
| I
| v
817FFFh 7FFFh

Figure 8. 32-Bit Memory Address Translation: Data Size = Memory Width

PHYSICAL
ADDRESS

[

STRBO STRBO STRBO STRBO
B3 B2 _BL _BO

32766

32767
32768

IOSTRB IOSTRB
IOSTRB IOSTRB

Example 6. 32-Bit Memory Address Translation for Data Size < Memory Width

This example demonstrates that if the data can fitin 16 or 8 bits of precision, the effective addressing range
of the same physical 32-bit memory can be doubled or quadrupled by simply changing the data size field

of the appropriate strobe control register before the transfers begin. The logical-to-physical address

translation involves a 2-bit address shift if the data size is 8 bits and a 1-bit shift if the data size is 16 bits.

Address shifts and the activation of selected external memory bytes with appropriate strobe control lines

are automatically performed by the memory interface (as directed by strobe control registers) and can be
considered transparent to the programmer.

Figure 9 is the schematic diagram of a 32-bit interface consisting of two memory banks, each controlled
by a separate strobe. The four signal lines of STRED assigned to the chip-select pins of four

32K x 8 15-ns SRAMs, and the four signal lines of STRIBA connected to the chip-enable pins of four

32K x 8 30-ns EPROMSs. For the 60-MHz version of the 'C32, the 15-ns SRAMSs operate at zero wait states
and the 30-ns EPROMSs require one wait state (software wait states can be programmed in strobe control
registers).

Figure 10 illustrates the programmer’s view of the hardware memory configuration depicted in Figure 9.
The logical addresses (appearing in program instructions) are represented in the context of the entire
memory map to identify the respective strobes. In this case, the SWRBOry transfers operate on 16-bit

data to and from 32-bit-wide memory, as defined in the STédB@ ol register. STRBAccesses 8-bit data

to and from 32-bit-wide memory, as defined by the STR&itrol register. Since two 16-bit data types

can fit in a single 32-bit-wide memory location referenced by a single physical address, a mechanism is
needed to distinguish between the 16-bit data portions. This is accomplished by using the least significant
bit of the logical address to activate a different pair of the four STERBII lines for each access, leaving

the second least significant bit of the logical address to become the least significant bit of the physical
address and effectively shifting the logical address by one bit. Similarly, S§RBHata transfers to the
32-bit-wide external memory cause the address to be shifted by two bits, because the two least significant
bits of the logical address are used to select one out of four bytes sharing the same physical 32-bit memory
location.

17

8T

N N N N
((OC((((eee ((((((((
— A0-A23 RIW
RESET —
o HOLDA 1 I L L
= WE WE WE WE
—_ HOLD fwa-0
MCBL/MP AN ALa INEd T AN A14 ALK a14
PRGW vee INE] N IO NER N v Al R Al A3 R A
RGW A2 [A8 oE al A2 [AL al A2 (AL GE al AL2 (A1 oE al
TS RDY AN Al = Al N a1 = AN A < Al N a1 <
A9 N A0 a9 [N ALo a9 M Ao a9 N ALO
INTL Xl Na v N N X N I Pl N
INT2 ﬁg\—A7<%1D7ﬂ ﬁg\—A7§D7ﬂ ﬁg\—A7§ D7 ﬁg\—A7§ D7
NT3 e D r6 € pg [D3t as N A6 & pg [D23 Ao e & pg [y D15 e N As 2 pe [
—_ A4\—A5§DSﬂD3O A4_A5§D5“D22 A4_A5§ D5 [(—] D14 A4_ASE D5 [
TACK a2 < D2 D29 a2 < P2 D21 | A2 < D2 D13 a2 < o2
AN 1as &] D28 AS R a3 & [D20 ASRK1a3 &) p12 AN a3 & N
A2 @ D3 [A2 @ D3 [A2 @ D3 A2 @ D3 [
A1 D A2 D2 D27 A1 D A2 D2 D19 AL N—| A2 D2 (—] b1l AL N A2 D2
XFO A0 N Al D1 D26 A0 N AL D1 D18 A0 N A1 p1 [(—] D10 A0 N A1 D1
N— AO Do] P25 N AO po [—~] P17 N—{ A0 po (—J P9 N— A0 DO
XF1 D24 _ D16 _ D8 _
cs Cs Cs Cs
]
CLKIN STRBO_B3
H1 TMsa20cz2 O1RBOB2
H3 STRBO_B1
STRBO_BO
EMU3
EMU2
pit| e wal | wl | s il L
EMUO e e o AR A oEn ArRgAE e v = e
EMU1 A0 [ALL = Al0 [ALL = A10 N A1l = A10 N A1l =
Ao P AL0] N no - Ato ns - AL0_
TOSTRE Aefag 2 A e AL e 2 A L1282
AT A7 A7 A7
| A7 x | A7 ¢ N A7 ¥ N A7 ¥
TCLKO AR as & Bé] pat AR s & B¢) p2s AR as & B () pis AR & e
AR as = B2 [p3o R s 2 B2) p22 AR s = B2 [bia AR a5 = N
TCLKL A4_A4§Bi“029 A4_A4§Bi“021 A4_A4§Bi“D13 A4_A4§B‘51“
SRdas @ B33 [p2s MR Az @ B3 [p20 MR A3 £ B3 [b1z MRdAs @ 351
A2 43 & b3 [D28 A2f— A3 & ps [~ B2 A2\ A3 & p3 | D12 A2l A3 £ pg
AL A2 5 D2 [AL A2 5 D2 [AL A2 B D2 Al A2 i D2
N AL D26]| A1 D18] AL D10 N AL
DRO A0 D1 [A0 D1 A0 D1 [\ A0 D1
N— A0 DO D25 — A0 DO D17 —| A0 DO D9 N— A0 DO
FSRO _ D24 _ D16 - D8 _
CLKRO CE CE CE CE
DX0 STRBL B3
FSX0 STRBL B2
CLKXO STRBL B1
D0-D31 STRBI_BO
(LLCCCTL eee TTTLTTTT / / / /
Figure 9. 32-Bit Memory Configuration (STRBO and STRB1)

