
Application Report
SLUA543–March 2011

WinCE/Linux Drivers for bq275xx Fuel Gauge
Charles Herder ... BMS Handheld

ABSTRACT

The bq275xx gas gauge integrated circuits (IC) can use an I2C line for communication with the host
system. It is necessary to allow application-layer software on the host system to access parameters made
available by the gas gauge IC. Multiple levels of abstraction are between the gauge and a given
application. This document describes an example implementation of each of these layers in an effort to
provide a programming model for real-world implementations.

Contents
1 Glossary .. 1
2 Example Hardware and Configuration ... 1

2.1 WinCE Software/Hardware Configuration .. 2
2.2 Linux Software/Hardware Configuration .. 3

3 Windows CE ... 4
3.1 Running the Example Code .. 4
3.2 Understanding the Layers .. 4
3.3 Project-Specific Application ... 5

4 Linux/Android .. 6
4.1 Reconfiguring and Reloading the Kernel ... 6
4.2 Loading and Running the Application ... 7
4.3 Understanding the Layers .. 7
4.4 Project Application ... 7

List of Figures

1 AM3517 eXperimenter Kit ... 2

2 bq275xx Driver in WinCE OS Hierarchy ... 4

3 bq275xx Driver in Linux OS Hierarchy ... 6

1 Glossary

Board Support Package (BSP): this is the code that supports WinCE on a given hardware platform.

Platform Support Package (PSP): this is the code that supports Linux on a given hardware platform.
Functionally equivalent to a BSP for Linux.

2 Example Hardware and Configuration

For this application report, an AM3517 eXperimenter Kit with the additional display is used. See
http://focus.ti.com/docs/toolsw/folders/print/tmdxevm3517.html

This board uses a Texas Instruments AM3517 processor and also contains memory and some basic
peripherals. This platform has both WinCE and Linux support packages and is used as the hardware base
for the project described in this document.

1SLUA543–March 2011 WinCE/Linux Drivers for bq275xx Fuel Gauge
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://focus.ti.com/docs/toolsw/folders/print/tmdxevm3517.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

POWER MEASUREMENT BOARD

Example Hardware and Configuration www.ti.com

Figure 1. AM3517 eXperimenter Kit

The AM3517 eXperimenter Kit has I2C line brought out to jumper J36, as indicated in Figure 1. The I2C
bus connections and ground from this header are connected to bq275xx to allow the processor to
communicate with the gauge.

2.1 WinCE Software/Hardware Configuration

The AM3517 eXperimenter Kit is booted from the SD memory card on the port. In order to boot, the board
needs three files that are built when you compile your system in Visual Studio: MLO, EBOOT0SD.nb0,
and NK.bin. MLO is the start-up code that is called by the board’s BIOS. MLO then provides the
appropriate environment to run EBOOTSD.nb0, the bootloader. This program provides a menu interface
over the RS-232 debug serial line that allows the user to run the image on the SD card or to download
one via the network interface. NK.bin is the system image that is booted. It contains the operating system
as well as all user applications. This can be loaded off of the SD card or may be downloaded over a LAN
from Microsoft™ Visual Studio™. Details on both of these methods are available from Adeneo Embedded
in its documentation of the AM3517 eXperimenter Kit Board Support Package (BSP)
(http://www.adeneo-embedded.com). MLO, EBOOTSD.nb0, and NK.bin must all exist on the first partition
of the SD card, and the partition must be formatted in a FAT filesystem.

2.1.1 Getting up and Running

This project requires the hardware described in Section 2.1 and the following software:

1. Microsoft Visual Studio 2005 SP1 with Platform Studio installed with all updates as of March 2010.
2. The Windows CE BSP for the AM3517 eXperimenter Kit. This is available from Adeneo’s Web site,

http://www.adeneo-embedded.com, along with instructions on how to install it into Microsoft’s Platform
Studio.

3. Source code and project files available with this application report are located in the product folder on
the TI Web page.

Once Platform Studio SP1 and the Adeneo BSP have been installed, open the project contained in this
application report to your solution using the wizard. No changes are necessary, and you can build the
solution immediately. This build process takes between 20–45 minutes to complete.

When the compile process completes, three files need to be transferred to the eXperimenter Board: MLO,
EBOOTSD.nb0, and NK.bin. Transfer each of these files to the first partition of an SD card and boot the
board. The bootloader provides a boot configuration menu over the RS-232 debug serial before booting
the image. A successful boot runs Windows CE and provide a complete interface over the touch screen.

