
Application Report
SPRABJ6–March 2011

Software Implementation of PMBus Over I2C for
TMS320F2803x

Katie Enderle ..

ABSTRACT

Power Management Bus (PMBus) is a free and open standard communications protocol for power
management devices. This application report provides a software implementation of the PMBus protocol
over the inter-integrated circuit (I2C) hardware on TMS320F28035 Piccolo™ MCUs. The software
implementation provides functions to control the underlying I2C as well as to handle PMBus transactions
as either a master or slave, allowing these layers to be abstracted so you can focus on developing the
application layer of your PMBus application.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www-s.ti.com/sc/techlit/sprabj6.zip. The example code demonstrates the use of the
F28035 as a PMBus master and slave device.

Contents
1 General Overview - PMBus .. 2
2 Scope and User Implementation .. 4
3 Function Descriptions – PMBus ... 5
4 Lower-Level Function Descriptions – I2C .. 8
5 Example Project ... 10
6 Naming Conventions .. 11
7 File Descriptions ... 11
8 References ... 12

List of Figures

1 Send Byte Format... 2

2 Read Byte Format .. 2

3 Write Byte Format... 3

4 Read Word Format ... 3

5 Example Project Setup: F2803x Master and Slave ... 10

List of Tables

1 PMBusMaster_Init() Parameter Descriptions.. 5

2 PMBusMaster() Parameter Descriptions... 6

3 PMBusSlave_Init() Parameter Descriptions ... 6

4 PMBusSlave_DecodeCommand() Parameter Descriptions ... 6

5 PMBusMaster_Crc8MakeBitwise() Parameter Descriptions .. 7

6 PMBusMaster_Crc8MakeBitwise() Parameter Descriptions .. 8

7 I2CMaster_Init() Parameter Descriptions .. 9

8 I2CMaster_Transmit() Parameter Descriptions ... 9

9 I2CMaster_SlavePresent() Parameter Descriptions.. 9

10 I2CSlave_Init(I2CSlave_OwnAddress) Parameter Descriptions .. 10

11 I2CSlave_Init(I2CSlave_OwnAddress) Parameter Descriptions .. 11

1SPRABJ6–March 2011 Software Implementation of PMBus Over I2C for TMS320F2803x
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www-s.ti.com/sc/techlit/sprabj6.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

General Overview - PMBus www.ti.com

1 General Overview - PMBus

1.1 PMBus Origin

The PMBus specification was created as a means to standardize digital bus communication with power
converters. The protocol was developed by the Power Management Bus Implementers Forum (PMBus-IF),
a subgroup of the System Management Interface Forum (SM-IF); membership in these forums is free and
open to all. Unlike some communications protocols, which simply concern data transfer, the PMBus
specification extends to a command layer by specifying a Command Language: a standard list of 256
commonly used power management commands. Devices need only support those commands required for
their application.

1.2 PMBus Features

The underlying hardware protocol for PMBus is I2C, a widespread 2-wire protocol. In addition, PMBus
specifies two more optional lines: control and alert. The alert line is used by the slave to notify the master
of a fault, and the control line is used by the master as a chip select line to turn the slave on or off. These
lines are optional; PMBus can operate as a 2-wire protocol if required with just clock and data lines.

A couple of features provide added robustness to the PMBus specification, something important for critical
systems. PMBus, like SMBus, implements timeout functionality. If the clock is held low for longer than the
timeout interval, the devices must reset communication within a specified period of time. An optional
feature that is highly recommended to increase robustness is packet error checking (PEC). PEC checks
the validity of a received packet via a cyclic redundancy check-8 (CRC-8) algorithm.

1.3 PMBus Formats

PMBus transactions follow one of six formats: send byte, read byte, write byte, read/write byte, read word,
and read/write word. For all transactions, the MSB (most significant bit) of each byte is sent first.

1.3.1 Send Byte

Send byte commands simply command the slave to perform an action. The master simply transmits one
byte over I2C. The shaded area in Figure 1 is defined in the legend in bold.