I\LIIOE(I\;/IISSI_(LOGICAL STRB MEM DATA PHYSICAL
MAP ADDRESS COTHG MH?TH SFE ADDRESS
STRBO 32 Bits 16 Bits
STRBO CNTRLREG [eee| 0 | 11 01 oo o
STRB1 CNTRL REG K 11 00 K}
32 Bits 8 Bits
0 0 33 0
‘ v
STRBO STRBO STRBO STRBO
\ B3 B2 _BL _BO
- 1 oh | on 2 1
— \
2 4 3
N A1s5 A1l |
STRBO 3 | - \ | 6 5
\ Logical Address
\ e r 0000 0000 (121111 1111 1111 111 — ®
\ ® | EYNCEE 1111 1111 1111 111 !';;—47 47 °
Physical Address
\ . \ \ \ \ o
\ ‘ A14 Ao ‘
\ 65534 ‘ ‘ 65532 65531
\\ 65535 | v 65534 65533
- 16-bit Data Size — Address Shifted By 1 bit
I0OSTRB |
8-bit Data Size — Address Shifted by 2 bits
1 900000h oOh 4 3 2 1
// 2 A1g Az 8 7 6 5
/ s ‘ Logical Address ‘ 12 u 10 °
/ ® 1001 000/1 1111 1111 1111 1 1§WE —— ®
/ ' |
‘-.>-.> PRI 1 1111 1111 1111 118k .
/ | ‘ Physical Address ‘ ‘ ‘
STRBO // \ has fo } |
131070 ‘ ‘ | 131064 | 131063 | 131062 | 131061
STRET 131071 | ‘ V¥ |131068|131067| 131066 131065
— |
~— | m 91FFFFh TFFFh BESTYed 131071| 131070 | 131069

6T

Figure 10. 32-Bit Memory Address Translation: Data Size < Memory Width

STRB1 STRB1
B3 B2

STRB1 STRB1
"BI BO

16/8-BIT MEMORY CONFIGURATION DESIGN EXAMPLES

The following examples describe from both the hardware and software-addressing perspectives how to
interface the 'C32 to both 8- and 16-bit-wide external memories in the same design.

Figure 11 contains a schematic diagram of the external memory interface consisting of two banks, each
controlled by a separate strobe. Two of four STRB0al lines are assigned to the chip-select pins of two

32K x 8 15-ns SRAMSs, and one of four STRBIgnals is connected to a chip-enable pin of one

32K x 8 30-ns EPROM. For the 60-MHz version of the 'C32, the 15-ns SRAMs operate at zero wait states
and the 30-ns EPROMSs require one wait state (software wait states can be programmed in strobe control
registers). Any time the external memory is less than 32 bits wide, some of the strobe pins switch functions
and become additional address pins. For 16-bit-wide memory, STRBPBe&3nes A4, and for
8-bit-wide memory, STRB1_Band STRB1_BZecome A1 and A, respectively. This is the only
external change that differentiates the 32-bit-wide memory interface from the 16- and 8-bit-wide memory
interfaces. This feature can be considered transparent to the software programmer, except that the
programmer must configure the strobe control registers appropriately. The memory interface automatically
drives the additional address lines with correct values, depending on the size of the data being transferred.

The following three examples illustrate how the physical addresses are derived from the logical addresses
when the data size is equal to, greater than, and less than the width of the physical memory. Though address
translation is completely automatic, these cases provide insight into the range of physical addresses
actually affected during transfer of 32-, 16-, and 8-bit data.

20

T

((((((((eoe ((((((((
- A0 - A23 W
System Reset RESET RIW 1 |
Boot Loader SHZ HOLDA WE WE
COJnJir%l;J)reartsion VCCW\M—C IS T FoLD —w-o"CC AL P ara AL M aza
WV, _ PRGW [—W\-O ALl M A3 BE All M A13 BE
o o ce INTO — vee ato Parz B[] a0 f a2 OE[]
W — RDY 1 A9 P ALL = A9 M AL =
o O INTL = A8 P AL0 2 A8 [AL0 ¢
A7 A9 A7 A9
o o1+ NT2 As as As [a8
[0 _ A5 A7 € D7 A5 A7 £ D7
0—0 INT3 A4 A6 = D6 D15 A4 M A6 = D6
— A3 A5 £ D5(—]DP14 A3 A5 £ D5
— JACK A2 A4 & Daf—] D13 A2 M A4 ¢ D4
E AL N A3 D3 (] D12 AL N A3 D3 [
- %/ A0 D A2 D2 (—] P11 A0 M A2 D2 (—
e N AL D1] D10 N AL D1
— XF1 A0 DO Bg AOD DO
cs cs
osc
Emulator 60 MHz G A_g
Cable - Hi —_—
Header H3 STRBO_B2
TMS320C32 s
O O -
o 6 STRBO_BO
key O—T—>o Ve I_ EMU3 AL2
O O ¢ EMU2 All N A4
N —

o o ¢ EMUO "9 \a Eg %N
O O EMU1 ﬁg t AL0 o N
L wwo A6 A9

Vee _ Note: A5 N A8
= e IOSTRB The EPROM is connected for A4 N AT & D7
data access (shifted address) A3 t A6 = D6
and not for boot table access. A2 A5 = D5
— TCLK1 y N AL D A2 O
This system is booted from the no b a3z D4 —
serial port (see INT3 signal). N Bg R
o o DRO Al DIl
A0
o O FSRO _ DO [
CE
O O CLKRO Ay
O O DX0 Ao
CRS ESX0 STRB1_B1
°©° CLiXO DO-D31 STRELEO
+ Sera (LLLCELL eee [TLTLLLT / /
Header

Figure 11. 16/8-Bit Memory Configuration: A Complete Minimum Design

Example 7. 16/8-Bit Memory Address Translation for Data Size = Memory Width

As shown in Figure 12, when the external memory width matches the size of data being transferred, the
physical address also matches the logical address with one exception: the physical address is shifted relative
to the logical address by one bit for 16-bit transfers and by two bits for 8-bit transfers. This means that the
address bit that would normally be expected on pin AO actually appears omm@nA 5. As Figure 12

shows, there is one-to-one correspondence between logical data and its counterpart in physical memory.