2 WinCE/Linux Drivers for bq275xx Fuel Gauge SLUA543–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.adeneo-embedded.com
http://www.adeneo-embedded.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

www.ti.com Example Hardware and Configuration

You may also configure the bootloader to listen for a boot signal from Visual Studio 2005. In this case, a
USB cable needs to be connected to the debug serial port (the kit has an onboard USB to RS-232
converter), and an Ethernet cable to download the image. A crossover cable is needed if the development
personal computer’s Ethernet PHY does not automatically detect a point-to-point connection. This method
is well-covered in Adeneo’s BSP documentation. Effectively, you modify the boot configuration through the
menu provided by the bootloader, and then use Visual Studio to connect to the device and download the
image .

2.2 Linux Software/Hardware Configuration

The Linux system is also booted off of the SD memory card, but the method is different to set up. Similar
to the Windows CE setup, the board requires three boot files on the first partition of the SD card, and this
partition must have a FAT filesystem. The first file, MLO, is the initial code called by the BIOS. Note that
although this file is identical in name to that built in the Windows CE environment, the actual code is
different and not compatible. The Linux MLO boot code then loads the secondary bootloader, u-boot.bin.
This provides a similar environment to the EBOOTSD.nb0 file built in the Windows CE environment. It
provides boot configuration menu over the RS-232 debug serial line and loads the file uImage by default.
uImage is an image of the Linux kernel. In general, you want to provide a filesystem on which to run
Linux. This is done by adding a second partition to the SD card formatted with the ext3 filesystem. Note
any kernel image on this second partition will never be booted. This second partition is only accessed after
the kernel on the first partition has been loaded and is running in main memory.

2.2.1 Getting Up and Running

The Platform Support Package (PSP) for the AM3517 eXperimenter Kit is available free from and
supported by Texas Instruments. See http://processors.wiki.ti.com for details. Instructions for how to set
up the build environment are available at the processor's wiki. Once your build tools and environment are
properly set up, build the default configuration as documented in TI’s PSP documentation. To build the
code as documented, you must have the proper toolchain.

2.2.2 References for Getting Started
• http://processors.wiki.ti.com
• http://processors.wiki.ti.com/index.php/AM3517_On-line_Workshop
• http://processors.wiki.ti.com/index.php/GSG:_AM35x_EVM_Software_Setup
• http://focus.ti.com/docs/toolsw/folders/print/linuxsdk-am35x.html

First, you must build the u-boot image. The source is available from the TI Web site
(http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/index.html). Once you install this image, you
must also install the appropriate toolchain. For this application report, use the CodeSourcery toolchain
available at http://www.codesourcery.com/sgpp/lite/arm/portal/release858.

After extraction and bringing your toolchain into the PATH, clean, configure, and build the u-boot image
with the following commands: (run in the root directory of the u-boot source)

make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm distclean
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm am3517_evm_config
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm

Make sure that the u-boot tools are in the path:
export PATH= (Path to u-boot) /tools/:#PATH

Now, build the kernel and the filesystem that you will copy to the SD card to run on the eXperimenter
board. Change to the root directory of the kernel source, and run the following commands.

make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm distclean
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm am3517_evm_defconfig
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm uImage modules
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm INSTALL_MOD_PATH=(Path to device

filesystem root) modules_install

This builds MLO, u-boot.bin, the kernel image, and the filesystem. You must repartition the SD card, and
copy the appropriate boot and filesystem files to each partition. Documentation and scripts for performing
these actions are available on the wiki for the on-line workshop linked to the preceding URL.

3SLUA543–March 2011 WinCE/Linux Drivers for bq275xx Fuel Gauge
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://processors.wiki.ti.com
http://processors.wiki.ti.com
http://processors.wiki.ti.com/index.php/AM3517_On-line_Workshop
http://processors.wiki.ti.com/index.php/GSG:_AM35x_EVM_Software_Setup
http://focus.ti.com/docs/toolsw/folders/print/linuxsdk-am35x.html
http://software-dl.ti.com/dsps/dsps_public_sw/psp/LinuxPSP/index.html
http://www.codesourcery.com/sgpp/lite/arm/portal/release858
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

AM3517 Evaluation Module Hardware

Architecture Dependant
Kernel Code (MS)

Adeneo supported

BSP

Test Application

I2C Driver API

Driver API

Other API

BQ Driver
WinCE OS

WinCE Kernel

(Platform Independent)

Windows CE www.ti.com

Effectively, you need the first partition to be a FAT partition with the MLO, u-boot.bin, and uImage. The
second partition can be EXT3; hold the filesystem that Linux will load.

Once the SD card has been loaded, you can boot the board. The PSP does not contain touchscreen
drivers, and therefore does not by default boot with the screen interface. Instead, a shell is exposed via
the RS-232 debug serial line. Attach this to the computer, boot the board, and log in as root (no
password).

The filesystem image downloaded to the board has Ethernet and SSH support. You can either attach the
board directly to your development PC with a crossover cable (a normal cable is acceptable if your
computer’s Ethernet PHY autodetects point-to-point connections), or to a router to allow LAN access to
the board. For simplicity, use this ability to log into the board remotely and download our application-level
software.

