

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

User Guide for FEBFL7730_L21L017A

Dimmable LED Bulb at Low Line

Featured Fairchild Product: FL7730

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

Table of Contents

1.	Introduction	3
	 1.1. General Description 1.2. Features Compatible with Traditional TRIAC Control 1.3. Internal Block Diagram 	3
2.	General Specifications for Evaluation Board	5
3.	Photographs	6
4.	Printed Circuit Board	6
5.	Schematic	7
6.	Bill of Materials	8
7.	Transformer Design	9
8.	Performance of Evaluation Board	10
	8.1. Startup 8.2. Operation Waveforms 8.3. Constant Current Regulation 8.4. Open-LED and Short-LED Protections 8.5. Dimming Operation 8.6. System Efficiency 8.7. Power Factor and Total Harmonic Distortion 8.8. Operating Temperature 8.9. Electromagnetic Interference (EMI)	
9.	Revision History	20

This user guide supports the evaluation kit for the FL7730. It should be used in conjunction with the FL7730 datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at www.fairchildsemi.com.

1. Introduction

This document describes the proposed solution for low line voltage LED ballast using the FL7730 Primary Side Regulator (PSR) single-stage controller. The input voltage range is $90~V_{RMS}-140~V_{RMS}$ and there is one DC output with a constant current of 700 mA at $24~V_{OUT}$. This document contains a general description of the FL7730, the power supply specification, schematic, bill of materials, and typical operating characteristics.

1.1. General Description

The FL7730 is an active Power Factor Correction (PFC) controller using single-stage flyback topology. Dimming control with no flicker is implemented by the analog sensing method. Primary-side regulation and single-stage topology reduce external components, such as input bulk capacitor and feedback circuitry, and minimize cost. To improve Power Factor and Total Harmonic Distortion (THD), constant on-time control is utilized with an internal error amplifier and a low bandwidth compensator. Precise constant-current control regulates accurate output current, independent of input voltage and output voltage. Operating frequency is proportionally changed by output voltage to guarantee Discontinuous Conduction Mode (DCM) operation with high efficiency and simple design. FL7730 provides open-LED, short-LED, and over-temperature protections.

1.2. Features Compatible with Traditional TRIAC Control

- Compatible with Traditional TRIAC Control
- Cost-Effective Solution: No Input Bulk Capacitor or Feedback Circuitry
- Power Factor Correction (PFC)
- Accurate Constant-Current (CC) Control
- Line Voltage Compensation for CC Control
- Linear Frequency Control Improves Efficiency and Simplifies Design
- Open-LED Protection
- Short-LED Protection
- Cycle-by-Cycle Current Limiting
- Over-Temperature Protection with Auto Restart
- Low Startup Current: 20 μA
- Low Operating Current 5 mA
- V_{DD} Under-Voltage Lockout (UVLO)
- Gate Output Maximum Voltage Clamped at 18 V
- SOP-8 Package

1.3. Internal Block Diagram

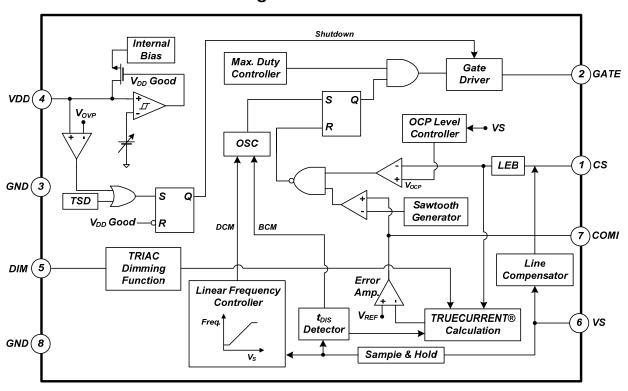


Figure 1. Block Diagram

2. General Specifications for Evaluation Board

All data for the evaluation board was measured with the board enclosed in a case and external temperature around 25°C.