22

LOGICAL
MEMORY
MAP

LOGICAL
ADDRESS

//
//
STRBO
\
\
\
\
\
\
\
\
IOSTRB
/
/
/
/
/
/
/
|/
STRBO | /
STRB1 ~—

€¢

[

STRBO CNTRL REG
STRB1 CNTRL REG

PHYSICAL
ADDRESS

32766

32767

~ EeA

Oh

STRB MEM DATA
CONFIG WIDTH SIZE
STRBO 16 Bits 16 Bits

eee| O 01 01 oee

oo o 00 00 oe0e
8 Bits 8 Bits

oh
A14 Ao

I Logical Address I

l—-)|oooo 0000 0[111 1111 1111 1111
0000 0000 O —
| "m m
I
I
I

I Physical Address I |

A13 Al |

7FFFh
16-bit Data Size — Address Shifted By 1 bit
8-bit Data Size — Address Shifted By 2 bits
900000h Oh
A14 Ao
I Logical Address I
|—-)|1001 0000 0111 1111 1111 1111
| % 1001 0000 © -7
| I Physical Address I |
| A12 A2 |
907FFFh 7FFFh

Figure 12. 16/8-Bit Memory Address Translation: Data Size = Memory Width

[

STRBO STRBO

“BI1 “BO

32766

32767

STRB1
“BO

Example 8. 16/8-Bit Memory Address Translation for Data Size > Memory Width

Figure 13 depicts what happens when data that is larger than the physical memory in which it is to reside
is transferred. As shown by the contents of the strobe control registers, $6RRs transfers of 32-bit

data to/from 16-bit-wide physical memory and STRf&htrols transfers of 16-bit data to and from a
byte-wide memory. When an instruction stores 32-bit data to logical address Oh, the memory interface must
perform two write cycles to 16-bit-wide external memory. These two write cycles involve two consecutive
addresses, Oh and 1h. A 16-bit portion of data logically referenced with a single address actually takes two
physical addresses to store in 8-bit-wide physical memory (as is the case with thet&rRigt shown

at the bottom of Figure 13). To implement these extra bus cycles, the memory interface appends an extra
address bit to the least significant end of both addresses. As in Example 7, the least significant bits of the
STRBOand STRBladdresses appear at pins;&nd A », respectively, because they represent 16- and
8-bit-wide memories.

24

LOGICAL
MEMORY
MAP

STRBO

\
IOSTRB
STRBO | /
STRBI [

14

Figure 13. 16/8-Bit Memory Address Translation: Data Size > Memory Width

STRB MEM DATA
CONFIG WIDTH SIZE
LOGICAL | PHYSICAL
ADDRESS 1)) ADDRESS
STRBO 16 Bits 32 Bits
STRBO CNTRL REG [eee| 0 | 01 11 ooo
STRBL CNTRL REG ©ceo 00 01 ©oeo
@ 8 Bits 16 Bits @
STRBO STRBO
Bl _BO
1 oh oh 1 (w)
N 1h 1 (hw)
A13 Ao 2 (Iw)
. 2w
l Logical Address l 2 (hw)
° l—)oooo 0000 00[11 1111 1111 1111 °
° | 0000 0000 00 °
Physical Address
° | | [°
A13 Al
| | 16383 (Iw)
16382 | | _— = =
16383 (hw)
\ 16383 | Ly 7reen 16384 (Iw)
16384 3FFFh 7FFFh 16384 (hw)
32-bit Data Size — Address Not Shifted
16-bit Data Size — Address Shifted By 1 bit
1 900000h oh 1 (b)
/ 5 1h 1 (hb)
/ A1 Ao I EITN
3
l Logical Address l 2 (hb)
° I—)|1001 0000 00[11 1111 1111 1111 °
. | =<»[1001 0000 00 °
| | Physical Address | | °
[]
| A12 A2 o
163
16382 | | T T T [1isas3 |
16383 | |—>7FFEh 16384
16384 903FFFh 7FFFh 16384
STRB1
“BO

Example 9. 16/8-Bit Memory Address Translation for Data Size < Memory Width

The example in Figure 14 is, in a way, an inverse of Example 8. The 8-bit data is transferred to/from
16-bit-wide external memory. To put this example in perspective, assume that the data transfer is triggered
by the following 'C32 instruction: STI RO,@7FFFh. While in RO, the data is sized at 32 bits, but when it
arrives at the memory interface, the STR®Otrol register data size field indicates 8-bit-wide data. So,

the 32-bit data is truncated to eight bits. The next stop for the now byte-sized data is address 7FFFh of the
16-bit-wide external memory. Should it fill the high or low portion of that memory address? In this case,
the LSB of the logical address (as referenced by the instruction) is actually rerouted to control one of the
two STRBOlines assigned to the 16-bit physical memory. If the LSB is 1 (as in this case), STRB0_B1
asserted during the write cycle. Ifthe LSB is 0, STRBOisB8serted during the write cycle. The remaining

bits of the original logical address are placed on the external address bus starting a{lpacéuse the
memory width is 16 bits).

Summary: 16/8-Bit Memory Configuration Design Examples

Two conclusions can be drawn from these examples. First, while designing the external memory interface
to the TMS320C32, a hardware engineer must remember to match address @inhé 'C32 with the

A0 pin of a 16-bit-wide memory or to match thexaddress pin of the 'C32 with the A0 pin of a byte-wide
memory. If the external memory is 32 bits wide, the pins are not shifted relative to each other and match
perfectly at AO.

Second, when writing code for the 'C32, the programmer does not have to be concerned about the structure
of the physical memory. The programmer must simply be aware of the logical memory map and the
configuration of the two strobe control registers. Furthermore, all the address translation tasks and byte
packing/unpacking necessary to match variable-size data with physical memories of different widths are
automatically performed by the 'C32 memory interface and controlled by the data size and memory width
fields of the STRB@nd STRBIcontrol registers.

26

STRB MEM DATA
h%fﬂ'gé\'; LOGICAL CONFIG WIDTH SIZE PHYSICAL
VAP ADDRESS | | | ADDRESS
STRBO CNTRL REG [@ee] 0 | [01 [11] eee
STRBO 16 Bits 8 Bits
— —
| v
STRBO STRBO STRBO STRBO
| B3 B2 Bl “BO
__— 1 oh | on 2 1
I
2 4 3
STRBO Ats Ao |
\ 3 | _ | | 6 5
\ Logical Address
_
\ ° |—-D|oooo 00001111 1111 1111 111f—— °
\ o |-b-boooo OO 111 1111 1111 111 — °
\ Physical Address
° | | | | °
\ | A14 A1 |
\\ 65534 | | 65532 | 65531
\ 65535 | * 65534 | 65533
IOSTRB @ FFFFh 7FFFh 65535
8-bit Data Size — Address Shifted By 2 bits
STRBO
STRB1

yx4

Figure 14. 16/8-Bit Memory Address Translation: Data Size < Memory Width

ONE BANK/TWO STROBES (32-BIT-WIDE MEMORY) DESIGN EXAMPLES

The following examples describe how to use two strobes in interfacing the TMS320C32 to a single physical
bank of memory. Such configuration enables the access to 32-bit programs and two differently sized
portions of data out of the same bank of memory with no speed penalty. This feature is implemented by
internally ANDing STRBGand STRBland outputting the combined strobes on STRBtal of four

lines). The one bank/two strobes memory configuration is useful in systems where, for example, the
program requiring 32-bit instruction words for maximum execution speed operates on data that needs only
16 bits of precision (see Figure 18 on page 35).

