
© Semiconductor Components Industries, LLC, 2010

April, 2010 − Rev. 1
1 Publication Order Number:

AND8400/D

AND8400/D

Bootloading
BelaSigna� 300 Using the
I2C Interface

INTRODUCTION
This application note describes how to bootload

BelaSigna 300 through its I2C interface when it does not
have an EEPROM attached (i.e. “bootstrapping”). This
situation can occur when a Bluetooth® or a baseband chip,
or any I2C-master capable chipset, is connected to
BelaSigna 300 through the I2C port.

Since no EEPROM is attached to BelaSigna 300, the
external device must have dedicated memory space in its
non-volatile memory to store the BelaSigna 300 application.
It can either be internal Flash, as is the case with some
Bluetooth devices or external Flash / NAND Flash
memories in Bluetooth or mobile phone applications.

This application note will provide some background
information which is essential in understanding the
bootloading process on BelaSigna 300 using the I2C
interface. These sections deal with configuring the transfer
mode for I2C, writing to the memory and verifying the CRC
to make sure that the download was successful. For more
information regarding the I2C protocol on BelaSigna 300,
please refer to the Communications Protocol Manual for
BelaSigna 300.

BACKGROUND INFORMATION

Transfer Mode during I2C Bootloading on
BelaSigna 300

The Debug Port memory access commands contain a
Transfer Mode byte that specifies the memory space, data
width, and transfer size for the read or write operation. The
Transfer Mode byte is described in Table 1.

Table 1. TRANSFER MODE

Bit(s) Description Values

7:5 Reserved 000

4 Transfer Size 0 - Multiple words
1 - Single word

3:2 Memory Space 00 – Reserved
01 - X memory
10 - Y memory
11 - P memory

1:0 Data Width 00 - 8-bit
01 - 16-bit
10 - 24-bit
11 - 32-bit

Data is transferred with the most significant bytes first; for
a 32-bit transfer, the sequence is:

 1. Bits 31 to 24
2. Bits 23 to 16
3. Bits 15 to 8
4. Bits 7 to 0

The data width is specified independently from the
memory space. If the transfer data width is smaller than the
actual memory width, the least significant bits are
transferred. For example, for a 32-bit memory with an 8-bit
transfer mode set, only bits 7 to 0 are transferred. When
reading memory, the data is truncated from the actual
memory width to the desired transfer width. When writing
memory, the data is zero-extended from the transfer width
to the actual memory width.

The debug port supports transferring either single words
or multiple words. When the debug host is reading multiple
words, the debug port queues up the next word to be sent,
possibly triggering a side effect. For memory reads that
cause side effects, the single word transfer can be used. In
this mode, the debug port performs only a single access for
the requested word.

When memory is being read in single word mode,
subsequent bytes read from the debug port are all zero.
Similarly, when memory is being written in single word
mode, extra bytes received are ignored.

Write Memory during I2C Bootloading on
BelaSigna 300

Writing memory is initiated through the write memory
debug port command. The [TRANSFER_MODE] argument
indicates the memory space and data width for the transfer
as described in “Transfer Mode”. The next two bytes specify
the high and low bytes of the starting address.

2BelaSigna 300
I2C Debug Port

Host
Controller

http://onsemi.com

APPLICATION NOTE

AND8400/D

http://onsemi.com
2

The write memory transaction occurs in a single I2C write
transfer. After the debug port has acknowledged the memory
address, the host controller can begin sending data to be
written to memory. Depending on the transfer mode, the host
controller sends one, two, three, or four bytes per word.
Once the full word has been transmitted, the debug port

queues the word for writing to memory and acknowledges
the last byte. In this way the host controller can send data to
the debug port continuously without the debug port having
to stretch the clock. The debug port automatically
increments the address by one after each write.

Command Byte Syntax Transmit State Security Mode CFX Run Mode

0x57 (’W’) [0x57] [TRANSFER_MODE]
[ADDR 15:8] [ADDR 7:0]

[DATA.0] [DATA.1] ... [DATA.n]

Status byte
(2 bytes)

Unrestricted
(Required)

Stopped
(Required)

The debug port performs no special processing on the
address. The address automatically wraps around when it
reaches the end of the address range (i.e., when the address
reaches 0xFFFF, the next word read is 0x0000).

Below is an example transaction for writing two words to
X Memory (0xABCDEF to 0x0010 and 0x123456 to
0x0011) using the 24-bit transfer mode. Normal text
indicates data sent from the debug host. Bold text indicates
responses from the debug port.

[S] [ADDR][W][A] [0x57][A] [0x6][A] [0x00][A] [0x10][A]
[0xAB][A][0xCD][A] [0xEF][A] [0x12][A] [0x34][A] [0x56][A] [P]

Where:

[S] - I2C Start Condition

[ADDR] - 7-bit debug port I2C Address

[W] - Read/Write bit: 0 (Write) for commands

[R] - Read/Write bit: 1 (Read) for responses

[A] - Acknowledgement: ACK or NAK from debug port

[P] - I2C Stop Condition

Cyclic Redundancy Check (CRC) during I2C
Bootloading on BelaSigna 300

BelaSigna 300 uses a standard cyclic redundancy code
(CRC) algorithm to ensure data integrity for the file system
and all debug port communications. To put the debug port in
the CRC transmit state so that the debug host can read the
debug port checksum, we need to execute [0x4D] Read and
Reset CRC command. This command stores the current
CRC value to be sent to the debug host and resets the CRC
value to 0xFFFF.

Command Byte Syntax Transmit State Security Mode CFX Run Mode

0x4D (’M’) [0x4D] CRC Any Any

Use the Read and Reset CRC command to read the current
CRC value and reset the CRC to 0xFFFF. The CRC includes
all transferred bytes up to and including the Read and Reset
CRC command. If the debug host reads the CRC using the
next I2C read transfer, the CRC bytes read by the host
controller will be included in the next CRC calculation.

The debug port maintains a CRC of all bytes transmitted
and received. The CRC is updated automatically after a
complete byte has been transferred in either direction. This
includes all bytes that are not acknowledged, invalid
commands, or commands attempted in the incorrect security
or run mode. If a byte is not completely transferred, it is not
included in the CRC. The CRC does not include the address
byte of I2C transactions.

The debug port uses CRC-CCITT, which has the
parameters described in Table 2.

Table 2. CRC-CCITT ALGORITHM PARAMETERS

CRC Parameter Parameter Value

Order 16

Polynomial x16 + x12 + x5 + 1

Polynomial (hex) 0x1021

Initial Value (hex) 0xFFFF

Final XOR Value (hex) 0x0000

AND8400/D

http://onsemi.com
3

USING I2C PROTOCOL TO DOWNLOAD AND RUN AN
APPLICATION

The following description shows how to connect to
BelaSigna 300, initialize proper communications, set up
restricted mode appropriately, download and run an
application on the DSP.

Downloading Object Code
When developing software for BelaSigna 300, various file

formats can be generated and used depending on the
situation. Various options are available to extract the data
directly from the executable created by the IDE. ON
Semiconductor can provide a utility that converts the .o file
format into a C-Header file (called download_data.h) as
described later in this document. If you wish to use this
utility, you will need to convert the executable created by the
IDE into the .o format. This is accomplished with the utility
absdump.exe, also included with the IDE. This conversion
can be performed by manually running absdump.exe, or can
be configured to occur automatically as part of your project
build in a custom build step. To enable this automatic
conversion, edit the build settings for your project, select the
’Custom Build’ editor page and click the ’Create Default
Custom Build File’ button to generate a default custom build
script (custom_build.xml). Edit this script and un-comment
the lines indicated in both the ’pre-build’ and post-build’
steps to automatically delete and re-generate a .o file.

The CTK libraries can be used to develop PC software in
Python or other languages like C++. However, these are only
useful when you are using a PC and the Communication
Accelerator Adaptor (CAA) to communicate with
BelaSigna 300’s I2C port. When developing embedded
microcontroller software to communicate with
BelaSigna 300, we cannot target these CTK libraries to the
host controller. In this case, low-level communication
functions must be implemented using the host controller’s
I2C master. Support can be provided by ON Semiconductor
to implement the I2C protocol at this low level. Please
contact us for more information regarding available support.

Downloading an Example
The following example assumes the use of the ON

Semiconductor supplied C conversion utility applied on a .o
file. It shows the structure of the generated C-header file, as
well as the associated I2C commands needed for the transfer
to BelaSigna 300.

In download_data.h:

struct DataBlock {
 unsigned short byteCount;
 unsigned short crc;
 unsigned char *formattedData;
} downloadBlocks[3] = {
 { 0x024c, 0x2679, downloadData0 },
 { 0x006c, 0x4c81, downloadData1 },
 { 0x0007, 0x481a, downloadData2 },
};

#define DOWNLOAD_BLOCK_COUNT 3

The above code presents a summary of the data that are
parsed from the .o file. Every contiguous data block is
declared as a unique block of data, in this example we can
see three blocks of data. These blocks can be identified by
their Byte Count, CRC Value and Formatted Data. The last
element points to actual data. As an example, we have
chosen the second data block (downloadData1) which
represents the Interrupt Vector Table for this application. As
seen from the block below, the Interrupt Vector Table is
copied using the write memory command to P memory,
address 0xFFE0. Please refer to the second data block
shown below:

unsigned char downloadData1[] = {
 CMD_WRITE_MEMORY, 0x0f, 0xff, 0xe0,
 0x3c, 0xd8, 0x04, 0x00,
 0x3b, 0x20, 0x10, 0x65,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x67,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
 0x3b, 0x20, 0x10, 0x6a,
};

The first line of each block of data contains the Write
Memory command with its arguments. The syntax of the
write command is given below. For more information about
the Write Memory command and Transfer Modes please
refer to the Communication Protocol Manual for
BelaSigna 300.

[WRITE_MEM] [TRANSFER_MODE] [ADDR 15:8] [ADDR 7:0]

All the data blocks defined in the C-header file
(download_data.h) are to be downloaded by sending the
write memory command above.

AND8400/D

http://onsemi.com
4

Running the Application
Running the application on BelaSigna 300 is a two step

process:

1. Change the Program Counter (PC) to point to the address
0x1000.

2. Run the core.

Please refer to the Table 4 for more details.

A Complete Bootloading Example
Table 4 outlines the I2C commands which are needed to

be called to initialize BelaSigna 300, download and run the
application.

Table 4: BELASIGNA 300 DOWNLOAD STEPS

Command Master

�

Slave

Description

1 Send Status Request
’Write to address 96’ (0xC0) + ’S’ (0x53)

� The status word consists of two bytes. The status response is repeated
indefinitely as long as the master continues to acknowledge the re-
sponse bytes. This allows the master to poll for a change in the status
response using a single I2C read transfer.

2 Read Status Response (2 bytes)
’Read from address 96’ (0xC1)

� For more information regarding the status response on BelaSigna 300,
refer to the Debug Port Status Response table in the Debug Port Pro-
tocol chapter of the Communication Protocols Manual for BelaSigna 300.

3 Keep looping and Read Status until bit 11
of status response is 0 indicating security
mode is unrestricted.

� For more information regarding the status response on BelaSigna 300,
refer to the Debug Port Status Response table in the Debug Port Pro-
tocol chapter of the Communication Protocols Manual for BelaSigna 300.

4 Stop Core
’Write’ (0xC0) + ’P’ (0x50)

� Puts the debug port in Stopped mode, stopping the CFX DSP core.

5 Reset the loop counter (optional) by ex-
ecuting the following command four times
 ‘Write’ (0xC0) + ’O’ (0x4F) + 0x3C +
0xD8 + 0x09 + 0x00

� In the unlikely event the device was stopped in a hardware loop; wind
down the loop counter by manually executing four ENDLOOP instruc-
tions. For more information, refer to Run Control Commands in the
Debug Port Protocol chapter of the Communication Protocols Manual
for BelaSigna 300.

6 Reset the status (SR) register
’Write’ (0xC0) + ’F’ (0x46) + ’50’ (0x32) +
0x00 + 0x00 + 0x00

� For more information, refer to the Normal Register Indexes table in the
Debug Port Protocol chapter of the Communication Protocols Manual
for BelaSigna 300.

7 Download the program (follow these
steps exactly to ensure the calculated
CRC matches). For each memory block:
1. Read and Reset CRC
 ’Write’ (0xC0) + ’M’ (0x4D)
2. Write memory block
 ’Write’ (0xC0) + downloadBlocks[n]
3. Read and Reset CRC
 ’Write’ (0xC0) + ’M’ (0x4D)
4. Read CRC value (2 bytes)
 ’Read’ (0xC1)
Compare the read CRC value with the
calculated value in downloadBlocks[n] (in
download_data.h)

� The ‘Write Memory’ (0x57) command as well as the transfer mode
precedes the data in downloadBlocks[n] (in download_data.h).

For more information regarding the transfer mode, refer to the Transfer
Mode table in the Debug Port Protocol chapter of the Communication
Protocols Manual for BelaSigna 300.

8 Change program counter (PC) to 0x1000
’Write’ (0xC0) + ’O’ (0x4F) + 0x3B + 0x20
+ 0x10 + 0x00

� Single−Step the GOTO.0D instruction using the Execute Instruction
command. For more information, refer to Run Control Commands in
the Debug Port Protocol chapter of the Communication Protocols
Manual for BelaSigna 300.

9 Start Core
’Write’ (0xC0) + ’G’ (0x47)

� Puts the debug port into Running mode, allowing the CFX DSP core to
run freely.

COMPANY OR PRODUCT INQUIRIES
For more information about ON Semiconductor, our

technology and our products, visit our website at:
http://www.onsemi.com.

AND8400/D

http://onsemi.com
5

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5773−3850

AND8400/D

I2C developed by Philips Semiconductor which is now called NXP.
Bluetooth is a registered trademark of Bluetooth SIG.
BelaSigna is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