Table 1. Evaluation Board Specifications for LED Lighting Bulb

Description	Symbol	Value	Comments
Fairchild		FL7730	Control IC of Single-Stage PSR TRIAC Dimming
Input			
Voltage	$V_{\text{IN.MIN}}$	90 V	Minimum Input Voltage
Voltage	V _{IN.MAX}	140 V	Maximum Input Voltage
	V _{IN.NOMINAL}	110~120 V	Nominal Input Voltage
Frequency	f _{IN}	60 Hz	Line Frequency
Output			
Voltage	V _{OUT.MIN}	11 V	Minimum Output Voltage
o o	V _{OUT.MAX}	26 V	Maximum Output Voltage
	V _{OUT.NOMINAL}	24 V	Nominal Output Voltage
Current	I _{OUT.NOMINAL}	700 mA	Nominal Output Current
	I _{OUT.RIPPLE}	±130 mA	Output Current Ripple
	CC Deviation	< ±5%	Line Input Voltage Change: 90~140 V _{AC}
		< ±5%	Output Voltage Change: 11~26 V
Efficiency			No Dimmer Connected
	Eff _{90VAC}	82.67%	Efficiency at 90 V _{AC} Line Input Voltage
	Eff _{110VAC}	84.74%	Efficiency at 110 V _{AC} Line Input Voltage
	Eff _{120VAC}	85.25%	Efficiency at 120 V _{AC} Line Input Voltage
	Eff _{140VAC}	86.05%	Efficiency at 140 V _{AC} Line Input Voltage
PF / THD			No Dimmer Connected
	PF / THD _{90VAC}	0.994 / 9.62%	PF / THD at 90 V _{AC} / 60 Hz Line Input Voltage
	PF / THD _{110VAC}	0.990 / 8.77%	PF / THD at 110 V _{AC} / 60 Hz Line Input Voltage
	PF / THD _{120VAC}	0.987 / 8.58%	PF / THD at 120 V _{AC} / 60 Hz Line Input Voltage
	PF / THD _{140VAC}	0.976 / 10.18%	PF / THD at 140 V _{AC} / 60 Hz Line Input Voltage
Temperature			Open-Frame Condition (T _A =25°C)
FL7730	T _{FL7730}	57.6°C	FL7730 Temperature
Primary MOSFET	T_{MOSFET}	66.8°C	Primary MOSFET Temperature
Secondary Diode	T_{DIODE}	55.9°C	Secondary Diode Temperature
Transformer	$T_{TRNASFORMER}$	54.2°C	Transformer Temperature
Damper Resistor	$T_{DAMPER, RESISTOR}$	66.1°C	Active Damper Resistor Temperature
Damper MOSFET	$T_{DAMPER,MOSFET}$	64.0°C	Active Damper MOSFET Temperature

3. Photographs

Figure 2. Top View (Dimensions: 34.5 mm (W) x 75 mm (L) x 20 mm (H)

Figure 3. Bottom View Dimensions: 34.5 mm (W) x 75 mm (L) x 20 mm (H)

