

Test Procedure for the LV8400VEVB Evaluation Board

For DC Motor Control:

	Table1: Requi	red Equipment
•	4	

Equipment	Efficiency		
Power Supply1	18V-4A		
Power Supply2	6V-0.5A		
Function generator	200kHz		
Multimeter	-		
Oscilloscope	4 channel		
Current probe	_		
LV8400V Evaluation Board	_		
DC Motor	18V-2A		

Test Procedure:

- 1. Connect the test setup as shown above.
- 2. Set it according to the following specifications:

Supply Voltage:

- VM (4.0 to 15.0V): Power Supply for LSI
- VCC (2.7 to 5.5V): Logic "High" voltage for toggle switch

Toggle Switch State:

- Upper Side: High (VCC)
- Middle: Open, enable to external logic input
- Lower Side: Low (GND)

Operation Guide:

• You can drive DC motor by setting EN=High and switching the input signal as follows:

Table2: Truth table							
EN	IN1	IN2	OUT1	OUT2	Mode		
	Н	Н	L	L	Brake		
и	Н	L	Н	L	Forward		
11	L	Н	L	Н	Reverse		
	L	L	Z	Z	Standby		
L		Z	Z	All function			
Ľ				-	stop		

"-": denotes a don't care value. Z: High-impedance

Timing chart for CW(Forward)-Brake of DC motor

3. Check the IN1 and IN2 terminal voltage at scope CH1 and CH2, and the output current waveform at scope CH3.

Table3: Desired Results					
INPUT	OUTPUT				
VM=12.0V	The output current and rotation of the DC				
VCC=5.0V	motor is confirmed.				
IN1=High	(The Iomax and Iopeak confirm whether				
IN2=2.5Hz(Duty50%)	it is allowed by this output current.)				

4. By setting ICTRL to High, constant current output circuit operates.

BWL

.1 s

* The output constant current (IOUT) is determined by the internal reference voltage and the sense resistor between the ISET and SGND pins. IOUT = Internal reference voltage $(0.2V) \div$ Sense resistor (RSET).

IOUT calculating formula:

$$IOUT = \frac{0.2[V]}{39\Omega} \cong 5.0[mA]$$

Check the multimeter, and it is confirmed that about 5mA is displayed.