Figure 1. Send Byte Format
1 7 1 1 8 1 1

S Slave Address W A Command Byte A P

LEGEND: S = Start; P = Stop; Sr = Repeated Start; W = Write; R = Read; A = Master ACK; A = Slave ACK

1.3.2 Read Byte

Read byte commands are used to read one byte of information from the slave. The master uses I2C to
transmit one byte for the command, and then receive one byte from the slave. In general, read byte
commands are used to access read-only registers or parameters in the slave device. The shaded area in
Figure 2 is defined in the legend in bold.

Figure 2. Read Byte Format
1 7 1 1 8 1 1 7 1 1 8 1 1

S Slave Address W A Command Byte A Sr Slave Address R A Read Data Byte A P

LEGEND: S = Start; P = Stop; Sr = Repeated Start; W = Write; R = Read; A = Master ACK; A = Slave ACK

Piccolo, C2000, Code Composer Studio, controlCard are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

2 Software Implementation of PMBus Over I2C for TMS320F2803x SPRABJ6–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

www.ti.com General Overview - PMBus

1.3.3 Write Byte

Write byte commands are used to write one byte of information to a register in the slave device. The
master uses I2C to transmit two data bytes: one for the command byte, which tells the slave what to do
with the second byte, which contains the actual write data. In general, Write Byte commands are used to
access write-only registers or parameters in the slave device. Note that there are no Write Word only
commands. The shaded area in Figure 3 is defined in the legend in bold.

Figure 3. Write Byte Format
1 7 1 1 8 1 1 7 1 1 8 1 1

S Slave Address W A Command Byte A Sr Slave Address R A Write Data Byte A P

LEGEND: S = Start; P = Stop; Sr = Repeated Start; W = Write; R = Read; A = Master ACK; A = Slave ACK

1.3.4 Read/Write Byte

Read/write byte commands are used to read or write one byte of information in the slave device. These
commands follow either the read byte or write byte format, with the read/write bit determining the
transaction direction. In general, the read/write byte commands are used to access registers or
parameters that can be either written to or read from.

1.3.5 Read Word

Read word commands are used to read one word (two bytes) of information from the slave device. The
master uses I2C to transmit one data byte (the command byte) and then read two data bytes. The
lowest-order data byte is sent first. The shaded area in Figure 4 is defined in the legend in bold.

Figure 4. Read Word Format
1 7 1 1 8 1 1 7 1 1 8 1 8 1 1

S Slave Address W A Command Byte A Sr Slave Address R A Data Byte Low A Data Bye High A P

LEGEND: S = Start; P = Stop; Sr = Repeated Start; W = Write; R = Read; A = Master ACK; A = Slave ACK

1.3.6 Read/Write Word

Read/write word commands are used to read or write one word (two bytes) of information to or from the
slave device. The master uses I2C to transmit the command byte, and then either reads or writes two data
bytes to/from the slave device, depending on the direction of the transaction. The format is the same as
read word for reads, and for writes it is the same except the direction of the last two bytes is from the
master (transmitting) to the slave (receiving). The lowest-order data byte is sent first.

1.3.7 Packet Error Checking Protocol

When using packet error checking, an additional byte is added before the stop byte in each transaction.
For reads, the PEC byte is read from the slave and the master compares it to its own PEC byte
calculation. For writes, the PEC byte is sent to the slave from the master, and the slave compares it to its
own PEC byte calculation.

After the comparison, if the PEC bytes differ, the slave detects a PEC error. The preferred response in the
PMBus protocol is to send a NACK, which is usually done for a hardware PMBus and PEC
implementation. However, the NACK is not required by the PMBus protocol. Because this implementation
is done through software over I2C hardware rather than dedicated PMBus hardware, it cannot calculate
and check the PEC byte in time for the NACK. Instead it takes the following actions, per the PMBus
Specification:

• Does not respond to or act upon the command
• Flushes the command code and any received data
• Sets the CML bit in the register for STATUS_BYTE (variable Status_Byte in this implementation)
• Sets the PEC failed bit in the register for STATUS_CML (variable Status_Cml in this implementation)

and
• Notifies the master of the presence of a fault condition by pulling the alert line low

3SPRABJ6–March 2011 Software Implementation of PMBus Over I2C for TMS320F2803x
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

Scope and User Implementation www.ti.com

2 Scope and User Implementation

2.1 Scope

This code implements the physical and transport layer for the PMBus protocol. The application layer is left
up to you. Some requirements of PMBus that are not covered by this application report and should be
handled by you include the following:

• PMBus devices must start up in a controlled manner without interaction from the serial bus – this is left
up to you.