4. Printed Circuit Board

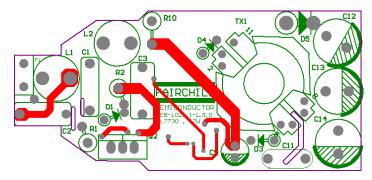


Figure 4. Top Pattern

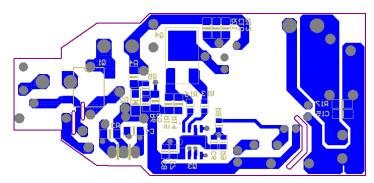


Figure 5. Bottom Pattern

5. Schematic

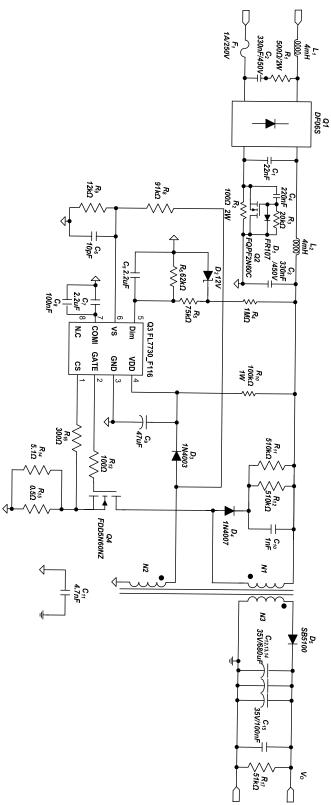


Figure 6. Schematic of Evalutation Board

6. Bill of Materials

Item No.	Part Reference	Part Number	Qty.	Description	Manufacturer
1	Q1	DF06S	1	Bridge Diode	Fairchild Semiconductor
2	Q2	FQPF2N60C	1	2 A / 600 V Active Damper MOSFET	Fairchild Semiconductor
3	Q3	FL7730_F116	1	Main Controller	Fairchild Semiconductor
4	Q4	FDD5N60NZ	1	4 A / 600 V Main Switch	Fairchild Semiconductor
5	F1	Fuse	1	1 A / 250 V Fuse	SLEEK
6	L1, L2	R10402KT00	2	4 mH Filter Inductor	Bosung
7	D1	FR107DITR-ND	1	1 A / 1000 V Diode	CP
8	D2	12 V/ 0.5 W	1	12 V Zener Diode	RENESAS
9	D3	1N4003	1	1 A / 200 V General Purpose Rectifiers	Fairchild Semiconductor
10	D4	1N4007	1	1 A / 1000 V Diode	Fairchild Semiconductor
11	D5	SB5100	1	5 A / 100 V Fast Rectifier	Fairchild Semiconductor
12	C1	223K/275VACP	1	22 nF / 275 V _{AC} X Capacitor	CARL
13	C2, C3	MTF 334J450V	2	330 nF / 450 V Film Capacitor	CARL
14	C4	CC1206KRX7R8BB224	1	220 nF / 25 V SMD Capacitor 3216	Yageo
15	C5	1206F225Z250CT	1	2.2 μF / 25 V SMD Capacitor 3216	WALSIN
16	C6	0805N100J500NT	1	10 pF / 50 V SMD Capacitor 2012	Yageo
17	C7	C2012Y5V1H225Z	1	2.2 μF / 50 V SMD Capacitor 2012	TDK Corporation
18	C8	C0805X104K050T	1	100 nF / 50 V SMD Capacitor 2012	HEC
19	C9	SK-47UF/50V	1	47 μF / 50 V Electrolytic Capacitor	Su'scon
20	C10	C1206C102KDRAC	1	1 nF / 1 kV SMD Capacitor 3216	KEMET
21	C11	DE2E3KH472M	1	4.7 nF Y Capacitor	Murata
22	C12, C13, C14	UHE1V681MPD	3	680 μF / 35 V Electrolytic Capacitor	Nichicon
23	C15	CC1206MRY5V9BB104	1	100 nF / 35 V SMD Capacitor 3216	Yageo
24	R1	RMCF1206JG1K10-ND	1	500 Ω / 2 W Metal Resistor	Stackpole
25	R2	MCP200JR-100R	1	100 Ω / 2 W Metal Resistor	Yageo
26	R3	RMCF1206FG20K0	1	20 kΩ SMD Resistor 3216	ELCODIS
27	R4	RC1206JR-071ML	1	1 MΩ SMD Resistor 3216	Yageo
28	R5	CRCW080575K0JNEAHP	1	100 kΩ SMD Resistor 2012	Vishay
29	R6	RT0805WRB0762KL	1	82 kΩ SMD Resistor 2012	Yageo
30	R8	9C08052A9102JLHFT	1	91 kΩ SMD Resistor 2012	Yageo
31	R9	CRCW080512K0JNEA	1	12 kΩ SMD Resistor 2012	Vishay
32	R10	RSF100JB-100K	1	100 kΩ / 1W Metal Resistor	Yageo
33	R11, R12	RT1206CRD07510KL	2	510 kΩ SMD Resistor 3216	Yageo,
34	R13	MCR10EZPJ101	1	100 Ω SMD Resistor 2012	Rohm
35	R14	MCR18EZHJ5R1	1	5.1 Ω SMD Resistor 3216	Rohm
36	R15	RMCF1206JTR500	1	0.5 Ω SMD Resistor 3216	Stackpole
37	R16	ERJ-6GEYJ301V	1	300 Ω SMD Resistor 2012	Panasonic
38	R17	CRCW120651K0JNEA	1	51 kΩ SMD Resistor 3216	Vishay

