
© Semiconductor Components Industries, LLC, 2016

July, 2017 − Rev. 3
1 Publication Order Number:

AND9267/D

AND9267/D

Getting Started with
BelaSigna� R281

Introduction
This application note guides you through the process of

integrating BelaSigna R281 into a new prototype or design.
It will first discuss the BelaSigna R281 voice trigger
algorithm in terms of functionality. Next, the main points to
consider as part of the design−in process are discussed, and
two reference circuit diagrams are presented. Finally,
configuration and operation of BelaSigna R281 via its I2C
control interface is discussed.

The intended audience is system architects and engineers
designing products that can benefit from the always−on
voice trigger functionality provided by BelaSigna R281.

Always−On Voice Trigger
Most smartphones today contain extremely capable

speech recognition engines, allowing you to issue voice
commands to your device without ever having to type
anything in. However, these speech recognition engines are
typically only active when you physically press a button or
launch an application, as they consume a significant amount
of power listening for and recognizing speech. If they were
active all of the time, the resulting decrease in your device’s
battery life would be totally unacceptable.

BelaSigna R281 is an ultra−low−power, always−on,
always−listening voice trigger device. Voice trigger is useful
as it provides an always−active, extremely low power means
of waking up an electronic device such as a smartphone or
tablet, without having to physically touch the device.
Essentially, it replaces a physical pushbutton with a
voice−activated switch. Being able to wake up your
smartphone completely hands−free has many advantages,
not the least of which is safety. It is much safer to be able to
speak naturally to your phone while driving than it is to
manipulate a user−interface with your hands.

Algorithm Details
The algorithm executing inside BelaSigna R281 consists

of an ultra−low−power voice activity detector, combined
with an audio waveform pattern matcher. The voice activity
detector is constantly executing and listening for what it
considers to be speech, captured on either an analog or
digital microphone input (separate firmware images are

available for an analog versus a digital microphone). Once
speech is detected, frames of data are analyzed and specific
features are calculated and buffered. These features are
compared to sets of features that were calculated during the
training process, and if they are considered similar enough
to any of the training templates a match is declared and
indicated on the wake−up pin.

Because the algorithm inside BelaSigna R281 is a
waveform pattern matcher and not a general speech
recognition engine, it must be given a reference pattern to
match. It uses more than one instance of a reference pattern
to account for slight differences in how a typical user will say
a given phrase to further improve performance. These
patterns are obtained during a training phase, and
consequently BelaSigna R281 must be trained before it can
be placed into Recognition Mode. These reference patterns
calculated during the training phase are known as training
templates.

Having a pattern−matching algorithm that is not a general
speech recognition engine has some advantages. In
particular, it is language independent and there is nothing
specific that ties the algorithm to matching speech. It can just
as easily match audio signals that are not speech as well.
Finally, it is a relatively straightforward implementation
algorithm−wise that does not require large amounts of
memory, allowing for a small−footprint, deeply−embedded
implementation that consumes very little power, allowing it
to be always−on and always−listening.

Initial Power−On State
When BelaSigna R281 is powered on, the device will

perform a brief initialization procedure and then wait for a
connection to be made from an external host via I2C. At this
point, the host controller must connect to BelaSigna R281
and load its memory with the desired algorithm binary
image, as well as the training template data. Once this has
been completed, the device can be put into Recognition
Mode. If no training template data is available (e.g. the
training procedure has never been performed), then
BelaSigna R281 must be placed into Training Mode and the

www.onsemi.com

APPLICATION NOTE

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
2

training procedure performed before entering Recognition
Mode.

Whenever power is removed from the device, the contents
of memory are lost and must be reloaded. For more
information on loading an appropriate firmware image over
I2C, refer to Booting an Application via I2C. For details on
switching modes, and saving and loading training templates
refer to Controlling the Algorithm.

Algorithm Modes
Once the base firmware image has been loaded into RAM

and the main algorithm is running, there are four main
modes possible with BelaSigna R281: Sleep Mode, Standby
Mode, Training Mode, and Recognition Mode.

For details on switching modes, refer to Switching Modes.

Sleep Mode
In this mode BelaSigna R281 is in a low−power state with

all inputs disabled and no audio is being collected or
processed. The only thing that is active is the I2C port,
allowing configuration and control of the device. Sleep
Mode consumes the least current of all of the modes.

Standby Mode
The algorithm initially starts up in Standby Mode. In this

mode BelaSigna R281 is in a low−power state with the
microphone enabled. Audio is being collected and
processed, but only signal statistics are being collected and
no recognition data is buffered. The I2C port is also active,
allowing configuration and control of the device. Standby
Mode consumes very little power; slightly more than Sleep
Mode and less than Recognition or Training Mode.

While it is perfectly valid to issue I2C commands in either
Training Mode or Recognition Mode, it is recommended
that the device be placed into Standby Mode before issuing
any I2C commands that will affect operation of the device
(e.g. saving or loading training templates, changing
preamplifier gain or microphone bias level, or changing the
wake−up pin configuration).

