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1 Introduction

This application note demonstrates how to
use the debug interface to perform various
flash related tasks on a CC253x | CC254x
System-on-Chip (SoC). This document is
intended to help understanding the example
code it is distributed along with [1]. The
device being programmed is in this
document referred to as DUP (Device Under
Programming). The device programming the
DUP is referred to as the “programmer”.
The example code is written for CC2530 as a

Programmer
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Write flash
Read flash
Erase flash
Debug interface

programmer, but can easily be ported to
other Low Power RF 8051 architecture
SoCs. It covers how to enter debug mode
and how to read/write/erase the flash
memory. It does not show all the capabilities
of the CC debug interface.

The example code is built using IAR
Embedded Workbench for 8051, version
8.11.2.
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2 Abbreviations

DC

DD

DUP

EB

EM

LSB

LSb

LPRF

MSB

MSb

SoC
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Debug Clock

Debug Data

Device Under Programming
Evaluation Board
Evaluation Module

Least Significant Byte
Least Siginficant bit

Low Power RF

Most Significant Byte

Most Significant bit

System-on-Chip

INSTRUMENTS

SWRA410

Application Note AN118

Page 3 of 19



Application Note AN118

3 Debug interface

The debug interface implements a proprietary two-wire serial interface that is used for in-circuit
debugging. The interface allows programming of the on-chip flash, and it provides access to
memory and register contents, in addition to features such as breakpoints, single-stepping, and
register modification. The debug interface uses I/O pins P2.1 and P2.2 on the DUP, as debug
data (DD) and debug clock (DC), respectively, during debug mode.

The DD pin is bi-directional, while DC is always controlled by the external host controller. Data is
driven on the DD pin at the positive edge of the debug clock, and sampled on the negative edge
of this clock. The idle state of the DC signal is logic 0. Please refer to the respective DUP’s
datasheet for debug interface timing requirements.

Debug commands are sent by an external host and consist of 1 to 4 output bytes from the host,
and an optional input byte read by the host. The first byte of the debug command is a command
byte. For more details about the debug interface, please refer to the CC253x | CC254x User’s
Guide [2]. A detailed description of the debug interface, also useful for CC253x | CC254x devices, is
found in [3].
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4 Hardware setup

The hardware assumed for the code example is what is found as a part of the CC2530
development kit [4], but the code example supports any CC253x | CC254x LPRF 8051 device as a
DUP:

e 2x SmartRF05 Evaluation Boards (SmartRFO5EB)
e 2Xx CC2530Evaluation Modules (CC2530EM)

The necessary data lines for programming an LPRF 8051 architecture SoC, in addition to power

and a common ground with the programmer, are shown in Figure 1. The jumper configuration and
signal strapping between the programmer’s and DUP’s SmartRFO5EB is shown in Figure 2.

Programmer DUP

PO_7+——RESET_N——RESET_N

SmartRFO05 EB SmartRFO05 EB

w/ CC2530 EM PO 1 DC P2 2 w/ CC2530 EM

PO_ DD P2 1

Figure 1 — Hardware connection between programmer and DUP
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DC DD
m Mounted i
35 31 27 23 19 15 11 7 3
Programmer o @ o
=
05EB 5 Y0 ® ®

7

35 31 27 23 19 15 11 3
- O 00O O
= OO0 OO O

RESET_N

33 31 27 23 19 15 11 7 3
DUP ®
° 0O

DD DC

RESET_N

00

7

35 31 27 23 L 15 11 3
- O O O O O O O
B O O OO0 0O O O O
Figure 2 — SmartRFO5EB P1/P10 jumper configuration for Programmer and DUP

The coloring in figures containing signalling in this document is as follows; the top signal (orange)
is RESET _N, the middle signal (green) is Debug Clock (DC) and the bottom signal (purple) is
Debug Data (DD).
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5 Entering debug mode — debug_init()
Entering debug mode on CC devices is done by performing the following sequence on the DUT’s
RESET_N and DC line (P2.2).

1) Pull RESET_N low
2) Toggle two negative flanks on the DC line
3) Pull RESET_N high

The DUP is now in debug mode. The above sequence is shown in Figure 3 and Figure 4.