Figure 15 is the schematic diagram of a 32-bit-wide external memory configuration arranged as one bank
with two separate logical control strobes sharing the same SPRB{cal signal lines. The four STRBO

signals are assigned to the chip-select pins of four88KL5-ns SRAMs, one signal per chip. For the
60-MHz version of the 'C32, the 15-ns SRAMs operate at zero wait states (for slower devices, additional
software wait states can be programmed in the appropriate fields of the strobe control registers). Because
the total memory width is 32 bits, there is no mismatch between the processor’s and the memory’s address
pins. Therefore, the 'C32 pin A0 is matched with memory pin AO; Al is matched with Al; and so on. As
mentioned earlier, both STREMd STRBIignals appear together on the four STRB#trol pins. This

is selected by setting the strobe configuration bit of the STé®B0ol register to 1 (see Figure 15). Since

both STRBGand STRBX re mapped to different ranges of the logical memory map, the strobe that actually
appears on the physical STRBdis depends on the internal address of the data/program being accessed.
The two strobes effectively split the physical memory in two, with the high memory address bit selecting
either the STRB@r STRB1laddress space. For example, if all program instructions were fetched from
logical addresses 880000h — 881000h and all data reads/writes were confined between 980000h and
981000h, the program fetches would be associated with SaR®all data accesses would be driven by
STRB1 (see Figure 1 on page 3 for strobe/memory mapping). Since the behavior of each strobe is
determined by a different control register, the program fetches and data reads/writes in each case can vary
in how many STRB(ines are simultaneously driven and in the number of bus cycles required per access,
as illustrated by the following examples.

28

6¢

((O(((((eoe (((((((() 1) N
= AO-A23 RIW y t ? |
HOLDA |— — — — —
SHz IOLDA A7 [, WE AN \0 WE AT [, WE AT) WE
MCBL / MP HOLD w0
Vece A13 A13 A13 A13
— PRGW N A13 OF A13 OF N A3 OE N A13 oE
A12 K] OE A12 OE A12 K] OE A12 K] OE
INTO RDY ALLKT] AL2 1 ALLK| AL2 1 ALK AL2 1 ALK AL2 1
e G R 1S - S-S R
m- = AORT] AT AIRT] AL AR AT AORTIAL0
A8 6 A8 ® A8 & A8 ®
INT2 A7 N A8 x A7 A8 x A7 N A8 x A7 t A8 x
N\ N
INT3 AR AG 8 Defypar AR AL 8 DEfyoas ASRAL 8 DIy bis ASR AL 8 BRI
_ —_— A5 K]) D30 Ab) D22 ASK) D14 AS] N
TACK STRBO CONTROL REG Al A5 = D5 aaR— A5 = D5 Al A5 = D5 AR— A5 = D5
N A2 £ D4] D29 A4 & p4 (P2l M A4 £ D4 D13 N A4 € D2
xx . xx Al a3 & b3 D28 Al A3 & p3JD20 AR A3 & b3 D12 MR a3 & b3
XF0 Al A2 7 b2] D27 AR A2 T D2] Db19 AR A2 7 D2] DL AR A2 7 D2
- STRB AT Bl D26 A1 Dil~]Di8 AT br D10] AT bi
XF1 CONFIG A Do] D25 A0 AD Do [~ D17 A, Do || D9 AON A0 5o
B __ [Y D2a __ [Ypis __ ") b M)
Cs Cs cs Cs
CLKIN + STRBO_B3
H1 STRB1_B3 & STRBO_B3 ————
STRBO_B2
H3 STRBI_B2 & STRBO_B2 —————
_ — ___~"| STRBO_BL
STRBI_B1 & STRBO_B1 —————
-~ o~ | STRBO_BO
STRBI_BO & STRBO_BO
EMU3
\, \ \
EMU2 TMS320C32 \
EMUO
EMUL
TCLKO
JOSTRB [—
TCLK1
DRO
FSRO
CLKRO
B STRBL_B3/A_1 [—
STRB1_B2/A_5 —
FSX0 STRBLB1I [—
CLKX0 Do-p31 S'RBLBO
(LLCCCLL eee TTLLLLLT /

Figure 15. One Bank/Two Strobes Memory Configuration: Memory Width = 32 Bits

Example 10. One Bank/Two Strobes Address Translation for Data Size = 16 and 8 Bits

Figure 16 illustrates how a single physical block of memory can be split into two separate logical halves,
one with 16-bit data and the other with 8-bit data. The access to each half is controlled by a separate strobe
control register with corresponding memory width and data size fields. Another STORBOI register

field, STRB CONFIG (strobe configuration), is setto 1 to indicate that both SARBSTRBJare mapped

to the same set of four STRBs. As stated previously, the high memory address pin (in this case, A14)
selects between the two halves of the memory. For this example, the 'C32 address pin A17 was chosen to
drive the memory pin Al4.

The state of the A17 bit of the physical address is derived from the logical address (logical as seen by the
instruction). The state of the A17 bit also depends on the logical/physical address shift as determined by
the size of the program/data that is being accessed. In this case, the logical 8IHRES range is
deliberately chosen to drive the physical address bit A17 to O (after accounting for a 1-bit address shift due
to the 16-bit width of the data). Similarly, the logical STRBfge is chosen to drive the physical address

bit A17 to 1 (after accounting for a 2-bit address shift due to the 8-bit width of the data). Additionally, the
logical STRBOand STRBladdress ranges that were selected to drive the physical address pin A17 to 0
and 1 still have to conform to the logical memory map that assigns fixed blocks of addresses to different
strobe spaces.

To the programmer writing software for this memory configuration, this simply means that an
STI RO,*ARO instruction (with ARO = 887FFFh) results in a STREla access (data size = 16 bits)
driving the STRBO_B2nd STRBO_BZontrol pins to write the contents of the 32-bit register RO into a
16-bit data location in the lower half of the external memory addressed by 3FFFh. Similarly, an
LDI*AR1,R1 instruction (with AR1 = 98FFFFh) results in a STRita access (data size = 8 bits) driving

the STRBO_B3because STRB CONFIG = 1) control pin to read the contents of an 8-bit data location in
the upper half of the external memory addressed by 7FFFh to the 32-bit R1 register. Once again, all address
translation is performed automatically by the 'C32, and the programmer merely has to watch the logical
memory map and the two strobe control registers.