Training Mode
Training BelaSigna R281 to recognize your specific

trigger phrase is performed in Training Mode. In this mode
BelaSigna R281 enables the microphone (analog or digital,
depending on the firmware loaded onto the device), and
waits for an audio input signal loud enough to trigger the
voice activity detector. Once audio is detected, frames of
audio are analyzed and features are buffered until the input
signal stops, or the recording buffer is full (the buffer can
hold approximately 1.5 seconds of audio). Only a single
utterance is captured. Once the end of input is detected, the
device will automatically switch back to Standby Mode.

A separate parameter controls the active training
template. There are three templates in all: Template 0,
Template 1, and Template 2. When in Training Mode, the
currently selected template is overwritten. Template 0 is
unique in that when Template 0 is the active template,
whenever the device transitions from any mode into

Training Mode, all templates are erased and any training
results are effectively cleared.

To perform a complete training using Training Mode, the
order of events is as follows:

1. Place the device in Standby Mode
2. Set the active template to Template 0
3. Place the device in Training Mode
4. Wait for the training iteration to complete by

polling the current mode. When the device
switches to Standby Mode, the current training
template was captured.

5. Update the active template to Template 1
6. Place the device in Training Mode
7. Wait for the training iteration to complete by

polling the current mode. When the device
switches to Standby Mode, the current training
template was captured.

8. Update the active template to Template 2
9. Place the device in Training Mode

10. Wait for the training iteration to complete by
polling the current mode. When the device
switches to Standby Mode, the current training
template was captured.

At this point, all three training templates should be
captured and will be present in RAM and the training results
can be validated. If the training results are valid the device
can be placed into Recognition Mode. Refer to Validating
Training Results for more information on validating the
training results.

Power consumption is highest in Training Mode as this
mode is rarely used, and is only used when the main external
host is awake anyway. As a result the system clock rate is set
at the maximum value at all times while in Training Mode
to provide the most computational power.

Once the training procedure has been completed, the three
training templates can be read out of the device and saved
offline to be loaded directly into RAM in the future, avoiding
the need to re−run the training process. For additional details
on saving and loading training templates refer to
Saving/Restoring Training Template Data.

Recognition Mode
When a complete set of three valid training templates is

present in memory, BelaSigna R281 can be placed into
Recognition Mode. If you attempt to place BelaSigna R281
into Recognition Mode without a valid set of templates in
memory, the command to switch modes will be ignored.

When the device is in Recognition Mode, the microphone
(analog or digital, depending on the firmware loaded onto
the device) is enabled and BelaSigna R281 waits for an
audio input signal loud enough to trigger the voice activity
detector. Once audio is detected, frames of audio are
analyzed and features are buffered until the input signal
stops, or the recording buffer is full (the buffer can hold
approximately 1.5 seconds of audio). When the end of input
is detected the current contents of the recording buffer are
compared to each of the three training templates and a

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
3

similarity measurement is determined. If this similarity
measurement is below a certain threshold (defined by the
Decision Threshold parameter) a match is declared and this
status is indicated on the wake−up pin. Otherwise, the
contents of the recording buffer are discarded and the device
goes back to waiting for audio input.

Power consumption in Recognition Mode is, on average,
extremely low. The voice activity detector and feature
computation takes a relatively small amount of
computational power and is performed at an extremely low
system clock rate. The system clock is only increased during
the computationally−intensive similarity measurement
stage. While power consumption during this time period is
noticeably higher, the amount of time spent in this
calculation is quite small. Thus, on average, the power
consumption in Recognition Mode is optimized to be quite
low (less than 300 uW for a supply voltage of 1.8 V).

The behavior of the wake−up pin is configurable via the
Wake Pin Configuration parameter and is described in detail
in Wake−Up Pin Configuration.

The Design−In Process
When designing BelaSigna R281 into a product, there are

a few things to consider upfront that can help to optimize
your design in terms of power consumption and overall
design complexity. This section discusses these items, and
presents a reference circuit illustrating the various options.

Microphone Selection
BelaSigna R281 will accept either an analog or a digital

microphone input. A separate firmware image is available
providing support for either one of these microphone
options so ensure you are using the correct firmware build
based on your selection of microphone technology.

An analog microphone is recommended as typically they
consume significantly less power than a digital microphone.
Both options are discussed in Reference Circuit.

Power Supply Considerations
The BelaSigna R281 must be powered using a supply

voltage of 1.8 V.

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
4

PCB
It is possible to route the WLCSP package on a single

layer using 5 mil trace and space design rules. This requires
some signals to be routed through unused balls. The WLCSP

reference schematic shown in Figure 2 and the suggested
PCB routing diagram shown in Figure 1 illustrate exactly
how this can be achieved.

Figure 1. BelaSigna R281 WLCSP Suggested PCB Routing

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
5

Reference Circuit
The reference circuit for BelaSigna R281, shown in

Figure 2, is the simplest to design in and will result in the
lowest possible power consumption as the charge pump is
disabled. The schematic shows options for both an analog
(MEMs) or digital microphone. Choose whichever
microphone you prefer, keeping in mind that analog
microphones typically consume less power than digital

microphones. The analog microphone power supply
(VMIC) is an output from BelaSigna R281 and can be
configured to either 1 V or 2 V over I2C via the VMIC
Configuration parameter. If you are using a two−terminal
electret microphone, ensure you use an appropriate bias
resistor between the microphone signal and VMIC (2.2 k�
is recommended).