• The code does not include an implementation of the extended command protocol or definitions of
extended commands.

• Some PMBus slave devices support the Host notify protocol, in which slaves can temporarily act as
masters to communicate with the host. This is an optional feature not implemented in this application
report.

2.2 Implementation Checklist

When writing the user application, some modifications should be made to the code.

• Based on the packet error checking capabilities of other devices communicating on the PMBus, you
must change the value of PEC defined in PMBus.h. PEC = 0 will build the project without packet error
checking, PEC = 1 will build the project with packet error checking.

• Select the correct build configuration for the device: master or slave.
• Select an appropriate master frequency for the application, somewhere between 10 kHz and 400 kHz

as specified in the PMBus specification. The required prescale value should be set accordingly (see
the function description of I2CMaster_Init()).

• You should change the GPIOs used for the alert and control lines to match the pins used in your
application. For master devices, the alert line currently triggers xint1. See the device-specific
documentation to correctly configure the desired general-purpose input/output (GPIO) to trigger xint1.

• For using the C2000™ device as a PMBus slave, there are some sections in the code marked User
Code. These sections should be modified based on the PMBus commands implemented for the
specific application. For more details, see the PMBus slave function descriptions in Section 3.2 of this
document and the documentation in the code comments.

• While the command bytes for all PMBus commands are defined in the PMBus.h file, the actions
performed in response to the commands (defined in Part II of the Power Management Bus
Specification http://pmbus.org/specs.html) are not. This is left up to you, based on your application and
your set of PMBus commands. For slave devices, you must alter the code to provide the correct data
bytes to send to the master when requested, and to take appropriate actions in response to received
commands. For master devices, you must add code to store any data received from the slave and take
appropriate actions in response.

2.3 Implementation Guidelines

The following guidelines should assist in integrating the example code with the user application.

• The PMBus.h file contains symbolic definitions for the indexes for all 256 PMBus commands, matching
the command names in the PMBus Specification Part II. These indexes should be used when calling
the PMBusMaster_Transmit() function.
Example: PMBusMaster(STATUS_TEMPERATURE, …, …, …)

• The PMBus.h file also contains structures for the PMBus status registers with bit definitions that align
with the PMBus Specification Part II. These registers are implemented in the same style as the C280x
C/C++ Header files for easy, symbolic access of each bit within the register. Definition in this manner
also allows Code Composer Studio™ auto-complete functionality, making for easier code
development. This same structure can be copied to implement any other PMBus registers that are
needed for the application.

• The master side of the example code is geared toward communication with one slave device, though
communication with multiple slaves is possible - by calling the function PMBusMaster_Init() with
the address of the next slave the master can switch which slave it is commanding.

4 Software Implementation of PMBus Over I2C for TMS320F2803x SPRABJ6–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://pmbus.org/specs.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

www.ti.com Function Descriptions – PMBus

• Selection of the appropriate pull-up resistors on the communication lines, as well as other hardware
considerations, is left up to you. Note that the internal pull-up resistors on the C2000 GPIOs do not
fulfill this requirement, and external pull-up resistors should be added.

• The GPIOs are configured for a control line; however, according to the PMBus specification, the real
implementation of the control line functionality is its effects on certain PMBus commands. As this is
part of the application layer, it is left up to you to implement this functionality as part of your command
implementations. For more information about how the control line operates with different commands,
see the Power Management Bus Implementer’s Forum (PMBus-IF) http://pmbus.org.

3 Function Descriptions – PMBus

The PMBusMaster.c and PMBusSlave.c files contain code for implementing PMBus as a master or slave.
By defining PEC in PMBus.h as 0 or 1, the implementation can be built with or without PEC functionality.

3.1 Master Functions

The following descriptions apply to functions in the PMBusMaster.c file.

3.1.1 PMBusMaster_Init(PMBusMaster_SlaveAddress, PMBusMaster_Prescale)

This function should be called once before PMBus operation begins. The device configures the underlying
I2C with the I2CMaster_Init() function and configures an additional two GPIO pins for alert and
control line functionality. The alert line pin is also configured to trigger the XINT1 interrupt; you can modify
the interrupt xint1_isr for application-specific alert line response. PMBusMaster_Prescale configures the
master to communicate at the desired frequency by passing this value when initializing the underlying I2C.
For advice on choosing a prescale value, see I2CMaster_Init(). Before exiting the function, the
master device waits for the slave to be ready by calling the I2CMaster_SlavePresent() function.

Table 1. PMBusMaster_Init() Parameter Descriptions

Name Description

PMBusMaster_SlaveAddress The slave device address

PMBusMaster_Prescale The prescale value to achieve desired master frequency

3.1.2 PMBusMaster(PMBusMaster_CommandByte, PMBusMaster_RWFlag, PMBusMaster_Message,
*PMBusMaster_ReceivedValue)

This function performs a PMBus transaction as a master over the hardware I2C.
PMBusMaster_CommandByte contains the index for a PMBus command (STATUS_WORD, for
example). This index is used to determine the PMBus command byte to send as well as to determine what
type of command is required (read byte, write byte, etc.) and, therefore, the number of bytes to send and
receive over I2C. For read/write commands, the parameter PMBusMaster_RWFlag determines if the
master is reading from or writing to the slave. For write commands, PMBusMaster_Message contains the
message to be sent; it is of type int so it can contain a one or two byte message, depending on the
command. For read commands, *PMBusMaster_ReceivedValue is the pointer where the read data will be
stored and passed back to the application level.

If PEC is defined as 1, the packet error checking functionality is implemented in PMBusMaster(). Note
that inside the main switch statement, there are sections beginning with #if !PEC and #else. These
sections implement the function without and with PEC, respectively. If PEC is implemented, this function
checks the PEC from the slave against its own calculation on read commands, and sends a PEC byte to
be checked by the slave on write commands. This function passes the command byte, slave address,
read/write flag, and any bytes transmitted or received to PMBusMaster_CRC8MakeBitwise() for PEC
byte calculation. The function returns the result of the PEC comparison (1 = success, 0 = fail).

5SPRABJ6–March 2011 Software Implementation of PMBus Over I2C for TMS320F2803x
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://pmbus.org
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

Function Descriptions – PMBus www.ti.com

Table 2. PMBusMaster() Parameter Descriptions

Name Value Description

The PMBus command passed by you, from the defined list of commands in
PMBusMaster_CommandByte PMBus.h (for example, STATUS_WORD). This is an index to a table containing

the codes of the PMBus commands, as defined in the PMBus specification.

The PMBus read/write flag. It is only necessary for read/write byte and read/write
PMBusMaster_RWFlag word commands to indicate if the master is reading from the slave or writing to the

slave.

0 Write

1 Read

The value to be written if this is a write command; it can contain either a byte or aPMBusMaster_Message word, depending on if this is a write byte command or a write word command.

For read functions, this is a pointer to an array to contain the byte(s) received from*PMBusMaster_ReceivedValue the slave.

3.1.3 xint1_isr

External interrupt '1' is configured to be triggered when the alert line drops to a low-voltage state. You can
alter this interrupt service routine to service the alert line according to the desired functionality of the
application.

3.2 Slave Functions

The following descriptions apply to functions in the PMBusSlave.c file.

3.2.1 PMBusSlave_Init(PMBusSlave_DeviceAddress)

This function should be called once before PMBus operation. It configures the underlying I2C as a slave
with the device address specified by the parameter PMBusSlave_DeviceAddress. It also sets up the
GPIOs for I2C operation and for alert and control line functionality.

Table 3. PMBusSlave_Init() Parameter Descriptions

Name Description

PMBusSlave_DeviceAddress The slave device’s own address

3.2.2 PMBusSlave_DecodeCommand(PMBusSlave_RxCommand)

This function is called from the PMBusSlave() function once the command byte has been received from
the master. The function looks up the command byte in a table and determines what type of command it is
(read byte, write byte, etc.). It also determines if the command is one supported by the slave device and
prepares information for transmission, if necessary.

Table 4. PMBusSlave_DecodeCommand() Parameter Descriptions

Name Description

PMBusSlave_RxCommand The command byte received by the slave

6 Software Implementation of PMBus Over I2C for TMS320F2803x SPRABJ6–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

www.ti.com Function Descriptions – PMBus

You should alter the portion of code marked User Code to implement your application-specific commands.
////////////USER CODE////////////
#warn "User should change code to implement their application's supported PMBus commands."
switch (PMBusSlave_Index) //should include all user supported commands
{

case STATUS_TEMPERATURE:
PMBusSlave_TransmitBuffer[0] = Temperature;
break;

...

default:
PMBusSlave_DummyCommand = 1; //command not supported by this slave
break;

}

3.2.3 PMBusSlave()

This function waits for a PMBus command byte from the master, then performs PMBus reads and writes
accordingly. You should alter the code section labeled User Code to implement the application-specific
slave actions in response to the master’s commands, such as calling other functions, setting flags, or
storing data.
////////////USER CODE////////////
//contains what actions to take after getting information from the master,
//usually where to store received data and what functions to call in response
#warn "User should modify code to implement their application's supported PMBus commands."
switch (PMBusSlave_Index) //should include all user supported commands
{

case STORE_DEFAULT_CODE:
Default_Code = PMBusSlave_ReceiveBuffer[0];
break;

...

default: //command not supported by this slave
break;

}
////////////END USER CODE////////

3.3 PMBus With PEC

The PMBusMaster.c and PMBusSlave.c files contain code for implementing PMBus with PEC
functionality, but this code is only built if PEC is defined as '1' in PMBus.h.

3.3.1 PMBusMaster_Crc8MakeBitwise(PMBusMaster_CRC, PMBusMaster_Poly, *PMBusMaster_Pmsg,
PMBusMaster_MsgSize)

This function generates a PEC byte per the PMBus Specification based on the bytes at
*PMBusMaster_Pmsg. It returns the PEC byte.

Table 5. PMBusMaster_Crc8MakeBitwise() Parameter Descriptions

Name Description

PMBusMaster_CRC The initial value for the CRC calculation

PMBusMaster_Poly The polynomial

Pointer to the data to use in the CRC calculation. This should include the slave address,
*PMBusMaster_Pmsg read/write bit, command byte, and all data bytes that were just sent or received by the

master.

PMBusMaster_MsgSize The number of bytes of data to use in the CRC calculation

7SPRABJ6–March 2011 Software Implementation of PMBus Over I2C for TMS320F2803x
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

Lower-Level Function Descriptions – I2C www.ti.com

3.3.2 PMBusSlave_Crc8MakeBitwise(PMBusSlave_CRC, PMBusSlave_Poly, *PMBusSlave_Pmsg,
PMBusSlave_MsgSize)

This function generates a PEC byte per the PMBus Specification based on the bytes at
*PMBusSlave_Pmsg. It returns the PEC byte.

Table 6. PMBusMaster_Crc8MakeBitwise() Parameter Descriptions

Name Description

PMBusSlave_CRC The initial value for the CRC calculation

PMBusSlave_Poly The polynomial

Pointer to the data to use in the CRC calculation. This should include the slave address,*PMBusSlave_Pmsg read/write bit, command byte, and all data bytes that were just sent or received by the slave.

PMBusSlave_MsgSize The number of bytes of data to use in the CRC calculation

3.3.3 Efficient PEC Calculation in F2806x Devices Using VCU

F2806x devices feature a Viterbi, complex math, and CRC unit (VCU). The VCU is capable of performing
a CRC-8 calculation and accumulate in one cycle. Since the PEC byte is calculated using a CRC-8
algorithm, use of the VCU can reduce the PEC calculation down to just one cycle per byte in the PMBus
message, a vast speed improvement over the nested loops used in the software implementation.