30

LOGICAL
MEMORY
MAP

LOGICAL
ADDRESS

u

[

STRB MEM DATA

CONFIG WIDTH SIZE

| | |

STRE 32Bits 16 Bits
STRBO CNTRL REG [eee] 1 11 01)
STRBI1 CNTRL REG ceeo 11 00 eo0e

32 Bits 8 Bits

880000h
A1g A14 A1

Logical Address

1
/
/ 2
— / :
STRBO /
/
/
/
// 32766
/ 32767
/ :m
_ / y
IOSTRB / /
1
/ /7
// z
[y / 3
Iy /
/ / /
I/
//
STRBO / 65534
N 65535
STRBI [~ __

Logical Address l

Physical Address |

I

| | |

| A17 A13 Ao
I

1001 [1fooof1111 1111 1111 11‘ —
+> > [100: Hooo IFEFIEEEEIEEEREES! - |)
|
|
|
v

PHYSICAL
ADDRESS

e

|
|
|
[on
|
|
|

¥1o00 1fofoo oft11 1111 1111 111 —
| L JEORCROIEN O ORIl 1 11 1111 1111 111. ——|
| | | Physical Address | |
| A17 A13 Ao |
I I
I I
887FFFh v
16-bit Data Size — Address Shifted By 1 bit 3FFFh
8-bit Data Size — Address Shifted By 2 bits 4000h
980000h
A19 A15 A2

[

98FFFFh

-
v v
STRBO STRBO SIRBO SIRBO
B3 B2 Bl “BO
2 1
4 3
6 5
32764 32763
32766 32765
32767
4 3 2 1
8 7 6 5
12 11 10 9
[]
®
65528 | 65527 | 65526 | 65525
65532 | 65531 | 65530 | 65529
|7FFFh SRRl 65535 | 65534 | 65533

. | oseo0 |

STRBO STRBO STRBO STRBO
B3 B2 Bl _BO
A
_

I
I
L__

Figure 16. One Bank/Two Strobes Address Translation: Data Size = 16 and 8 Bits

T€

Example 11. One Bank/Two Strobes Address Translation for Data Size = 32 and 8 Bits

Figure 17 illustrates how a single physical block of memory can be split into two separate logical halves,
one with 32-bit data and the other with 8-bit data. The access to each half is controlled by a separate strobe
control register with corresponding memory width and data size fields. Another STORBOI register

field, STRB CONFIG, is set to 1 to indicate that both STRBO STRBlare mapped to the same set of

four STRBOpins. As stated previously, the high memory address pin (in this case, A14) selects between
the two halves of the memory. For this example, the 'C32 address pin A17 was chosen to drive the memory
pin A14.

The state of the A17 bit of the physical address is derived from the logical address (logical as seen by the
instruction). The state of the A17 bit also depends on the logical/physical address shift as determined by
the size of the program/data that is being accessed. In this case, the logical 8IHRES range is
deliberately chosen to drive the physical address bit A17 to 0. Similarly, the logical $diRf&lis chosen

to drive the physical address bit A17 to 1 (after accounting for a 2-bit address shift due to the 8-bit width
of the data). Additionally, the logical STRBMd STRBladdress ranges that were selected to drive the
physical address pin A17 to 0 and 1 still have to conform to the logical memory map that assigns fixed
blocks of addresses to different strobe spaces.

To the programmer writing software for this memory configuration, this simply means that an
STI RO,*ARO instruction (with ARO = 883FFFh) results in a STRi{la access (data size = 32 bits)
driving the STRBO_BOSTRBO_B1STRBO0_B2and STRBO_BB8ontrol pins to write the contents of the

32-bit register RO into a 32-bit data location in the lower half of the external memory addressed by 3FFFh.
Similarly, an LDI *AR1,R1 instruction (with AR1 = 98FFFFh) results in a STRIBth access (data size

= 8 bits) driving the STRBO_Because STRB CONFIG = 1) control pin to read the contents of an 8-bit
data location in the upper half of the external memory addressed by 7FFFh to the 32-bit R1 register. Once
again, all address translation is performed automatically by the 'C32, and the programmer merely has to
watch the logical memory map and the two strobe control registers.

32

€€

_B3

SIRBO SIRBO

_B2

SIRBO SIRBO

_B1 _BO

STRB MEM DATA
CONFIG WIDTH SIZE
nL/loE(nznlgé\L(LOGICAL | | | PHYSICAL
MAP ADDRESS STRELE 32Bits 32 Bits ADDRESS
STRBO CNTRLREG [eee] 1 | 11 11 o0 0
STRBI CNTRL REG eoe 11 00 oo
32 Bits 8 Bits
STRBO STRBO STRBO STRBO
B3 B2 BI _BO
1 880000h oh 1
/ 2 2
/ A17 A13 Ao
3 | | , | 3
/ Logical Address
STRBO / ° r-}looo 10/00 00[11 1111 1111 1111 o
/ ° | 1000 10ffo 00 -
/ o | | | Physical Address | | °
/ | A17 A13 Ao | °
// 16382 | |
| 16383 | | 16382
/ 16384 883FFFh v 16383
/ 32-bit Data Size — Address Not Shifted 3FFFh 16384
IOSTRB / / 8-bit Data Size — Address Shifted By 2 bits 4000h 4 3 2 1
/ 1 980000h
/ 8 7 6 5
/ // 2
| // ; Alg Als Az 12 11 10 9
/ // / Logical Address l
/// ° r-ﬂ1001|1|000|1111 1111 1111 1L f——
/// ° | E 2 PO (e 1111 1111 1111 1 1[4 |—|
/ Physical Address
// e | | | | I
N A17 A13 Ao |
STRBO [/ | |
65534 | | | 65528 | 65527 | 65526 | 65525
— 65535 | | W | 65532 | 65531 | 65530 | 65529
STRBL ™~ —
~— @ 98FFFFh | 7FFFh 65535 | 65534 | 65533
I

Figure 17. One Bank/Two Strobes Address Translation: Data Size = 32 and 8 Bits

Example 12. One Bank/Two Strobes Address Translation for Data Size = 16 and 32
Bits

Figure 18 illustrates how a single physical block of memory can be split into two separate logical halves,
one with 16-bit data and the other with 32-bit data. The access to each half is controlled by a separate strobe
control register with corresponding memory width and data size fields. Another STORBOI register

field, STRB CONFIG, is set to 1 to indicate that both STRBO STRBlare mapped to the same set of

four STRBOpins. As stated previously, the high memory address pin (in this case, A14) selects between
the two halves of the memory. For this example, the 'C32 address pin A17 was chosen to drive the memory
pin Al4.

The state of the A17 bit of the physical address is derived from the logical address (logical as seen by the
instruction). The state of the A17 bit also depends on the logical/physical address shift as determined by
the size of the program/data that is being accessed. In this case, the logical &IRES range is
deliberately chosen to drive the physical address bit A17 to O (after accounting for a 1-bit address shift due
to the 16-bit width of the data). Similarly, the logical STRBige is chosen to drive the physical address

bit A17 to 1. Additionally, the logical STRB&hd STRBladdress ranges that were selected to drive the
physical address pin A17 to 0 and 1 still have to conform to the logical memory map that assigns fixed
blocks of addresses to different strobe spaces.

To the programmer writing software for this memory configuration, this simply means that an
STI RO,*ARO instruction (with ARO = 887FFFh) results in a STREla access (data size = 16 bits)
driving the STRBO_B2nd STRBO_B&ontrol pins to write the contents of the 32-bit register RO into a
16-bit data location in the lower half of the external memory addressed by 3FFFh. Similarly, an LDI
*AR1,R1 instruction (with AR1 = 923FFFh) results in a STRBa access (data size = 32 bits) driving

the STRBO_BPSTRBO_B1STRBO_B2and STRBO_B3because STRB CONFIG = 1) control pins to

read the contents of a 32-bit data location in the upper half of the external memory addressed by 7FFFh
to the 32-bit R1 register. Once again, all address translation is performed automatically by the 'C32, and
the programmer merely has to watch the logical memory map and the two strobe control registers.

34

STRB MEM DATA
LOGICAL LOGICAL CONFIG WIDTH SIZE
MEMORY ADDRESS | L I'
MAP STREEH 32Bits 16 Bits
STRBO CNTRLREG [eee| 1 | 11 01 066
STRB1 CNTRL REG 000 11 11 eoo0
@ @ 32Bits 32 Bits
I
I
1 880000h : oh
/ 5 I
/ 3 Alg Ag A1
/ | | Logical Address |
STRBO / ° r 1000 10[ofo of111 11121 11211 1118 ——
/ ° | 1000 1 0o FEFENEEEEEEEEEEREEEY : | -7
Physical Address
/ . | I y | |
/ A7 A3 Ao
/ 32766 :
// 32767 | |
g T e v
/ . obtDamSme-AddessShitedByibt IFFFh.
JOSTRB / / 32-bit Data Size — Address Not Shifted 4000h
1 920000h
/ /7 :
/7 A A A
/ / / 2 17 13 0
/ / Logical Address
/ // ° 1001 00f1(0 0011 1111 1111 1111
/ // ° 1001 ooflo oo -7
// | Physical Address
/ / ¢ A17 A13 Ao |
STRBO // 16382 :
STREL [~ ~ oo v
~~ T reeen

154

Figure 18. One Bank/Two Strobes Address Translation: Data Size = 16 and 32 Bits

PHYSICAL
ADDRESS

U

T
vV v
STRBO STRBO STRBO STRBO
_B3 _B2 _B1 _BO
2 1
4 3
5
[]
[]
[]
32764 32763
32766 32765
32767
1
2
3
[]
[]
(-]
16382
16383
16384

STRBO STRBO STRBO STRBO
“B3 B2 B1 _BO

Summary: One Bank/Two Strobes (32-Bit Memory) Design Examples

To summarize these examples, the one bank/two strobes memory interface to the 'C32 supports any
combination of data size pairs (16/8, 32/8, and 16/32 bits) with no speed penalty (the strobe control registers
do not have to be reconfigured each time data size changes). Likewise, a 16-bit external memory can be
divided into two halves, each containing data of a different size (8, 16, or 32 bits). The same holds true for
8-bit external memory. All address translation information given in Examples 1 through 9 applies to the
one bank/two strobes examples also.

To configure the external memory for one bank/two strobes access mode, the following steps are

recommended :

1. Setthe strobe configuration field in the STR&Otrol register to 1.

2. Setthe memory width field in both the STR&@ STRBXontrol registers to reflect the width
of the physical memory.

3. Set the data size field in both the STRB@ STRBIcontrol registers to reflect the size of the
data portions chosen for each strobe.

4. Choose one of the high physical address bits to split the physical memory into two halves.

5. Forthe two memory halves, choose the STRBD STRBlogical address ranges to drive the

36

chosen bit to 0 and 1, respectively. The chosen ST&RBOSTRBladdress ranges have to fit
inside the legal STRBBTRB1address spaces as defined by the memory map.

RDY SIGNAL GENERATION

The 'C32 uses the RDpin to determine whether the current bus cycle will finish at the end of the current
clock cycle or require additional clock cycles to complete. Even though the 'C32 is capable of fetching
instructions and accessing data in one clock cycle, a slow memory may need additional clock cycles (wait
states) to complete the bus cycle. The generation of thedki»él can be accomplished in three ways:

1. In many systems, all external memory is fast enough to preclude wait states. In these cases, the
RDY pin can be permanently grounded, indicating to the CPU that the external memory is
always ready for the next cycle.

2. Evenifthere are external devices that require wait states, as long as there is only one device per
strobe, the wait states can be programmed in software by setting bits in corresponding strobe
control registers. As in the first case, the RPiX should be permanently grounded.

3. The active generation of the RB¥nal is required only if a single strobe controls two or more
external memory banks or peripherals requiring different numbers of wait states.

The remainder of this section addresses the third method. The example involves three memory banks
controlled by STRBQeach requiring a different number of wait states. Note that this example directly
applies to RDYsignal generation involving STRBihd is similar to the case of IOSTREhich involves

a more relaxed set of timing parameters.