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
6

Figure 2. BelaSigna R281 System Diagram (WLCSP Package)

Preamplifier gain is adjustable from 0 dB to 30 dB in 3 dB
steps via the Preamp Configuration parameter. The default
preamplifier gain setting of 18 dB is appropriate for a
microphone with a sensitivity of −42 dB (where 0 dB =

1 V/Pa, @ 1 kHz). For more information on
hardware−related parameters refer to Configuration of the
Hardware.

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
7

DMIC_CLK

DMIC_DAT Right
Data0

Left
Data0

Right
Data1

Left
Data1

Right
Data2

thold thold tsetuptsetup

Figure 3. DMIC Timing Diagram

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
8

I2C Command Protocol
BelaSigna R281 features an extensive I2C command

interface that allows an external I2C master device to
configure the hardware and various elements of the voice
trigger algorithm.

The I2C interface on BelaSigna R281 always operates in
slave mode at a fixed, 7−bit slave address of 0x62. The
maximum I2C clock speed is 100 Kbps.

Data transfers using the I2C interface use 8 bits of data in
every frame sent. The first frame in each data transfer must
be the address of the device with which the master wants to
communicate, followed by a single bit in the least significant
bit (LSB) position indicating whether a read or a write will
be performed by the master (set to 0 for writing or 1 for
reading).

The BelaSigna R281 I2C protocol is split into two
sections:
• Device control and programming providing low−level

access to the system
• Algorithm configuration and control commands

The lower−level device control and programming
commands provide a means of bootstrapping the system and
loading the voice trigger firmware itself, while the loaded
firmware defines the remainder of the I2C command set
related to algorithm configuration and control.

Device Control and Programming
The low−level device control and programming

command set is summarized in Table 1 through Table 11.

Table 1. I2C NOP COMMAND

Command Description Command Byte Input Bytes Output Bytes

NOP 0x00 None None

This command performs no operation with no side effects.

Table 2. GET CHIP ID COMMAND

Command Description Command Byte Input Bytes Output Bytes

Get Chip ID 0x56 (‘V’) None High byte
Low byte

This command returns the BelaSigna R281 chip identifier.
The chip identifier should have the value 0x5000.

Table 3. SET MEMORY BLOCK POINTER COMMAND

Command Description Command Byte Input Bytes Output Bytes

Set Memory Block Pointer 0x4D (‘M’) Address high byte
Address low byte

Size high byte
Size low byte

Memory space byte

None

This command sets the internal memory block pointer to
the specified address and size. The internal memory block
pointer is used for the Write Memory, Read Memory and
Calculate Checksum commands. This command allows you
to specify a block of the memory spaces to write to, read
from or calculate a checksum for. To fully define the
expected range of the memory access commands that are
expected to follow, the parameters associated with the
command specify:
• The memory space

• Where memory accesses will start

• How many words of memory will be processed

This command also initializes the checksum to the sum of
the memory address pointer and the memory space
enumeration. Once you set the memory block pointer, it
remains set until you set it again, set the Current Template
parameter, or reset the chip.

The memory space enumeration value specifies which of
the P, X or Y memory spaces contains the memory block of
interest. The possible enumeration values are:
• 0x0 – for X memory

• 0x2 – for Y memory

• 0x4 – for P memory

The address bytes are the high and low bytes of the
word−length address that specifies where in the specified
memory space the follow−up associated memory access
command will start processing.

The high and low size bytes specify the word−length size
parameter, which indicates how many words of data are used
in the follow−up memory access.

For example, to set the memory block pointer to Y:0x2048
for 0x1FF words, send the following frame:

‘M’ 0x20 0x48 0x01 0xFF 0x2

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
9

Table 4. WRITE MEMORY COMMAND

Command Description Command Byte Input Bytes Output Bytes

Write Memory 0x57 (‘W’) High byte, low byte
...

High byte, low byte

Checksum high byte
Checksum low byte

This command writes to the memory block pointed to by
the internal memory block pointer. The memory block pointer
specifies the memory space and starting address to write the
data input to, and the number of data byte pairs to expect. If
an odd number of bytes is received, the last byte is ignored.

While receiving data, the system continuously calculates
a checksum for the data received. At any point following
data transmission, you can use the Get Checksum command

to get the checksum of the data that has been written so far.
Once the data transmission has completed, the Get
Checksum command is automatically executed to reduce the
communications overhead related to downloading and
verifying data transmissions.

If the internal memory block pointer was not previously
defined through the Set Memory Block Pointer command,
behavior of this command is undefined.

Table 5. READ MEMORY COMMAND

Command Description Command Byte Input Bytes Output Bytes

Read Memory 0x52 (‘R’) None High byte, low byte
...