0 200v/ @ 200v/ @ 200v/ @ & 18108 5000& Trigd ¥ [ 200V
3, ! L
AX = 140.000ns | 1/AX = 7.1829MHz | AY(1) = -3.300V
~  Mode ~ Source X Y ) M 2 2 r,
et [ V| l 3,900V l e

Figure 3 — Sequence on RESET_N and DC lines to enter debug mode

0 200v/ @ 200v/ @ 200v/ @ & 17602 1000/ Stop §f B 195V

3p v’

AX = 200.000000us | 1/AX = 5.0000kHz | AY(1) = 3.300V ]
49 Source ~  Slope
2 } §

Figure 4 — Two negative flanks on DC line
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6 Reading chip ID —read_chip_id()
After resetting a device into debug mode, one should first read its chip ID. Reading the device’s
chip ID can be done using the GET_CHIP_ID() debug instruction which returns the chip ID and
chip revision (8+8 bits). The signalling sequence is shown in Figure 5.

An overview of some of the CC device chip IDs is found in Table 1. The chip ID value returned by
a device can also be found in the device datasheet.

n 2.00v/ E 2.00%/ l 2.00v/ l 72705 5.0005/ Trig'd? % 1.40Y
GET_CHIP_ID() Returned chip ID Returned chip
(0x68) (0xA5) revision (0x21)
Channel 1 Menu
< Coupling BW Limit Fine Invert Probe
DC _ _ _ ~

Figure 5 — GET_CHIP_ID() debug instruction

Chip Chip ID | Page erase size | SRAM size
CC2530 0xA5 2 KB 8 KB
CC2531 0xB5 2 KB 8 KB
CC2533 0x95 1 KB 4KB/6KB
CC2543 0x43 1 KB 1KB
CC2544 0x44 1 KB 2 KB
CC2545 0x45 1 KB 1KB

Table 1 — Chip ID and page erase size for a selection of CC devices
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7 Erasing FLASH memory — chip_erase()

All debug interface activity must be performed after resetting the chip in debug mode. When the
DUP is in debug mode, the DUP’s entire flash memory can be erased by using the
CHIP_ERASE() debug instruction, as seen in Figure 6. More details can be found in [2] and [3].

If a CHIP_ERASE() is performed prior to e.g. programming a device, one should wait until the
chip erase has completed. Bit 7 of the returned data after the READ_STATUS() debug instruction
is used to check this.

It is also possible to erase a single page by using the DEBUG_INSTR() debug instruction. The
page erase size for different DUPs are given in Table 1 on page 7. The sequence for erasing a
single flash page is given below. More details about erasing a single flash page can be found in
section 6.3 of [2].

1. Point Flash controller to page’s start address (FADDRH[6:0] or FADDRH[7:1], see [2])
2. Trigger flash controller to start (set FCTL.ERASE = 1)
3. Wait for page erase to complete (poll FCTL . BUSY)

0 200v/ @ 200v/ @ 200v/ @ & 51708 5000¢ [ Trigd £ 2.00v
Interface ready, clock
Interface not ready out status byte from
(DD high). Clock 8 DUP.
CHIP_ERASE() bits before sampling (CHIP_ERASE_BUSY,
(0x10) DD value again. bit 7, is high)
v
Elig
AX = 200.000000us | 1/AX = 5.0000kHz | AY{1) = 3.300V

42 Source ~  Slope
1 £

Figure 6 — CHIP_ERASE() debug instruction
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8 Writing to FLASH memory — write_flash_memory_block()

There are two ways to write the flash memory on CC253x | CC254x devices, either by using DMA
transfer (preferred), or by using the CPU, running code from SRAM. There is no debug interface
instruction to write data directly to the DUP’s flash.

The preferred way to write flash is to configure two DMA channels on the DUP that a) read from
the debug interface and b) feeds the DUP’s Flash controller. To do this, we utilize the DUP’s
SRAM to store the DMA channel configurations (2 x 8 B) and an internal buffer. The size of the
internal buffer is in the example code set to 512 B due to the CC2543 and CC2545 SRAM size
(1 KB). A bigger internal buffer increases performance due to the reduced command overhead.

The sequence for writing flash memory using DMA channels on the DUP is as follows:

Enable use of DMA in debug configuration

Transfer DMA configuration to SRAM

Point DMA controller to DMA configuration

Point Flash controller to start address

Arm DMA channel that triggers on debug interface data (ch. 1)
Transfer data over debug interface (using BURST_WRITE() )
Arm DMA channel that feeds Flash controller (ch. 2)

Trigger flash controller to start

ONoOA~AWNE

Details on each of the above steps are given in the following sections.

8.1 Enable use of DMA in debug configuration

To enable use of DMA, the PAUSE_DMA bit in the DUP’s debug configuration is cleared using
the WR_CONFI1G() debug instruction. Figure 7 shows the corresponding debug interface traffic.

n 2.00V/ E 2.00v/ l 200v/ @ £ | 40205 10008/  Trigd £ 150V
Delay = 40.200000us ]
WR_CONFIG() Value Returned
(0x18) (0x22) status byte
3p i gl
AX = 200.000000us | 1/AX = 5.0000kHz | AY(1) = 3.300V |
Getting Using About - Language
Started Quick Help Oscilloscope English

Figure 7 — Debug instruction WR_CONFIG() writing 0x22 to DUP
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8.2 DMA configurations

One DMA channel is configured to transfer data from the debug interface to a buffer in SRAM,
while the second transfers data from the internal buffer to the Flash controller. In this example, we
make a 512 B SRAM buffer at address 0x0000, and place the DMA configurations at address
0x0200. Each DMA configuration consists of 8 B.

- 0x0000 (SRAM) 512 byte buffer for data sequence (BUFO)
- 0x0200 (SRAM) 8 byte DMA descriptor
- 0x0208 (SRAM) 8 byte DMA descriptor

The minimum amount of data to be written by the Flash controller is 32 bit (4 B). Note that caution
should be made related to multiple writes to flash memory without prior CHIP_ERASE(). This is
described in section 6.2.2 of [2]. In the same document, you'll find more details on the DMA
configuration structure for CC253x | CC254x devices. Any DMA channel on the DUP can be used,
the example code uses DMA channel 0 and 1.

The DMA configurations (8+8 B) are transferred to the DUP’'s SRAM by using the
DEBUG_ INSTR() instruction.

8.2.1 DMA channel 0: Debug interface to Internal SRAM buffer

=i Bit | Name Value | Description
offset
0 7:0 | SRCADDR[15:8] 0x62 DBGDATA register address (MSB)
1 7:0 | SRCADDR[7:0] 0x60 DBGDATA register address (LSB)
2 7:0 | DESTADDR[15:8] | 0x00 BUFO start address, 0x0000 (MSB)
3 7:0 | DESTADDR[7:0] | 0x00 BUFO start address, 0x0000 (LSB)
4 7:5 | VLEN[2:0] 000b Use LEN for transfer count
4 4:0 | LEN[12:8] - DMA channel transfer count (MSB)
5 7:0 | LEN[7:0] - DMA channel transfer count (LSB)
6 7 WORDSIZE 0 Each DMA transfer is 8 bhit
6 6:5 | TMODE[1:0] 00b Single mode DMA transfer
6 4:0 | TRIG[4:0] Ox1F DBG_BW trigger
7 7:6 | SRCINC[1:0] 00b Do not increment source address
7 5:4 | DESTINC[1:0] 01b Increment destination 1 B/word.
7 3 IRQMASK 0 Disable interrupt generation
7 2 M8 0 Use all 8 hits for transfer count
7 1:0 | PRIORITY[1:0] | 01b Assured, DMA at least every second try
Table 2 — Configuration for DMA channel 0
i3 TEXAS
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8.2.2 DMA channel 1: Internal SRAM buffer to Flash Controller

e Bit | Name Value | Description

offset

0 7:0 | SRCADDR[15:8] | 0x00 BUFO start address, 0x0000 (MSB)

1 7:0 | SRCADDR[7:0] 0x00 BUFO start address, 0x0000 (LSB)

2 7:0 | DESTADDR[15:8] | 0x62 Flash controller's FWDATA address (MSB)
3 7:0 | DESTADDR[7:0] 0x73 Flash controller's FWDATA address (MSB)
4 7:5 | VLEN[2:0] 000b Use LEN for transfer count

4 4:0 | LEN[12:8] - DMA channel transfer count (MSB)

5 7:0 | LEN[7:0] - DMA channel transfer count (LSB)

6 7 WORDSI1ZE 0 Each DMA transfer is 8 bit

6 6:5 | TMODE[1:0] 00b Single mode DMA transfer

6 4:0 | TRIG[4:0] 0x12 FLASH trigger

7 7:6 | SRCINC[1:0] 01b Increment source address 1 B/word

7 5:4 | DESTINC[1:0] 01b No not increment destination address

7 3 IRQMASK 0 Disable interrupt generation

7 2 M8 0 Use all 8 bits for transfer count

7 1:0 | PRIORITY[1:0] 10b High, DMA has priority

Table 3 — Configuration for DMA channel 1

The DMA channel writing data to the DUP’s Flash controller should have the highest priority to
avoid data underflow to the flash controller.

8.3 Point DMA controller to DMA configurations

By using the DEBUG_INSTR() instruction, the SRAM start address of the DMA configurations are
written to the DMAXCFGH:DMAXCFGL registers (x=0,1). By writing DMAOCFGy registers (y=H,L),
we configure DMA channel 0 and by writing DMAL1CFGy registers, we configure DMA channel 1.
See [2] for details.

8.4 Arm DMA channel O

The configured DMA channels (0 and 1) are armed by writing the corresponding bit in the DUP’s
DMAARM register. The DEBUG_INSTR() instruction is used for this. See Figure 11 on page 14 for
screenshot of the sequence for arming DMA channel 1.
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8.5 Point Flash controller to start address

By using the DEBUG_INSTR() instruction, the flash controller start address is set by writing
DUP’s registers FADDRH: FADDRL. These registers hold the 16 MSb of the 18 bit address. Figure
8 and Figure 9 show the corresponding debug interface traffic.

] 2] | [’ (2]
|
| |
%fi**\**I**”‘*******l**\**T**
: | | | Move value of
| Move DPTR to accumulator to
i FADDRH | Put value in | | address pointed to
_i_ _ _ L. _ _| registeraddress |_ | accumulator | _ | byDPTR. -
|
I ‘ | ‘ ‘
' |
|
: i i I
'
| \
|
i el L
|
|
|
. O T i i | [ i [
|
|
' \
|
AX = 200.000000us 1/AX = 5.0000kHz AY(1) = 3.300V
Getting Using About - Language
Started Quick Help Oscilloscope English

Figure 8 — Writing 8 MSb [17:10] of 18-bit flash start address to FADDRH

1] 2| | @ a
|
| \
+—‘_——\——|——“\——————_r——\——‘———
| | | | Move value of
: Move DPTR to accumulator to
| FADDRL | Put value in || address pointed to
N register address | | accumulator | byDPTR. | |
|
I | ‘ ‘
|
I \
| i | I
'l
I \
|
zJ; e e e Tl el e 111 | S |11 1 111
|
: i O B ‘ ML P I [l oy
I
|
|
' \
3 : H” st o -ML- ‘ = Hhﬁ UL - qpﬁ
|

AX = 200.000000us 1/AX = 5.0000kHz AY(1) = 3.300V
+2 Source «  Slope
2 £

Figure 9 — Writing bit [9:2] of flash start address to FADDRL
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8.6 Transfer data using BURST_WRITE

The BURST_WRITE() instruction enables us to transfer 1-2048 B over the debug interface. DMA
channel 0 on the DUP is now configured to transfer data from the DUP’s DBGDATA register and
place it in SRAM. It is therefore important that DMA transfers are enabled (section 8.1) and that
the configured DMA channel is armed (section 8.4). Figure 10 shows the corresponding debug
interface traffic.

ﬂ 2.00v/ E 2.00v/ l 200v/ @ & /98605 20005 Trigd £ 1.50¥
Dbg.
Instr.
+
Len. Len. 0x55 OxAA 0x55 OxAA Status
Kl
AX = 200.000000us | 1/AX = 5.0000kHz | AY(1) = 3.300V
Getting Using About ~ language
Started Ouick Help Oscilloscope English

Figure 10 - BURST_WRITE() 4 bytes over the debug interface
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8.7 Arm DMA channel 1

Now the data we want to transfer is stored in SRAM. DMA channel 1 is armed by setting the
corresponding bit in the DUP’s DMAARM register. The DEBUG__ INSTR() instruction is used for this.
Figure 11 shows the corresponding debug interface traffic.

Trig'd

[
[
I | Move value of
I Move DPTR to accumulator to
- | DMAARM ~ || Put value 0x02 | | address pointed to | |
| register address in accumulator by DPTR.
|
[
[
| HH Il
B
| |
|
Z-,QW W11 11 Iy 1} oy S i ——IRITTEY | R ——SCEER——

R e TR i

ﬂ

= o' = =i e

AX = 200.000000us

42 Source ~  Slope
2 £

Figure 11 — Writing 0x02 to DUP's DMAARM register to arm DMA channel 1

1/AX = 5.0000kHz AY(1) = 3.300V
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8.8 Trigger flash controller

The flash controller flash write procedure is started by setting the WRITE bit in the DUP’s FCTL
register. This triggers the Flash controller, which in turn triggers the DMA channel that feeds the
Flash controller. The WRITE bit is set by using the DEBUG_INSTR() debug instruction. Figure 12
shows the corresponding debug interface traffic.

The programming is completed when the Flash controller’s status bit (FCTL .BUSY) returns to 0.

1
I
I
I | Move value of
1
I

Move DPTR to accumulator to
_____ ~ _ | FCTL register | _ _ | Putvaluein . | address pointedto | -~ — |
address accumulator by DPTR.

3 WHHHJ #JL—-LHHHI i Wl

AX = 200.000000us

+2 Source ~  Slope
2 £

Figure 12 — Set FCTL.WRITE bit to 1 to initiate flash programming

1/AX = 5.0000kHz AY(1) = 3.300V

*y —{IESTXASRUMENTS SWRA410 Page 15 of 19



Application Note AN118

9 Reading from FLASH memory —read_flash_memory_block()

To read data from the DUP’s flash memory, the DEBUG_ INSTR() instruction is used. It performs
the CPU instructions given, and returns the value of the DUP’s accumulator register after the
issued instruction.

The sequence to read from flash memory is as follows:
1. Map flash memory bank to XDATA address 0x8000 — OxFFFF
2. Move data pointer (DPTR) to 0x8000 + <flash memory block start address>
3. Move value pointed to by DPTR to accumulator register
4. Increment data pointer (DPTR)

Steps 3-4 are repeated for up to 32 KB, until a new flash memory bank must be mapped to
XDATA memory space. Figure 13 shows an example of how to implement the above sequence.
For more details on the used functions, see the source files of the code example. The DD and DC
line activity corresponding to step 1-4 is shown in Figure 14 through Figure 17.

void read_flash_memory block(unsigned char bank,
unsigned short flash_addr,
unsigned short num_bytes,
unsigned char *values)
{
unsigned char instr[3];
unsigned short i;
unsigned short xdata_addr = (0x8000 + flash_addr);
// 1. Map flash memory bank to XDATA address 0x8000-OxFFFF
write xdata_memory(DUP_MEMCTR, bank);
// 2. Move data pointer to XDATA address (MOV DPTR, xdata_addr)
instr[0] = 0x90;
instr[1] = HIBYTE(xdata_addr);
instr[2] = LOBYTE(xdata_addr);
debug command(CMD_DEBUG_INSTR_3B, instr, 3);
for (i = 0; 1 < num_bytes; i++)
{
// 3. Move value pointed to by DPTR to accumulator
// (MOVX A, @DPTR)
instr[0] = OxEO;
values[i] = debug command(CMD_DEBUG_INSTR_1B, instr, 1);
// 4. Increment data pointer (INC DPTR)
instr[0] = OxA3;
debug_command(CMD_DEBUG_INSTR_1B, instr, 1);
}
}

Figure 13 — Function example for reading flash memory via debug interface
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e
|
[ Put value in Move value of
\ Move DPTR to | | accumulator | | accumulator to
: MEMCTR register address pointed to
***** —| address . — | byDPTR. -

il ol g |l H_I‘JUL_!IQJ . U

if_\.X = 200.000000us 1/AX = 5.0000kHz AY(1) = 3.300V

)
=

+2 Source ~  Slope
2 )

Figure 14 — Step 1. Map flash memory bank to XDATA memory space

The peaks seen on the DD line in e.g. Figure 14 are a result of the DD line direction transition, i.e.
the direction is changed from being output (driven by programmer) to input (driven by DUP).

\
_____________________’_______
|
Dbg. || CPU Returned  ACC
= = | Instr. instr. 0x81 0x00 Wait value (don'tcare) |-~ |-~ —{
| | | |
‘ m
|
1
r
|
nglmnn-mm 11 ﬁmﬁh
MM el A [ ‘

ol el

AX = 200.000000us 1/AX = 5.0000kHz
+3 Source ~  Slope
2 )

Figure 15 — Step 2: Move data pointer to start address (XDATA 0x8100 in this case,
corresponding to flash memory address 0x0100)
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0 200/ B 2000/ @ 200/ § o 34205 1000y [Tigd £ @ 150V

] | Returned
. Debug CPU Wait  for ACC value
e | Instr. | instr. -~ | interface — 1 (0x55) SRR,
hhr}nnnu llpn-.ur
2p b o e R srlbnsn |
- :— [ I
3 ey Yo

Figure 16 — Step 3: Move value at DPTR to accumulator (value of ACC is returned on the
debug interface). Returned value is 0x55 (value of flash memory address 0x0100)

Debug CPU | Wait for | | Returned ACC value |
[ R | Instr. | instr. | | interface | (don'tcare) |
nhuur YT
)
2p plbbeeabdid prn e A—
- N e il N

Figure 17 — Step 4: Increment DPTR
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