To use the VCU in this project, replace all function calls to the function
PMBusMaster_Crc8MakeBitwise() or PMBusSlave_Crc8MakeBitwise() with get_CRC8(). This
function can be implemented with the following piece of assembly code:
;==
; long get_CRC8(long *addr,int size)
;==
; Input parameters:
; *+XAR4 addr : pointer to the block whose CRC needs to be
; calculated
; AL size : size of the block in words
;
; Output parameters:
; ACC : CRC of the block
;==

.sect ".text"

.def _get_CRC8

_get_CRC8
VCRCCLR
ADDB SP, #4 ; allocate 4 words for local
MOV *-SP[2],ACC ; save off AL
ZAPA ; clear the ACC,P and OVERflow
MOV AL,*-SP[2] ; restore AL

_crc_loop
VCRC8L_1 *XAR4++
SUBB ACC,#1
CMPB AL,#0
SBF _crc_done,EQ
SB _crc_loop,UNC

_crc_done
VMOV32 *-SP[4], VCRC ; Store CRC
MOV AL, *-SP[4] ; return AL
VMOV32 VCRC, *-SP[2] ; Restore VCRC
SUBB SP, #4 ; restore stack pointer
LRETR

4 Lower-Level Function Descriptions – I2C

This software implementation of PMBus relies on an underlying I2C layer that controls the hardware. The
I2CMaster.c file contains functions to control the I2C layer and the PMBusSlave.c file contains a function
to initialize the slave side I2C layer.

8 Software Implementation of PMBus Over I2C for TMS320F2803x SPRABJ6–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

60000

(1) * 25
f kHzmaster

prescale
=

+

www.ti.com Lower-Level Function Descriptions – I2C

4.1 I2C Master

The following descriptions apply to functions in I2CMaster.c. They control the I2C in a master device.

4.1.1 I2CMaster_Init(I2CMaster_SlaveAddress, I2CMaster_Prescale)

This function configures the I2C module as the I2C master, configures two GPIOs to be the I2C clock and
data lines, and sets up the appropriate I2C interrupts. It sets up the module clock for the desired
communications frequency using I2CMaster_Prescale.

The relationship between the value passed in I2CMaster_Prescale and the master communications
frequency can be expressed by the following equation:

Table 7. I2CMaster_Init() Parameter Descriptions

Name Description

I2CMaster_SlaveAddress The slave device address

I2CMaster_Prescale The prescale value to obtain the desired communications frequency

4.1.2 I2CMaster_Transmit(I2CMaster_ByteCountTx, *I2CMaster_TxArray, I2CMaster_ByteCountRx,
*I2CMaster_RxArray)

This function should be called whenever the master makes an I2C transaction. The function sends the
specified number of bytes from the data in the structure passed by *I2CMaster_TxArray, then receives the
specified number of bytes from the slave into the structure passed by *I2CMaster_RxArray.

Table 8. I2CMaster_Transmit() Parameter Descriptions

Name Description

I2CMaster_ByteCountTx The number of bytes to transmit

*I2CMaster_TxArray Pointer to the transmit buffer

I2CMaster_ByteCountRx The number of bytes to receive

*I2CMaster_RxArray Pointer to the receive buffer

4.1.3 I2CMaster_SlavePresent(I2CMaster_SlaveAddress)

This function checks if there is an I2C slave connected to the clock and data lines. It does this by sending
a dummy byte to the slave and getting its ACK status. If an ACK is received, the function returns '1', if a
NACK is received, the function returns '0'.

Table 9. I2CMaster_SlavePresent() Parameter Descriptions

Name Description

I2CMaster_SlaveAddress The slave device address

4.1.4 I2CMaster_NotReady()

This function returns the value of the busy bit (I2caCtrlRegs.I2CSTR.bit.BB).

4.1.5 I2CMaster_Wait()

This function is called from the I2CMaster_Transmit() function. It waits until the master is done with a
transaction by polling the stop and busy bits (I2caRegs.I2CSTR.bit.STP and I2caRegs.I2CSTR.bit.BB).

9SPRABJ6–March 2011 Software Implementation of PMBus Over I2C for TMS320F2803x
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

SCL

SDA

ALERT

SCL

SDA

CONTROL

10 kW10 kW 10 kW

3.3 V

SLAVE

TMS320F2803x

MASTER

TMS320F2803x

Example Project www.ti.com

4.1.6 i2c_master_int1a_isr

This is the I2C master interrupt service routine. It is triggered by a read-ready (RRDY) interrupt when the
master receives data from the slave. It stores the data in a receive buffer located at
*I2CMaster_ReceiveField and increments the pointer.

4.2 I2C Slave

The following descriptions apply to functions in the PMBusSlave.c file to initialize the I2C layer for the
slave device.

4.2.1 I2CSlave_Init(I2CSlave_OwnAddress)

This function configures the I2C module as the I2C slave, configures two GPIOs to be the I2C clock and
data lines, and sets up the appropriate I2C interrupts. It sets the slave's address to be
I2CSlave_OwnAddress.

Table 10. I2CSlave_Init(I2CSlave_OwnAddress) Parameter Descriptions

Name Description

I2CSlave_OwnAddress The slave device’s own address

5 Example Project

The example CCSv4 project demonstrates how to use the PMBus functions. It was designed to be run on
two Piccolo F2803x controlCard™ Experimenter’s Kits: one acting as the PMBus master and one acting
as the PMBus slave as shown in Figure 5. The example code in master.c and slave.c demonstrate the
use of the PMBus functions. One command of each type is sent from the master to the slave, and data
passes back and forth accordingly. This example code, along with the code in PMBusMaster.c and
PMBusSlave.c, can be used as a framework for developing a custom PMBus application.

Figure 5. Example Project Setup: F2803x Master and Slave

5.1 Hardware Setup

The underlying I2C hardware requires pull-up resistors on the I2C clock and data lines. On the
controlCard dock, connect resistors from the GPIO pins being used for I2C (GPIO 28 & 29 or GPIO 32 &
33) to one of the 3.3 V pins available on the dock. If the alert line is being used, do the same to this line
as well. Then use wires to connect the I2C clock and data pins on each dock (see Figure 5).

10 Software Implementation of PMBus Over I2C for TMS320F2803x SPRABJ6–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

www.ti.com Naming Conventions

5.2 Software Setup

After importing the project into CCSv4:

1. Set the active build configuration to Slave.
2. Connect the slave Piccolo device, and build and load the project.
3. Disconnect the slave and connect the master.
4. Set the active build configuration to Master and click Debug to build and load the project.
5. Make sure the slave is connected via the clock and data lines and is running before running the code

on the master.
6. Run the program.

Setting breakpoints and other debugging operations on the master device will work as normal, but only
on the master device.

If you want to debug the slave:

1. Load the code on the master device first.
2. Run the debugger on the slave side.
3. Start the slave running before turning on the master to ensure that the master does not think the slave

has timed out while waiting for the program to begin running.

6 Naming Conventions

Many of the functions and variables in this application report duplicate for the master and slave side of
communication. However, these functions and variables differ in the master and slave programs, and are
not interchangeable. In order to minimize confusion between master and slave versions of the same
functions and variables, a naming convention has been adopted using the name of the file preceding the
variable or function name.

• Functions: FileName_FunctionName(FileName_Parameter1, FileName_Parameter2)
Example: PMBusMaster_Init(PMBusMaster_SlaveAddress, PMBusMaster_Prescale);

• Variables: FileName_VariableName
Example: PMBusSlave_CommandGroup

7 File Descriptions

Table 11. I2CSlave_Init(I2CSlave_OwnAddress) Parameter Descriptions

Name Description

Header file containing symbolic definitions of the indexes for all 256 PMBus commands, as
well as header file style register definitions of the PMBus status registers. This model should

PMBus.h be followed to implement the other PMBus registers needed for your application. PEC,
defined at the top of this file, determines whether packet error checking is implemented or
not.

PMBusMaster.h Header file containing the function declarations for the PMBus master functions.

PMBusSlave.h Header file containing the function declarations for PMBus slave functions.

I2CMaster.h Header file containing the function declarations for I2C master functions.

PMBusMaster.c File containing PMBus master function implementations.

File containing PMBus slave function implementations. The sections marked User CodePMBusSlave.c should be modified to match the PMBus commands implemented in your application.

Master.c An example program that shows how to use functions in the PMBusMaster.c file

Slave.c An example program that shows how to use functions in the PMBusSlave.c file

11SPRABJ6–March 2011 Software Implementation of PMBus Over I2C for TMS320F2803x
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

References www.ti.com

8 References
• TMS320F28030, TMS320F28031, TMS320F28032, TMS320F28033, TMS320F28034,

TMS320F28035 Piccolo Microcontrollers Data Manual (SPRS584)
• TMS320x2802x, 2803x Piccolo Inter-Integrated Circuit (I2C) Module Reference Guide (SPRUFZ9)
• TMS320F2803x Piccolo System Control and Interrupts Reference Guide (SPRUGL8)
• 2803x C/C++ Header Files and Peripheral Examples (SPRC892)

For more information regarding PMBus and access to current PMBus Specification documentation, see:

• Power Management Bus Implementer’s Forum (PMBus-IF) http://pmbus.org
• System Management Interface Forum (SM-IF) http://smiforum.org

12 Software Implementation of PMBus Over I2C for TMS320F2803x SPRABJ6–March 2011
Submit Documentation Feedback

© 2011, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRS584
http://www.ti.com/lit/pdf/SPRUFZ9
http://www.ti.com/lit/pdf/SPRUGL8
http://www.ti.com/lit/pdf/SPRC892
http://pmbus.org
http://smiforum.org
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABJ6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

	Software Implementation of PMBus Over I2C for TMS320F2803x
	1 General Overview - PMBus
	1.1 PMBus Origin
	1.2 PMBus Features
	1.3 PMBus Formats
	1.3.1 Send Byte
	1.3.2 Read Byte
	1.3.3 Write Byte
	1.3.4 Read/Write Byte
	1.3.5 Read Word
	1.3.6 Read/Write Word
	1.3.7 Packet Error Checking Protocol

	2 Scope and User Implementation
	2.1 Scope
	2.2 Implementation Checklist
	2.3 Implementation Guidelines

	3 Function Descriptions – PMBus
	3.1 Master Functions
	3.1.1 PMBusMaster_Init(PMBusMaster_SlaveAddress, PMBusMaster_Prescale)
	3.1.2 PMBusMaster(PMBusMaster_CommandByte, PMBusMaster_RWFlag, PMBusMaster_Message, *PMBusMaster_ReceivedValue)
	3.1.3 xint1_isr

	3.2 Slave Functions
	3.2.1 PMBusSlave_Init(PMBusSlave_DeviceAddress)
	3.2.2 PMBusSlave_DecodeCommand(PMBusSlave_RxCommand)
	3.2.3 PMBusSlave()

	3.3 PMBus With PEC
	3.3.1 PMBusMaster_Crc8MakeBitwise(PMBusMaster_CRC, PMBusMaster_Poly, *PMBusMaster_Pmsg, PMBusMaster_MsgSize)
	3.3.2 PMBusSlave_Crc8MakeBitwise(PMBusSlave_CRC, PMBusSlave_Poly, *PMBusSlave_Pmsg, PMBusSlave_MsgSize)
	3.3.3 Efficient PEC Calculation in F2806x Devices Using VCU

	4 Lower-Level Function Descriptions – I2C
	4.1 I2C Master
	4.1.1 I2CMaster_Init(I2CMaster_SlaveAddress, I2CMaster_Prescale)
	4.1.2 I2CMaster_Transmit(I2CMaster_ByteCountTx, *I2CMaster_TxArray, I2CMaster_ByteCountRx, *I2CMaster_RxArray)
	4.1.3 I2CMaster_SlavePresent(I2CMaster_SlaveAddress)
	4.1.4 I2CMaster_NotReady()
	4.1.5 I2CMaster_Wait()
	4.1.6 i2c_master_int1a_isr

	4.2 I2C Slave
	4.2.1 I2CSlave_Init(I2CSlave_OwnAddress)

	5 Example Project
	5.1 Hardware Setup
	5.2 Software Setup

	6 Naming Conventions
	7 File Descriptions
	8 References