High byte, low byte

This command reads from the memory block pointed to
by the internal memory block pointer. The memory block
pointer specifies the memory space and starting address
from which to read the data input, and the number of data
byte pairs to expect.

If the internal memory block pointer was not previously
defined through the Set Memory Block Pointer command,
behavior of this command is undefined.

Table 6. CALCULATE CHECKSUM COMMAND

Command Description Command Byte Input Bytes Output Bytes

Calculate Checksum 0x4B (‘K’) None Checksum high byte
Checksum low byte

This command calculates the checksum for the data in the
memory block pointed to by the internal memory block
pointer. The memory block pointer specifies the memory
space and address at which to start, and number of words to
include in the checksum calculation. The checksum is a
16−bit truncated sum of all of the data in the block, plus the
memory address pointer and memory space enumeration

specified by the memory block pointer. Once the calculation
has completed, the Get Checksum command is executed
automatically to reduce communications overhead. If the
internal memory block pointer was not previously defined
through the Set Memory Block Pointer command, behavior
of this command is undefined.

Table 7. GET CHECKSUM COMMAND

Command Description Command Byte Input Bytes Output Bytes

Get Checksum 0x43 (‘C’) None Checksum high byte
Checksum low byte

This command returns the most recently calculated
checksum, typically corresponding to the memory space
pointed to by the internal memory block pointer. After this
command, multiple I2C reads of the interface repeatedly
return the calculated checksum.

This command is automatically executed following the
Write Memory and Calculate Checksum commands.

Table 8. START APPLICATION COMMAND

Command Description Command Byte Input Bytes Output Bytes

Start Application 0x47 (‘G’) Address high byte
Address low byte

None

This command starts execution of the DSP at the specified
address. You can use this command to start an application
that was downloaded to BelaSigna R281 through the Write
Memory command. Execution starts at the word length

address specified by the high and low bytes transmitted as
parameters to this command.

When executing the application, the built−in I2C protocol
command handler is exited.

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
10

Table 9. READ EXT3 COMMAND

Command Description Command Byte Input Bytes Output Bytes

Read EXT3 0x44 (‘D’) None High byte
Low byte

This command returns the contents of the EXT3 register.

Table 10. WRITE EXT3 COMMAND

Command Description Command Byte Input Bytes Output Bytes

Write EXT3 0x45 (‘E’) High byte
Low byte

None

This command writes a value to the EXT3 register.

Table 11. EXECUTE JumpROM COMMAND

Command Description Command Byte Input Bytes Output Bytes

Execute JumpROM Function 0x4A (‘J’) JumpROM function byte None

The Execute Jump ROM command causes the JumpROM
function specified in the input byte to be executed. The
JumpROM function set provides access to certain low−level
functions in the Program ROM. These functions allow you
to get the Program ROM version and reset the system. You
can call the JumpROM functions through the built−in I2C
protocol. When running this command, control of the device
is transferred to the JumpROM function until the JumpROM
function completes. As a result, the system is unresponsive
and does not acknowledge any further I2C commands until
the JumpROM function has completed. Provided that the
master device communicating with BelaSigna R281 does
not experience difficulties following a series of
non−acknowledged bytes, you can test for the completion of
the JumpROM function by polling the interface using the
NOP command (specified in Table 1) until BelaSigna R281
acknowledges the I2C transmission again. Any invalid and
undefined functions requested from the JumpROM function
selector are treated as though they were NOP function
requests.

The following JumpROM functions are available:

Table 12. JumpROM FUNCTIONS

Function Name Function Byte Description

NOP 0x00 No operation

Get Version 0x01 Fills EXT3 with the Pro-
gram ROM version. The
contents of EXT3 can be
read with the
Read EXT3 command.

Reset System 0x02 Forces a system reset

Booting an Application via I2C
The device control and programming commands

previously described can be used to bootload
BelaSigna R281 with a specific set of firmware over the I2C
interface. Once an application resides in the program RAM
and the X and Y data memories, it can be executed with the
Start Application command.

By default, BelaSigna R281 boots into a “wait for I2C
host” state and after a short period of time will reset if no host
attaches. Thus, it is recommended that you put the system
into a known state before initiating the application
download. The best way to achieve this is by issuing the
JumpROM NOP command, which causes the system to
re−initialize and wait in the JumpROM wait loop until
another I2C command is received or the system is reset.
After booting the chip, the NOP command can be
continually sent until an ACK is received from
BelaSigna R281. Receiving an ACK means that
BelaSigna R281 has successfully responded to the NOP
command, and is ready for further communications.

At this point the I2C interface is operating properly, and
the system is ready to start the process of downloading the
object code to the three different memory spaces (X, Y and
P) of BelaSigna R281.

The firmware for BelaSigna R281 is available in various
file formats from ON Semiconductor, one of which is a
C−Header file (as described later in this document), making
it extremely simple to automate the process of downloading
the object code into the memories of BelaSigna R281 from
a C program using the aforementioned low−level I2C
commands. Sample code in the C programming language
implementing the entire I2C command set and automating
the bootloading process is available from
ON Semiconductor. This sample code is discussed in detail
in C Sample Code.