3 Windows CE

3.1 Running the Example Code

Section 2.1 discussed how to build and download the image to the target board using the code associated
with this application report. This code already contains the drivers and application necessary to read
gauge information over the I2C bus. In order to demonstrate this capability, simply make the physical
connection and run the application.

Make the connections as shown in Figure 1. Ensure that power is connected to the gauge. Pullup resistors
are already attached to the I2C bus within the eXperimenter Kit. Once this is set up correctly, run the
Command Prompt from the start menu. Run the command drvtest.exe, and observe the results. This
program prints the values from the gauge’s RAM in hexadecimal. If the driver fails to communicate with
the gauge, it returns all zero values.

3.2 Understanding the Layers

Now that the gauge from a Windows CE application can be read, consider exactly what is involved in
making this work. First, consider the structure of the Windows CE operating system. The code structure is
depicted in Figure 2 in a hierarchical format.

Figure 2. bq275xx Driver in WinCE OS Hierarchy

4 WinCE/Linux Drivers for bq275xx Fuel Gauge SLUA543–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

www.ti.com Windows CE

In the Windows implementation (similar to the Linux implementation), the BSP provides the middleware for
the CE operating system and kernel to communicate with the hardware. Most of these modules are built
as kernel-mode drivers that provide a standardized API to the kernel and OS.

The bq gauges use the I2C protocol for communication with the host. Therefore, the driver must have
access to raw I2C communication. because raw I2C bus access is not required for normal operation of the
CE operating system, this is not a part of the standardized API with the CE kernel/OS. In this case, the
AM3517 eXperimenter Kit BSP contains a kernel-mode driver for raw I2C access that exposes an API to
user-mode drivers. This kernel driver included in the BSP is platform-specific, and therefore the exposed
API may vary between OEMs and their BSP providers. In spite of this incompatibility, the structure of the
exposed API must be similar regardless of the hardware chosen. It must provide at initialization, read and
write capabilities at the very least. Fortunately, this is all that is needed for this driver.

For this BSP, the user-mode API is included in <sdk_i2c.h>. This user-level API uses an IOControl
exposed by the I2C kernel driver to obtain access to the low-level functions of I2C read, write, open, close,
etc. this project has built a user-mode driver that uses this API and provides a stream driver interface to
any CE application. A full discussion of the stream driver interface is available on the MSDN (Microsoft
Developer Network), and is not included here. Briefly, however, the stream driver interface exposes
functions such as Open, Close, Read, Write, and IOControl. The driver DLL is registered in the CE registry
and is accessed in a manner identical to the COM RS232 port (which is also a stream driver interface).

The test application demonstrates how to use the stream driver and read data from the bq gauge.

3.3 Project-Specific Application

Windows CE does not by default provide access to the I2C bus at the application level. Therefore, in any
application, you must build a kernel/user-mode driver that provides this functionality. In the preceding
example, a previously written I2C driver that existed within the board support package was leveraged.
Then, some level of abstraction away from the bq gauge interface was provided and brought out the
high-level API to the application layer.

Although the steps for a separate platform will be similar from the high level, the details may change
significantly. Although it is likely that any board support package for a given platform contains some kind
of I2C driver, it is less likely that it will provide the same API as previously demonstrated. Therefore, you
must adapt the previously mentioned source to handle whatever interface the BSP exposes.

Once this has been done, the described methodology of exposing a stream driver interface to the
application layer can be used, and you may then design any Windows CE application to use these data.

5SLUA543–March 2011 WinCE/Linux Drivers for bq275xx Fuel Gauge
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

AM3517 Evaluation Module Hardware

Linux Kernel

(Platform Independent)

Architecture Dependant

Kernel Code

TI supported

PSP

Linux OS

Test Application

I2C-dev module interface

/dev/i2c-2 file IO

Other API

Device Modules

Linux/Android www.ti.com

4 Linux/Android

Figure 3. bq275xx Driver in Linux OS Hierarchy

The Linux and Android operating systems are distributed for embedded hardware much in the same way
as Windows CE. Because Android runs on a Linux kernel, the Linux kernel is discussed here, but the
steps are identical for Android platforms. For a given platform, the platform-independent Linux kernel is
available, but must be used with a device-specific Platform Support Package (PSP). This package is
essentially identical to the Windows CE BSP. It consists of drivers that provide the kernel and OS access
to hardware services as well as start-up code that boots the kernel. Although the architecture is very
similar, the differences between Linux and Windows arise when one investigates the means of
implementation of each API. For this application, it requires raw access to the I2C bus. In the Windows CE
environment, this requires the development of a driver to interface directly with services provided by the
BSP. The Linux kernel can actually be reconfigured to use the hardware-specific I2C driver contained
within the PSP and provide application-level access through a file interface in the /dev directory.