7. Transformer Design

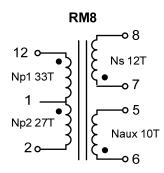


Figure 7. Transformer Pin Configuration

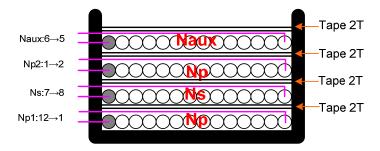


Figure 8. Transformer Winding Structure

Table 2. Winding Specifications

I UDIO EI	Trinding oppositionations							
No.	Winding	Pin (S → F)	Wire	Turns	Winding Method			
1	Np1	12 → 1	0.25Ø	33Ts	Solenoid Winding			
2		Insulation: Polyester Tape t = 0.025 mm, 2-Layer						
3	Ns	7 → 8	0.35Ø X2	12Ts	Solenoid Winding			
4		Insulation: Polyester Tape t = 0.025 mm, 2-Layer						
5	Np	1 → 2	0.25Ø	27Ts	Solenoid Winding			
6		Insulation: Po	lyester Tape t = 0	.025 mm, 2-L	ayer			
7	Naux	6 → 5	0.2Ø	10Ts	Solenoid Winding			
8		Insulation: Polyester Tape t = 0.025 mm, 2-Layer						
9		Copper-Foil (Shielding), Closed Loop						
10		Insulation: Po	lyester Tape t = 0	.025 mm, 2-L	ayer			

Table 3. Electrical Characteristics

	Pin	Specification	Remark
Inductance	2 – 12	0.9 mH ±10%	50 kHz, 1 V
Leakage	2 – 12	< 10 µH	50 kHz, 1 V Short All Output Pins

8. Performance of Evaluation Board

Table 4. Test Condition & Equipments

Ambient Temperature	T _A = 25°C
Test Equipment	AC Power Source: ES2000S by PSTATIONES Power Analyzer: PZ4000 by YOKOGAWA Multi Meter: 2002 by KEITHLEY : 8842A by LIKE Oscilloscope: WaveRunner 104Xi by LeCroy EMI Test Receiver: ESCS30 by ROHDE & SCHWARZ Two-Line V-Network: ENV216 by ROHDE & SCHWARZ Thermometer: Fluke Ti20 LED: EHP-AX08EL/GT01H-P01(1 W) by Everlight

8.1. Startup

Startup time is 0.87s. There is no overshoot at output current and voltage in startup sequence. Refer I_{OUT} and V_{DD} waveform. V_{DD} indicates a reflected output voltage. C1 $[I_{OUT}]$, C2 $[V_{IN}]$, C3 $[V_{DD}]$, and C4 $[V_{CS}]$.

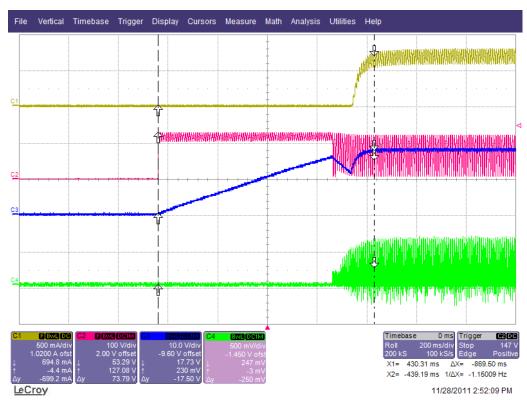


Figure 9. Startup – V_{IN} [90 V_{AC}]; No Dimmer, V₀ [24 V], I₀ [700 mA]

8.2. Operation Waveforms

In steady state, line compensation regulates output current regardless of input voltage variations. Output current ripple is ± 130 mA with a rated output current of 700 mA. C1 [I_{OUT}], C3 [V_{IN}], and C4 [V_{CS}].

