Test Procedure for the LV8400VEVB Evaluation Board

For DC Motor Control:

Table1: Required Equipment

Equipment	Efficiency
Power Supply1	$18 \mathrm{~V}-4 \mathrm{~A}$
Power Supply2	$6 \mathrm{~V}-0.5 \mathrm{~A}$
Function generator	200 kHz
Multimeter	-
Oscilloscope	4 channel
Current probe	-
LV8400V Evaluation Board	-
DC Motor	$18 \mathrm{~V}-2 \mathrm{~A}$

Test Procedure:

1. Connect the test setup as shown above.
2. Set it according to the following specifications:

Supply Voltage:

- VM (4.0 to 15.0 V): Power Supply for LSI
- VCC (2.7 to 5.5V): Logic "High" voltage for toggle switch

Toggle Switch State:

- Upper Side: High (VCC)
- Middle: Open, enable to external logic input
- Lower Side: Low (GND)

Operation Guide:

- You can drive DC motor by setting EN=High and switching the input signal as follows:

Table2: Truth table

EN	IN1	IN2	OUT1	OUT2	Mode
H	H	H	L	L	Brake
	H	L	H	L	Forward
	L	H	L	H	Reverse
	L	L	Z	Z	Standby
L	-	-	Z	Z	All function stop

"-" : denotes a don't care value. Z: High-impedance

Timing chart for CW(Forward)-Brake of DC motor

3. Check the IN1 and IN2 terminal voltage at scope CH1 and CH2, and the output current waveform at scope CH3.

Table3: Desired Results

INPUT	OUTPUT
VM $=12.0 \mathrm{~V}$	The output current and rotation of the DC
VCC $=5.0 \mathrm{~V}$	motor is confirmed.
IN1=High	(The Iomax and Iopeak confirm whether
IN2 $=2.5 \mathrm{~Hz}$ (Duty50\%)	it is allowed by this output current.)

4. By setting ICTRL to High, constant current output circuit operates.

* The output constant current (IOUT) is determined by the internal reference voltage and the sense resistor between the ISET and SGND pins. IOUT = Internal reference voltage $(0.2 \mathrm{~V}) \div$ Sense resistor (RSET).

IOUT calculating formula:

$$
\text { IOUT }=\frac{0.2[\mathrm{~V}]}{39 \Omega} \cong 5.0[\mathrm{~mA}]
$$

Check the multimeter, and it is confirmed that about 5 mA is displayed.