RDY Signal Timing Parameters for STRBO and STRB1

Figure 19 contains STRBd STRB1iming parameters that would typically be used to generate the RDY
signal. As evident in the read and write timing waveforms, the RiiYal generated by the external logic

is clocked into the 'C32 on the falling edge of the H1 clock. The associated setup time is represented by
parameter (17) and the hold time by parameter (18). So, for the 60-MHz 'C32, theid@a¥must arrive

at the RDYpin at least 17 ns before the falling edge of H1 and remain valid at least until H1 goes low.
Timing parameters (11) and (12) represent the STRBOSTRB1ow and high delays from the falling

edge of H1. Timing parameter (14) represents the address valid delay from the falling edge of H1. For
back-to-back write cycles, timing parameter (22) represents the address valid delay from the rising edge
of H1. Parameters (11), (12), (14), and (22) do not directly apply to B&Y¥p and hold, but are
nevertheless involved in the generation of the Rilpnal.

37

/S O\ _ S S
Hl_\/ ___/ /|

| |
: | am —» ﬁ (12) —» —
N\ / = N S
|

\
4} .) | \ RIW | \
} — ‘F (14)
X X

@ —¥ e (a7 — -
\J‘ | <—q@sg) ‘ — }1— (18)
STRBO, STRB1, READ CYCLE STRBO, STRB1, WRITE CYCLE

'320c32-40T | '320c32-501 | '320C32-60T
NO. DESCRIPTION (50 ns) (40 ns) (33ns) UNIT
MIN | MAX MIN | MAX MIN | MAX
11 Jtg(H1iL-sL) Delay time, H1 low to STRBx low 0 11 0 9 0 8 ns
12 |tgH1iL-sH) Delay time, H1 low to SRBXx high 0 1 0 9 0 8 ns
14 | tg(H1L-A) Delay time, H1 low to A valid 0 11 0 9 0 8 ns
17 | tsu(RDY) Setup time, RDY before H1 low 21 19 17 ns
18 | th(RDY) Hold time, RDY after H1 low 0 0 0 ns
22 [WHIPA) packro bask wrte eyeles urie) 1 0 8|

t These timing specifications are subject to change without notice. See the TMS320C32 Data Sheet for current timing
information.

Figure 19. RDY Signal Timing for STRBO and STRB1 Cycles

38

Example 13. RDY Signal Generation

The example in Figure 20 involves three memory banks controlled by a single strobe Y STHREU st

bank is composed of four 8-bit-wide SRAMSs requiring zero wait states to operate at 60 MHz (15-ns
devices). Bank 2 is composed of two 1-wait-state SRAMs, and bank 3 contains one 3-wait-state EPROM
(which is eight bits wide). The RDyin is normally high, indicating a not-ready state. It goes low if either
RDY_BANKL1 or RDY_BANK23goes low.

The RDY_BANK1signal is asserted only if two conditions are satisfied. First, at least one of the four
STRBOsignal lines must be active. Second, the three address decode bits must match the bank 1 space.
Since no wait states are involved, the RDY_BAN&{dnal does not have to be synchronized with the
H1/H3 clocks, and, therefore, it can directly drive the RE¥Y after being gated with its bank 2/bank 3
counterpart.

The STRBO_BANK23 signal becomes active (high) if the three address decode bits match bank 2 or
bank 3 address spaces while STRBO &@d/or STRBO_Blare active (low). The STRBO_BANK23

signal, when high, sets a high data state in a synchronous progression through a chain of four registers.
Depending on which point in the chain is tapped, a R@¥al delay ranging from zero to three wait states

can be achieved. In this case, both 1-wait-state and 3-wait-state taps assert the RDY_8g84ES

reflect bank 2 or bank 3 access. Finally, a two-register circuit shaves the trailing edge of the RDY_B23YES
signal by ORing it with RDY_23NOT (see Figure 21). The resulting RDY_BANKZSNDed with its

bank 1 counterpart to drive the RIpih.

Figure 21 contains timing waveforms for the RB&heration example. It illustrates how the RE&yhal

is generated for a series of external back-to-back memory read cycles in which the first one accesses bank

1 (zero wait states), the second accesses bank 2 (one wait state), the third accesses bank 3 (three wait states),
and the fourth and fifth access bank 1 (zero wait states). For each read cycle, thawE¥m is marked

with a resulting setup time. For the 60-MHz device, the Riijrial should become valid at least 17 ns

before every falling edge of the H1 clock.

In the 0-wait-state cycle, the address and strobe signals become valid 8 ns from the falling edge of H1 (see
Figure 21). An additional 5 ns are needed for a single pass through a fast combinational logic device for
a total setup time of the resulting R®¥gnal equal to 20 ns, leaving 3 ns for board delays and a modest
safety factor.

For the 1- and 3-wait-state cycles, the bank decode and strobe signals do not directly drivestymRDY

They are instead combined into the STRBO_BANK23 signal that, when active, releases the clear condition
on the 3-register delay chain driven by the H3 clock. The register chain is then free to propagate a high
state at the rate of one register per clock cycle. The two taps in the register chain (at the first and third
registers, representing one wait and three wait states, respectively) are ORed with their corresponding bank
select signals to result in the RDY_B23YEi§nal synchronous to H1/H3 clocks. The RDY_B23YES
leading-edge 10-ns delay is caused by two passes through a fastiB#ice (such as a popular 22V10).

The trailing edge of this signal is caused by bank 2 or bank 3 decode circuits going inactive after the RDY
signal is recognized by the processor. The address decode (8 ns) plus two passes through the PAL (5 +5
ns) combine for a total delay of 18 ns that, if not modified, would cut into the next cycle’s&DY
requirement (33 — 18 = 15 ns). To deactivate the Rigial sooner, a single-register circuit has been added

to generate the RDY_B23NOT, which, when ORed with the RDY_B23YE#&Is the RDY_BANK23

signal that satisfies the RD&étup time for the next cycle. Finally, RDY_BANkhd RDY_BANK23are

ANDed together to produce the final RB¥gnal that is wired to the processor’s Rpivi.

PALU is a registered trademark of Advanced Micro Devices, Inc.
39

(014

N N N\
LN N]
(e (reecee (_ BANK 1 (32Kx8x4 SRAM) BANK 2 (32Kx8x2 SRAM) BANK 3 (32Kx8 EPROM)
RESET A0-A23 R
SHz Vee
MCBL / MP HOLDA [— N\ 1 L L L N— — — N\
__ AoLD Ao-14f | WE VE VE VE Ao-13| | WE WE_ A0-12 —
INTO cs Cs cs Cs I+ |po- A Cs sk | Do A CEl—
- c c ¢ c o-31| Al | © - 0-15] A1 -
INTL 1 OF OF OF OE OE OE A OE
INT2 1
INT3
JACK
STRBO_B3/A_1 —
M0 STRBO_B2/A_
XF1 —
STRBO_B1
STRBO_BO
BANK 3
BANK 1 BANK 2
A3 DECODE Agz| DECODE A23 DECODE
TMS320C32 A1 A18 A18
A17 A17 17
OSTRB [— -
EMU3
EMU2 - 0 WAIT vee STRBO_BANK3
STRBL B3/A_1 [— STATES [|
EMUO STRBL B2/A_p [— [
Srere - - STRBO_BANKZZ O RBO_BANK2
EMUL STRBL_BO =L L L L
- CLR CLR CLR CLR
TCLKO —oD Q D Q D Q D Q e
TCLK1 > Q- —b> O —> _QF —> _Qp
GngCH PR ans PR PR PR
z elay
RO CLKIN [T I I
HL |— T
FSRO H3 ¢
3 WAIT
CLKRO 1 WAIT STATES
___ STATE
2 RDY_BANKL
FSXo RDY RDY_B23NOT I_G;
CLKX0 50_D31 RDY_BANK23 RDY_B23YES
(LLLLCLT eee TTTLTITT

Figure 20. RDY Signal Generation for STRBO Cycles

/T

i
/

\

0
/

TATES
K3)

n_/ ~— ~—_ \

[}
£x
e

3W,

0
/

ATE

/ \"4
0 WAIT 1
| ®ANK1) |
He _/I__/I__/_\
b |
I

TZ
vz
o

Ee

STRBO_BX

A0-A23

RDY_BANK1

STRBO_BANK23

RDY_B23YES

RDY_B23NOT

i et

-

RDY

RDY_BANK23

23 ns

23 ns

20 ns

20 ns

| 1 20 ns 1 33 ns
I I
__/
I
I
/\

I 1 23 ns 1 33 ns 1 33 ns
ACTUAL 33 ns
| RDY SETUP CYCLE TIME
TIME (60 MHz2)

__/

17 ns
RDY SETUP
REQUIRED

N\

Figure 21. RDY Signal Generation Timing Waveforms

41

Address Decode for Multiple Banks

Figure 22 illustrates the logical-to-physical address translation for the three memory banks used in the
RDY generation example. Each memory bank is of a different physical width, as shown by the external
address column on the right side of the figure. The left side of the same figure represents the internal address
ranges for each of the three memory banks. Logical-to-physical address translation is controlled by strobe
control registers and their data size and memory width fields. The middle column of Figure 22 contains
the logical address field (top row) superimposed on the physical address (bottom row) for each address
translation case. The active address fields are shaded gray, and the inactive address bits (don't cares) are
white. The black fields are special address bits that can selectively control multiple strobe lines or choose
between individual portions of a data word that is larger than the physical memory it is accessing.

For example, in bank 2, the right side of the picture indicates that the physical memory width for this bank

is 16 bits. The left side indicates that, regardless of the physical memory width, 32-, 16-, and 8-bit data can
be moved by programming the STRBOntrol register. The low-order (shaded) bits of logical/physical
address rows show how many bits are actually used for addresses so that the correct high-order address bits
can be assigned to bank decode. Physical address bits A17 and A18 were chosen for bank decode because
they lie outside the used address bits. A17 and A18 decode between banks 1, 2, and 3, with A18—-A17 =
(0,1) assigned to bank 1, (1,0) assigned to bank 2, and (1,1) assigned to bank 3. Finally, address bit A23
is set to O to isolate the STRB@Adress space from the STR&1d IOSTRBmemory maps.

From the dotted lines bounding the bank decode bits, it is apparent that the external address bits A18—A17
line up perfectly but their logical address counterparts do not. The amount of reverse shift between the
logical and physical addresses depends on the size of the data being accessed and the width of the physical
memory. Each of the three address translation cases for each of the three banks translates physical address
bits A18—A17 into two contiguous logical address bits that can lie anywhere between A20 and A17. Once
the logical images of the external bank decode bits have been identified along with low-order address bits
and the A23 strobe decode bit, they will together define the final logical memory map for the three STRBO
banks.

Once again, each memory bank actually has not one, but three logical memory maps, depending on the size
of the data being accessed and the setting of the corresponding bits in thec®nR8IQregister.

The address ranges in these logical memory maps are all different, yet all three maps translate perfectly
into a single physical address map that identifies the bank. In using the three logical memory maps, the
programmer must exercise caution to prevent overwriting 8-bit data with 16-bit data (or 16-bit data with
32-bit data) that may have a different logical address but still occupy the same place in physical memory.
To be certain that the logical address maps associated with 8-, 16-, and 32-bit data sizes do not overlap
within a single physical memory bank, the three logical maps should be further divided into mutually
exclusive areas before they are used by the programmer. Furthermore, when a program jumps from one
physical memory bank to another of a different width, the memory width configuration bits in the
appropriate strobe register must be changed.

42

LOGICAL ADDRESS

Aos "
20000h | | oh
——»[0 o[1

[9) 0|1 —>
27FFFh | |] | 7FFFh

[[|i v v
40000h [[I oh
—» [[[[o[{] IIIIIIIIIIIIIIIH

00III0I1IIIIIIIIIIIIIII| —>
AFFFFh | | | 7FFFh
800000 L [v VY Vv v
——————> [0 [Jo[[] ||||||||||||||H_|_I on

ool T T T TTTTTTTTT] —>
9FFFFh | |] |

| | | 7FFFh

I |

AR c/ox 5ank 2 | |
40000h N | | o
—» O [[[[TTTTTTTTITTTTT —»

o [T 171 IIIIIIIIIIIIIIIIb | i
43FFFh N] | 7FFFh [7
80000h | |] | oh
——» o[[T o [T T T TT I ITTITIT]

ofol [Taof T TTTTTTITTTTITTITT] >
87FFFh || || | 7EEFh
100000h 3 . II I I
——— >[I] |||||||||||||||A oh

ool T [[TTTTTTT T »
10FFFFh I

[[I 7FFFh

[[I 16 bits

[[I

AN voR ANk s | I —] o
60000h | | | — —
—» O T T

of [T T[T T T —
61FFFh] | | 7FFFh L
C0000h N | I 7 on
—» [TR T[T T ITTTd —»

oo T T T T T >
C3FFFh | |] | — —
180000h ¥ . | 7FFFh
— O [T [TTTTITTIIITTTd oh

ol THAI TTTTTTTTTTTITTTITT] >
187FFFh | :| :|

A A17 A2

23 A18 Al

7FFFh

Figure 22. Address Decode for Multiple Memory Banks

43