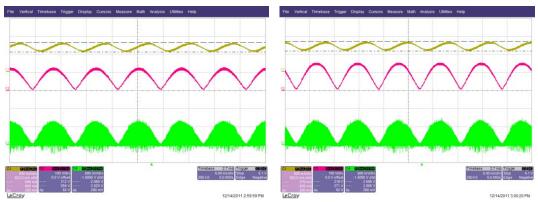


Figure 10. $V_{IN} = 90 V_{AC}$

Figure 11. $V_{IN} = 110 V_{AC}$

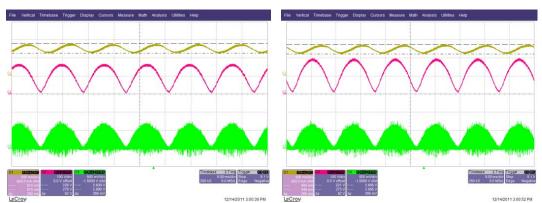


Figure 12. $V_{IN} = 120 V_{AC}$

Figure 13. $V_{IN} = 140 V_{AC}$

8.3. Constant Current Regulation

Constant current deviation in the output voltage range from 11 V to 26 V is less than $\pm 5\%$ at each line input voltage. Line regulation at the rated output voltage is less than 5%.

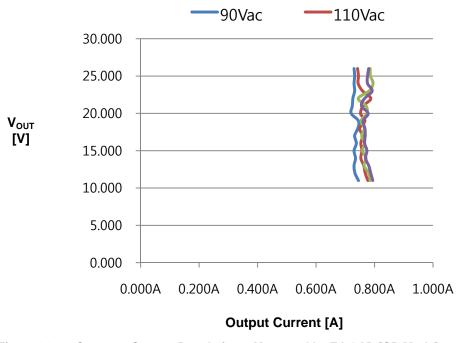


Figure 14. Constant Current Regulation – Measured by E LOAD [CR Mode]

Table 5. Constant Current Regulation by Output Voltage Change (11~26 V)

Input Voltage	Min. Current	Max. Current	Tolerance
90 V _{AC} / 60 Hz	720 mA	745 mA	±1.7%
110 V _{AC} / 60 Hz	742 mA	787 mA	±2.9%
120 V _{AC} / 60 Hz	744 mA	795 mA	±3.3%
140 V _{AC} / 60 Hz	755 mA	794 mA	±2.5%

Table 6. Constant Current Regulation by Line Voltage Change (90~140 V_{AC})

Output Voltage	90 V _{AC}	110 V _{AC}	120 V _{AC}	140 V _{AC}	Tolerance
20 V	720 mA	752 mA	774 mA	778 mA	±3.9%
22 V	726 mA	787 mA	744 mA	766 mA	±4.0%
24 V	730 mA	744 mA	795 mA	776 mA	±4.3%

8.4. Open-LED and Short-LED Protections

In short-LED condition, the Over-Current Protection (OCP) level is reduced from 0.7 V to 0.2 V because FL7730 lowers the OCP level when V_S voltage is less than 0.4 V during output diode conduction time. The output current in the short-LED condition is less than 2 A, which doesn't damage external components. C1 $[V_{IN}]$, C2 $[I_{OUT}]$, C3 $[V_{DD}]$, and C4 $[V_{CS}]$.

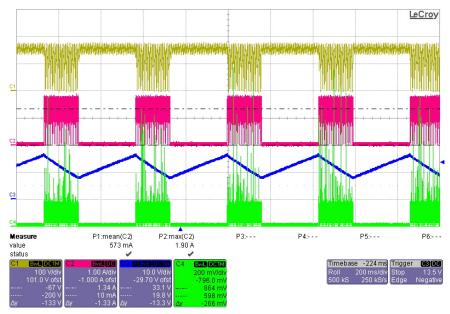


Figure 15. Short-LED Condition – V_{IN}, [120 V_{AC}]

In open-LED condition, output voltage is limited around 32 V by OVP in V_{DD} . Output over-voltage protection level can be controlled by the turn ratio of auxiliary and secondary windings. C1 $[V_{OUT}]$, C2 $[V_{IN}]$, C3 $[V_{DD}]$, and C4 $[V_{CS}]$.

Figure 16. Open-LED Condition – VIN [110 VAC]

8.5. Dimming Operation

Dimming operation waveforms are shown in Figure 17 - Figure 20. Active damper, RC bleeder, and dimming control implement flicker-free dimming oppration. Spike current at dimmer firing is less than 1.5 A. C1 $[V_{IN}]$, C2 $[V_{CS}]$, and C4 $[I_{IN}]$.