As a result, the development for Linux is substantially easier. You only need to recompile the kernel with
the appropriate modules and then build an application that uses this API.

4.1 Reconfiguring and Reloading the Kernel

The PSP for the AM3517 eXperimenter Kit is available free from and supported by Texas Instruments.
This PSP and instructions for how to set up the build environment are available in Section 2.2 of this
application report and at the processors wiki
(http://processors.wiki.ti.com/index.php/GSG:_AM35x_EVM_Software_Setup). Once the build tools and
environment are properly set up, modify the build configuration to include the I2C-dev module as
preloaded in the kernel build. Change to the Linux source root directory, and run the following commands.

make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm distclean
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm am3517_evm_defconfig
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm menuconfig
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm uImage modules
make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=arm INSTALL_MOD_PATH=(Path to device

filesystem root) modules_install

Once menuconfig has run, navigate to Device Drivers → I2C Support → I2C device Interface. Check this
feature to be ‘Built in’. Also, make sure that the I2C bus support includes drivers for the OMAP platform.

6 WinCE/Linux Drivers for bq275xx Fuel Gauge SLUA543–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://processors.wiki.ti.com/index.php/GSG:_AM35x_EVM_Software_Setup
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

www.ti.com Linux/Android

Once you have rebuilt your kernel, transfer it to the AM3517 board for booting. Copy the uImage file to the
first partition (replacing the previous version), and reboot the AM3517 eXperimenter Kit with this image.
Note that if you browse to the /dev directory, there are three new files: /dev/i2c-1, /dev/i2c-2, and
/dev/i2c-3. These are the three available I2C buses on the board. Use bus 2 because the pins are easily
brought out. Make the same connections to the EVM as described in Section 3.1.

4.2 Loading and Running the Application

Now, build the application to run on the eXperimenter Kit. Build instructions are contained with the code,
which is available on the product Web page. Use the CodeSourcery tools to build the application binary.

Once the binary has been produced, you may copy it to the board in two ways. First, if Linux is already
booted on the target board, connect the board to a LAN or directly to your development machine via a
crossover cable. Configure the IPs properly and use ssh to copy it to the board’s filesystem over the
network. You may also manually place the application onto the filesystem partition of the SD flash memory
before you boot the eXperimenter board from this image. Once this is successful, log into the board over
SSH and run the program. Observe hexadecimal values for each of the parameters in the data RAM.

4.3 Understanding the Layers

Unlike with the Windows CE BSP, no additional driver code is needed to provide raw I2C access, as it can
be built into the kernel. The PSP accesses the I2C hardware engine registers to provide a standard API to
the Linux kernel. Next, a standard Linux kernel module brings this API to the /dev directory. The operating
system provides basic file I/O routines to allow access to this file. Any application can subsequently
access the I2C bus by reading or writing this file through the standard OS routines at the application level.

The effective difference between the CE and Linux implementations is that the Linux kernel source
already contains modules capable of bringing the PSP I2C driver functionality to the application level.
Therefore, your only task is to provide application-level abstraction to reading/writing the bq gauge.

This application-level abstraction is built into "bq.c" and "bq.h". It provides read/write capabilities and raw
I2C access to the gauge. Our test application includes this source to demonstrate the API

4.4 Project Application

Because the Linux kernel already contains the code necessary to bring access to the I2C bus to the
application level, the approach and source used in this application report is applicable to any embedded
Linux application with a properly configured board support package.

For a separate platform, you can simply compile the Linux kernel and support package as described in
this document. Building the I2C-dev module into the kernel brings the API to the application level in a
standardized way. Therefore, the source code attached to this application report is drop-in compatible to
any Linux OS.

Although this relative platform independence is convenient, cost is involved. Because the I2C interface is
standardized, access to the I2C bus is not proprietary, and any application on the embedded Linux device
can therefore access the I2C bus. In certain applications, it may be necessary to secure access to the I2C
bus to a greater extent.

7SLUA543–March 2011 WinCE/Linux Drivers for bq275xx Fuel Gauge
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA543

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

	WinCE/Linux Drivers for bq275xx Fuel Gauge
	1 Glossary
	2 Example Hardware and Configuration
	2.1 WinCE Software/Hardware Configuration
	2.1.1 Getting up and Running

	2.2 Linux Software/Hardware Configuration
	2.2.1 Getting Up and Running
	2.2.2 References for Getting Started

	3 Windows CE
	3.1 Running the Example Code
	3.2 Understanding the Layers
	3.3 Project-Specific Application

	4 Linux/Android
	4.1 Reconfiguring and Reloading the Kernel
	4.2 Loading and Running the Application
	4.3 Understanding the Layers
	4.4 Project Application