Algorithm Configuration and Control
Once the core voice trigger application has been loaded

onto the device, there are three additional commands
available via I2C: the Reset Application, Set Parameter
Register and Get Parameter Register commands. These
commands are described in Table 13 through Table 15.

Table 18 contains a list of all of the available algorithm
parameters that can be read and written via I2C. For your
convenience, the C−based sample code provides
higher−level function wrappers around many of these
parameters. Refer to C Sample Code for more information.

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
11

Table 13. RESET APPLICATION COMMAND

Command Description Command Byte Input Bytes Output Bytes

Reset Application 0x01 None None

This command resets the program counter to entry point of the application and executes the code from that point.

Table 14. SET PARAMETER REGISTER COMMAND

Command Description Command Byte Input Bytes Output Bytes

Set Parameter Register 0x32 Parameter number
Parameter value high−byte
Parameter value low−byte

None

This command updates the specified algorithm parameter
number with the parameter value passed in.

The two−byte parameter value word must be sent
MSB−first. See Table 18 for a complete list of available
parameters.

Table 15. GET PARAMETER REGISTER COMMAND

Command Description Command Byte Input Bytes Output Bytes

Get Parameter Register 0x33 Parameter number Parameter value high−byte
Parameter value low−byte

This command returns the specified algorithm
parameter’s value. The two−byte parameter value is
returned MSB−first.

See Table 18 for a complete list of available parameters.

C Sample Code
To make the design−in process as simple as possible,

ON Semiconductor provides a comprehensive sample
application written in the C programming language that not
only provides a high−level wrapper around the entire I2C
protocol, but also shows you how to properly initialize and
connect to BelaSigna R281 and load the firmware. It also
provides functions that show you how to properly switch
modes, perform the training process, validate the training
results and save and restore the training templates.

This section will highlight the key features of this sample
code, and show you how to integrate it into your own code
base.

Note that the C programming language was chosen as this
is the expected programming language for most embedded
systems. Should you require examples in other
programming languages, please contact your local
ON Semiconductor support representative.

The remainder of this section discusses the C sample code
in more detail and assumes a minimum knowledge of
embedded programming and C. Should you have any

questions, please contact your local ON Semiconductor
support representative.

BelaSigna R281 Firmware Variants
Looking at the sample code, you will see four different

variants of the BelaSigna R281 firmware. Which one you
choose depends on whether you have a supply voltage of
1.8 V or higher, and whether or not you are using an analog
or a digital microphone. The sample code has defines at the
top of BelaSignaR281_sample.cpp that selects the
correct firmware include file based on the selection of
supply voltage and microphone type (via the #defines
SUPPLY_VOLTAGE and MIC_SELECTION). Adjust
these defines to correspond to your specific design, and the
correct firmware version should automatically be included.

Structure of the C Sample Code
The C sample code is broken into a series of files that

separates the generic I2C protocol from any
machine−specific communications code. The sample also
includes a Windows® command line program that can be
used to exercise the API, and this is also isolated into a
separate file. The files included in the C sample along with
their specific functions are summarized in Table 16 and
Table 17.

Table 16. C SAMPLE CODE HEADER FILES

Filename Description

general_defs.h, stdafx.h, targetver.h Windows−specific include files. Not required for a typical non−Windows application.

comm.h, util.h Include files declaring a hardware−agnostic I2C communications API and various utility functions

i2c_commands.h Include file describing the BelaSigna R281 I2C command protocol and higher−level utility func-
tions related to it

BelaSignaR281_fw_*.h Various firmware images for BelaSigna R281

wilhelm.h Include file containing a fixed set of training templates (for illustrative purposes)

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
12

Table 17. C SAMPLE CODE SOURCE FILES

Filename Description

stdafx.cpp Windows−specific implementation file. Not required for a typical non−Windows application.

util.cpp Windows implementation of the utility functions related to delays and timing

comm.cpp Implementation of the generic, low−level I2C communications API supporting the ON Semicon-
ductor Communications Accelerator Adaptor, Total Phase Aardvark and Total Phase Promira
device (through the ON Semiconductor Communications Toolkit).
You must provide an equivalent implementation for your specific I2C master device.

i2c_commands.c Hardware−agnostic implementation of the BelaSigna R281 I2C command protocol and higher−
level utility functions related to it

BelaSignaR281_sample.cpp An example Windows console application that uses the BelaSigna R281 I2C protocol to perform
various tasks. Use this as a reference when implementing your own BelaSigna R281 driver.

Integrating the C Sample into Your Code
The intent of the C sample code is to provide as complete

an example as possible to make it easy to integrate into your
code. When porting this code to your specific embedded
system, it should be a simple matter of:

1. Removing the unnecessary, Windows−specific
framework files (general_defs.h,
stdafx.h, targetver.h, stdafx.cpp, and
BelaSignaR281_sample.cpp)

2. Providing implementations of the low−level I2C
communications functions found in comm.cpp
and delay− and timing−related functions in
util.cpp specific to your hardware

3. Compiling for your specific architecture
Once those steps are complete, you can use the

BelaSigna R281 I2C protocol in your own driver to perform
the various functions you need in your application, using the
example Windows console application as a reference.

Important Functions
The Windows console application has a number of

functions that are key to using BelaSigna R281 effectively.

Initial Connection to BelaSigna R281
The initial connection to a freshly−booted

BelaSigna R281 chip is important, and the connect()
function in BelaSignaR281_sample.cpp combined
with the I2CConfirm(timeout_ms) function in
i2c_commands.c illustrates how to do this reliably.

Loading Firmware onto BelaSigna R281
Once you have connected to BelaSigna R281 via its I2C

port, you must load a version of the firmware into its RAM
and execute the algorithm. This is illustrated in the
initialize() function found in
BelaSignaR281_sample.cpp which calls the
DownloadFirmware(datablocks[], length)

and Run() functions in i2c_commands.c.
The firmware to download is selected via defines at the top

of BelaSignaR281_sample.cpp. Make sure you
select the appropriate firmware image for your design.

At this point the algorithm will be executing, and you can
use the rest of the I2C commands and higher−level functions
to configure and control the device. Some of the more

common tasks have been wrapped in functions for
convenience, and these are discussed in more detail in the
next section.

Controlling the Algorithm
There are a few main tasks that you will perform with

BelaSigna R281 to implement always−listening voice
trigger:
• Switching modes

• Training

• Validating training results

• Saving/restoring training template data

• Adjusting the decision threshold

• Configuration of the hardware (e.g. wake−up pin,
microphone bias, preamplifier gain)

Switching Modes
Mode switching is accomplished by setting the Mode

parameter. There are four modes: Sleep Mode, Standby
Mode, Training Mode, and Recognition Mode. Changing
modes can be done at any time, and is as simple as writing
the correct mode number into the Mode parameter.

There is a SetMode(mode) function provided for you
in i2c_commands.c that sets the Mode parameter, and
verifies that the mode switch occurred. It is recommended
that you use an approach similar to this when setting the
mode.

Note that you will not be able to switch into Recognition
Mode if the device has not been trained.

Training
Training is performed as discussed in Training Mode. The

procedure outlined in the aforementioned section is
wrapped up in a function called
train_template(template_number) found in
BelaSignaR281_sample.cpp.

When this function is called with template number 0 as the
argument, all templates are erased and the first training
template is recorded. You would then call the function again
with template 1 as the argument, and a third time with
template 2 as the argument. After the third template is
recorded, the device will automatically call
RecalculateTemplateStatus() to update the

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
13

Template Status parameter, and revert back to Standby
Mode. If the Template Status word indicates a successful
training, the device can be placed into Recognition Mode.
However, it is usually desirable for the external host to
perform some offline validation of the training results at this
time.

One other restriction that is highly recommended is some
form of noise floor check to ensure that training cannot be
performed in a noisy environment. This can be as simple as
getting the Noise Floor or Short Term Energy parameter
value (which is a 32−bit value, and must be retrieved with
two separate calls to Get Parameter Register), and
preventing the user from initiating training when the noise
floor is above a certain threshold. This threshold will depend
on your particular design, microphone type, and
preamplifier gain and should be determined through testing.
Note that the noise floor is not updated when
BelaSigna R281 is in Sleep Mode (since the input stage is
disabled), so ensure the device is in Standby Mode when
reading these signal statistics. The functions
GetNoiseFloor(), GetFrameEnergy() and
GetShortTermEnergy() in i2c_commands.c all
return a full, 32−bit value.

Validating Training Results
One you have captured three training templates, there are

some basic sanity checks that can be done to ensure the
training procedure went smoothly, and that the results in
Recognition Mode will be reliable. For example, it is
possible that the user did not say the same phrase every time,
or that they attempted to train the device in a noisy
environment, both of which could result in a bad set of
training templates and poor performance in Recognition
Mode. BelaSigna R281 simply validates that the training
templates exist in memory and that they have a non−zero
length, and that the decision threshold is non−zero. It does
not perform detailed validation of the training results as this
can be easily done offline by the external host, and provides
more flexibility for your particular design.

The is_training_valid() function found in
BelaSignaR281_sample.cpp shows you one
example of how you could validate the training results. It
starts by validating that the three training templates are all
roughly the same length (in number of frames, where each
frame represents 16 ms of audio). The template lengths are
available in the Template N Length parameters (where ‘N’
is 0, 1 or 2). While it is expected that the training templates
will differ in length (indeed part of the algorithm specifically
compensates for this), we can make an assumption that if the
length difference is too much, the training is invalid. An
absolute value of 30 frames is selected as the limit (or
approximately 500 ms), but this value can be whatever you
like, and is best validated through testing.

Second, the is_training_valid() function
retrieves the three intra−template distances (the
Intra−Template Distance N parameters; where ‘N’ is 0, 1, or
2) and determines if any of these three distances looks out of

place. If the three training templates were all identical, the
intra−template distances would all be 0. In reality, these
three numbers should be relatively close to one another
(within approximately 100). The
is_training_valid() function checks if any
intra−template distance is too large with respect to the others
and will fail if it is above a maximum threshold.
Alternatively, it will issue a warning if any intra−template
distance is above a slightly lower threshold, which could be
used to warn the user performing the training that the results
are not ideal, and that they may want to consider performing
the training again for best results.

Ultimately, it is up to you how you want to validate the
training results. The sample code gives you one example, but
you may want to employ your own heuristic using the data
available to you via the algorithm parameters listed in
Table 18, and some testing of your device under various
conditions.

Saving/Restoring Training Template Data
Once the training process is complete, the training

templates will need to be read out of the memory of
BelaSigna R281 and saved offline (BelaSigna R281 does
not contain any non−volatile memory, and the training
templates will be lost when power is removed from the
device). The Current Template parameter (which calls the
Set Memory Block Pointer command when it is written)
combined with the Read Memory and Write Memory I2C
functions can be used to read and write the training template
memory areas.

To make things extremely easy, two higher−level
functions are provided in i2c_commands.c:
ReadTemplateData(template_num, *data),
and WriteTemplateData(template_num,

*data). These functions take a template number and a
pointer to an array of bytes to read from or write into, and
they take care of all the machinery of switching to Standby
Mode, setting the active template number calling Read
Memory or Write Memory, and restoring the previous mode
for you. All you need to do is persist the training data (the
array of bytes read from BelaSigna R281) to a file or some
other non−volatile area for re−loading later. You will need to
call the ReadTemplateData or
WriteTemplateData function three times (once for
each training template) to read or write all of the training
data. Note that ReadTemplateData will fail if you try to
read an empty training template (one that has not been
trained).

Reading training template data is fairly straightforward.
However, when loading training template data directly into
the memory of BelaSigna R281 with the
WriteTemplateData function you also need to
manually trigger a recalculation of the Template Status word
as well as the intra−template distances and decision
threshold. This is accomplished by calling the
RecalculateTemplateStatus() function in
i2c_commands.c. Assuming the training template data

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
14

you are loading has previously been validated using your
own heuristic, you can now place the device into
Recognition Mode.

In summary, to avoid having to re−train the device every
time the power is cycled, the training templates should be
read out of memory and saved offline using the
ReadTemplateData function. These saved training
templates can then be loaded directly into memory
(immediately after the BelaSigna R281 firmware is loaded)
when power is restored to the device.

The correct procedure for reading out all three training
templates is:
• Put the device into Standby Mode

• Call ReadTemplateData(0, *data0)

• Call ReadTemplateData(1, *data1)

• Call ReadTemplateData(2, *data2)

• Save data0, data1, and data2 offline in
non−volatile memory
To re−load the saved training template data into memory

and start BelaSigna R281 directly in Recognition Mode:
• Put the device into Standby Mode

• Read the training templates out of non−volatile memory
into byte arrays (e.g. data0, data1, and data2)

• Call WriteTemplateData(0, *data0)

• Call WriteTemplateData(1, *data1)

• Call WriteTemplateData(2, *data2)

• Call RecalculateTemplateStatus()

• Put the device into Recognition Mode
This entire procedure is illustrated in

BelaSignaR281_sample.cpp in the snippet of code
that handles the load_wilhelm command line option.
This command line switch loads a hard−coded set of training
templates that are set to match the Wilhelm Scream sound
clip, which is freely available and can be found at
https://archive.org/details/WilhelmScreamSample.

Adjusting the Decision Threshold
One of the most important algorithm parameters is the

Decision Threshold. This value is typically calculated by the
algorithm during the training phase and can be read out at
any time by reading the Decision Threshold parameter. This
parameter is also writable, and as a result you can adjust the
tolerance of the algorithm’s matching engine by adjusting
this parameter up or down.

The default value calculated by the algorithm is chosen to
be a good balance between missed triggers and false
acceptances. Decreasing this value will make the matching
algorithm more restrictive (increasing the potential for
missed triggers), and increasing this value will cause the
algorithm to match more loosely (increased false triggers).

Should you decide to change this parameter, it is up to you
to rigorously test your system to ensure acceptable
performance.

Configuration of the Hardware
There are a few parameters related to the configuration of

the hardware itself that are likely to be adjusted based on
your device design.

Preamplifier Gain
The analog microphone preamplifier gain is adjustable

using the Preamp Configuration parameter. Valid values for
this parameter are as follows:

0 0 dB

1 3 dB

2 6 dB

3 9 dB

4 12 dB

5 15 dB

6 18 dB

7 21 dB

8 24 dB

9 27 dB

10 30 dB
The default preamplifier gain setting of 18 dB is

appropriate for a microphone with a sensitivity of −42 dB
(where 0 dB = 1 V/Pa, @ 1 KHz).

Microphone Bias/Supply Pin
The level of the VMIC output pin is adjustable using the

VMIC Configuration parameter. Valid values for this
parameter are as follows:

0 VSSA (analog ground)

1 VREG (1 V)

2 VDDA (2 V, unless connected to VBAT)

3 HI−Z

Wake−Up Pin Configureation
The behavior of the wake−up output pin is adjustable

using the Wake Pin Configuration parameter. This
parameter consists of various bitfields that configure how
the wake−up indicates a match condition. These bitfields are
as follows:

Bit 0 Active High / Active Low

(0=Active High, 1=Active Low)

Bit 1 Momentary / Latched

(0=Momentary, 1=Latched)

Bits 2:13 Momentary Timeout Value

When the wake−up pin is configured to be momentary, it
transitions to the configured level (high or low depending on
whether it is configured as active high or active low) and
remains at that level for a fixed time frame before
transitioning back to its normally−off state. The length of
time the wake−up pin remains in the active state is a 12−bit

 http://www.onsemi.com/
https://archive.org/details/WilhelmScreamSample

AND9267/D

www.onsemi.com
15

timeout value specified in bits 2 to 13 of the Wake Pin
Configuration parameter (bits 14 and 15 are ignored). This
value represents the number of timer increments the
wake−up pin is active, where the timer base is 5 KHz. In
other words, a timeout value of 1250 (the default) represents
1250/5000 seconds, or 250 ms. The maximum momentary
timeout possible is just over 800 ms.

If configured as latched, it transitions to the configured
level (high or low depending on whether it is configured as
active high or active low) and remains at that level until it is
manually reset by writing a 0 to the Trigger State parameter.

The current trigger state (matched or not matched) can be
read at any time from the Trigger State parameter via I2C.

Digital Microphone Configuration
The behavior of the digital microphone input is fixed and

not configurable. When using the firmware built for a digital
microphone, the algorithm always uses data from the left
DMIC channel (Left Data 0 in Figure 3), sampled on
the rising edge of the DMIC_CLK signal, and no additional
gain or attenuation is applied.

Table 18. ALGORITHM PARAMETERS

Parameter Number Parameter Name Read/Write Parameter Description

0 Mode Read/Write The current mode
(0=Sleep; 1=Standby, 2=Training, 3=Recognition)

1 Current Template Read/Write The currently−selected training template (0, 1, or 2)

2 Trigger State Read/Write Current trigger status (0=No Match, 1=Match)

3 Preamp Configuration Read/Write Analog microphone preamplifier gain setting
(0=0dB, 1=3dB, 2=6dB, 3=9dB, 4=12dB, 5=15dB,
6=18dB, 7=21dB, 8=24dB, 9=27dB, 10=30dB)

4 VMIC Configuration Read/Write Microphone power (VMIC) output pin selection
(0=GND, 1=1V, 2=2V, 3=HI−Z)

5 Wake Pin Configuration Read/Write Wake−up output pin configuration
(bit[0]=active high (0)/low (1), bit[1]=momentary
(0)/latched (1)
bits[2:13]=momentary timeout in 0.2 ms increments)

15 Application Version Read−only The firmware version number
(bits[15:12]=major, bits[11:8]=minor, bits[7:0]=revision)

16 Template Status Read−only The training template status word
(bit[3]=Valid Distance, bit[2]=Template 2 Valid,
bit[1]=Template 1 Valid, bit[0]=Template 0 Valid)

17 Template 0 Length Read−only The length (in frames) of training template 0

18 Template 1 Length Read−only The length (in frames) of training template 1

19 Template 2 Length Read−only The length (in frames) of training template 2

20 Intra−Template Distance 0 Read−only The distance between template 0 and template 1

21 Intra−Template Distance 1 Read−only The distance between template 0 and template 2

22 Intra−Template Distance 2 Read−only The distance between template 1 and template 2

23 Intra−Template Distance Average Read−only The average intra−template distance

25 Decision Threshold Read/Write The match decision threshold

27 Distance to Template 0 Read−only The distance between the last phrase and template 0

28 Distance to Template 1 Read−only The distance between the last phrase and template 1

29 Distance to Template 2 Read−only The distance between the last phrase and template 2

40 Frame Energy MSW Read−only The energy of the last frame (most significant word)

41 Frame Energy LSW Read−only The energy of the last frame (least significant word)

42 Short Term Energy MSW Read−only The average, short−term energy (most significant word)

43 Short Term Energy LSW Read−only The average, short−term energy (least significant word)

44 Noise Floor MSW Read−only The average noise floor (most significant word)

45 Noise Floor LSW Read−only The average noise floor (least significant word)

 http://www.onsemi.com/

AND9267/D

www.onsemi.com
16

Company or Product Inquiries
For more information about ON Semiconductor products

or services visit our Web site at http://onsemi.com .

Technical Contact Information
For technical support, email: dsp.support@onsemi.com

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5817−1050

AND9267/D

BELASIGNA is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).
Windows is a registered trademark of Microsoft Corporation.
ON Semiconductor is licensed by the Philips Corporation to carry the I2C bus protocol.

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

◊

 http://www.onsemi.com/
http://onsemi.com
mailto:dsp.support@onsemi.com
www.onsemi.com/site/pdf/Patent-Marking.pdf