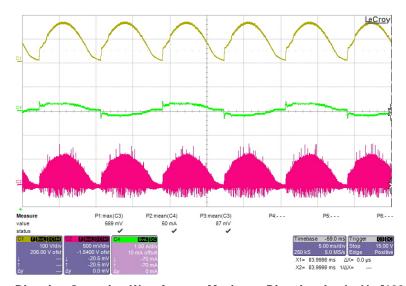


Figure 17. Dimming Operation Waveforms – Maximum Dimming Angle, V_{IN} [120 V_{AC}]

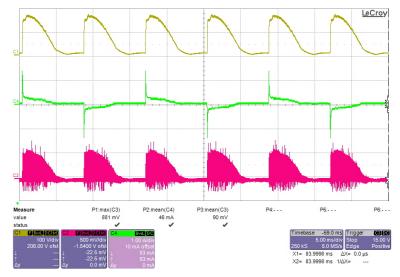


Figure 18. Dimming Operation Waveforms – 90° Dimming Angle, V_{IN} [120 V_{AC}]

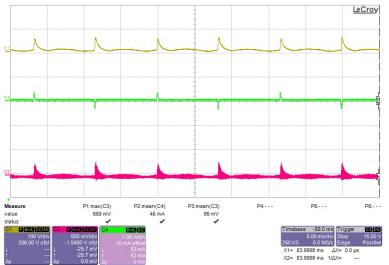


Figure 19. Dimming Operation Waveforms – Minimum Dimming Angle, V_{IN} [120 V_{AC}]

Output current is controlled by the dimming function when the rotating dimmer switch as below dimming curve. The dimming control block smoothly changes regulated output current by detecting dimming angle.

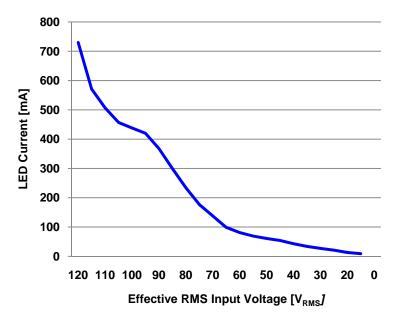


Figure 20. Dimming Curve (Input Voltage vs. Output Current) – VIN [120 VAC]

Table 7. TRIAC Dimmer Compatibility

Manufacturer	Dimmer	Condition	Max. Current	Min. Current	Flicker
LEVITON	6633	120 V / 60 Hz	742 mA	2 mA (0.3%)	No
LUTRON	AY-600P	120 V / 60 Hz	604 mA	19 mA (3.1%)	No
LUTRON	S-600	120 V / 60 Hz	690 mA	11 mA (1.6%)	No
LUTRON	DV-600P	120 V / 60 Hz	614 mA	9 mA (1.4%)	No
LUTRON	TG-603PG	120 V / 60 Hz	466 mA	11 mA (2.4%)	No
LUTRON	S-600P	120 V / 60 Hz	629 mA	7 mA (1.1%)	No
LUTRON	CN-600PHW	120 V / 60 Hz	616 mA	20 mA (3.2%)	No
LUTRON	GL-600H	120 V / 60 Hz	729 mA	10 mA (1.4%)	No

The FL7730 low-line evaluation board shows good dimmer compatibility without flicker. Minimum LED current is less than 5%.

8.6. System Efficiency

Power efficiency is $82.67 \sim 86.05\%$ in $90 \sim 140$ V_{AC} input voltage range.

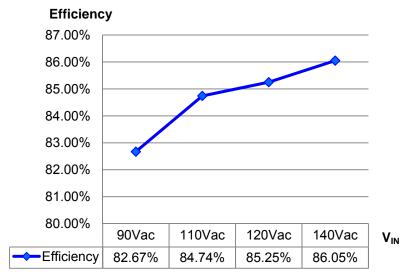


Figure 21. System Efficiency (Input Voltage vs. Efficiency)

Table 8. System Efficiency

Input Voltage	Input Power	Output Current	Output Voltage	Output Power	Efficiency
90 V _{AC}	21.73 W	735 mA	24.44 V	17.96 W	82.67%
110 V _{AC}	22.14 W	763 mA	24.59 V	18.76 W	84.74%
120 V _{AC}	23.05 W	794 mA	24.75 V	19.65 W	85.25%
140 V _{AC}	22.43 W	783 mA	24.65 V	19.30 W	86.05%

8.7. Power Factor and Total Harmonic Distortion

The FL7730 shows excellent power factor and total harmonic distortion performance. Power factor is very high with enough margins from the 0.9 specification. THD is much less than the 30% of the specification.

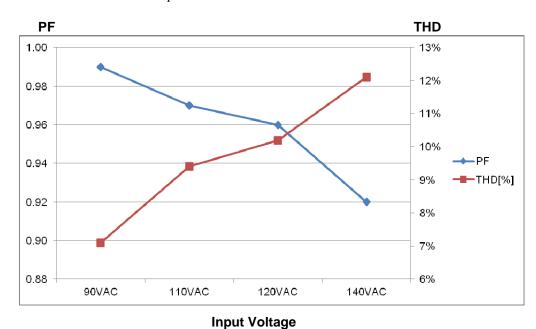


Figure 22. Power Factor & Total Harmonic Distortion (60 Hz)

Table 9. Power Factor and Total Harmonic Distortion (60 Hz)

Input Voltage	Output Current	Output Voltage	PF	THD
90 V _{AC} / 60 Hz	729 mA	23.91 V	0.994	9.62%
110 V _{AC} / 60 Hz	752 mA	24.05 V	0.990	8.77%
120 V _{AC} / 60 Hz	799 mA	24.25 V	0.987	8.58%
140 V _{AC} / 60 Hz	777 mA	24.14 V	0.976	10.18%

Table 10. Power Factor and Total Harmonic Distortion (50 Hz)

Input Voltage	Output Current	Output Voltage	PF	THD
90 V _{AC} / 50 Hz	726 mA	24.20 V	0.994	8.79%
110 V _{AC} / 50 Hz	745 mA	24.28 V	0.991	8.28%
120 V _{AC} / 50 Hz	787 mA	24.52 V	0.988	8.02%
140 V _{AC} / 50 Hz	774 mA	24.43 V	0.977	9.66%

8.8. Operating Temperature

Temperature of the components on this board is less than 70°C.

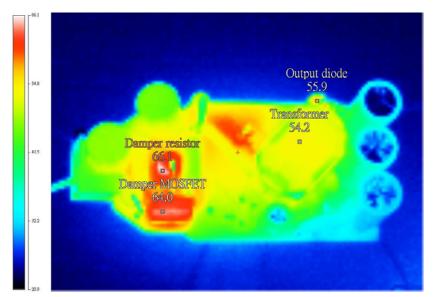


Figure 23. Board Temperature, Top View, V_{IN} [120 V_{AC}]

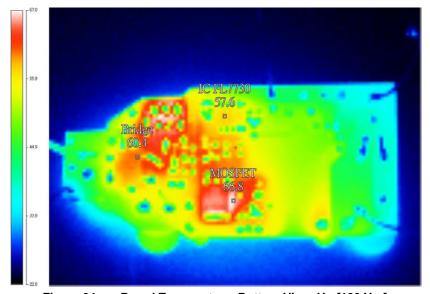


Figure 24. Board Temperature, Bottom View, V_{IN} [120 V_{AC}]

8.9. Electromagnetic Interference (EMI)

A measurement was conducted in observance of CISPR22 criteria.

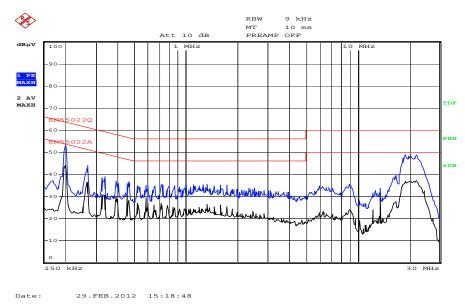


Figure 25. EMI Results – V_{IN} [110 V], V_{OUT} [24 V], I_{OUT} [780 mA]

9. Revision History

Rev.	Date	Description
1.0.0	July 2012	Initial Release
1.0.1	Sep. 2012	Modified, edited, formatted document. Changed User Guide number from FEB-L021-1 to FEBFL7730_L21L017A

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative