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INTRODUCTION

In portable equipment markets such as notebook computers, cellular phones, and personal
organizers, the demand for more features is colliding head long into the important

mean time between charge specification. Manufacturers are being challenged to continue
offering longer battery life, while adding more current draining applications. Their solution
to this problem is simple: turn off applications when they are not being used.

The mechanism used to turn off the application is referred to as a load switch, since the
current drawn by each application is considered a loadon the battery. This application note
will detail how to design with Fairchild Semiconductor’s new line of MOSFET load switches.

| -
Load Switch
O O

Battery i i i To load
[> |Power LDO R a Power Amplifier
Amplifier Switching Regulator 2 ASIC

Load Swich ¥ 1 Logic

I:l Display o JFJ‘} Q,
Battery FF T Logic Signal o7

Load Switch Vonjorr { £

ASIC

Load Switch Figure 2. Load Switch Schematic

Power .
Management 1 | Logic

L

Figure 1. Typical Hand-Held Power Architecture

Theory of Operation

A generic power architecture of a mobile phone is shown in Figure 1. Load switches are
placed in series with the Battery and the load, and are switched on or off by the power
monitoring logic. A schematic of a Load Switch is shown in Figure 2. A P-Channel MOSFET
is the power switch with its gate controlled by a Fairchild N-Channel Digital MOSFET. Logic
“High” turns on the PMOS by having its gate pulled to ground by the Digital MOSFET.

Logic “Low” turns off the PMOS by turning off the Digital MOSFET, and allowing the PMOS
Gate to be passively pulled up to the Source potential through the external resistor.
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Intrinsic Diode

It is important that the output voltage be lower than the input voltage. An output voltage
higher than the input will be clamped via the intrinsic diode of the P-Channel MOSFET, which
could cause significant current to flow. This is not an issue with single energy sources, but it
can become a problem with multiple sources, such as a charger.

Thermal Requirements
Load Switches are sized by their power handling capability, or more precisely - the amount
of power they can dissipate in a given environment. Generic current handling graphs are

valuable for First Order approximations, but one should evaluate devices to the exact
environment in which it will operate.

Design Example

Assume the operating environment will be:

1) Ta=70°C (Maximum Board Temperature)

The edge of the board will be considered fixed at 70°C. Ambient temperature is a fixed
temperature thatis closest to where the component is to be placed. In this application,
the Ambient is the fixed edge of an FR4 board mounted in a case.

2) Ryca = 25°C/Watt (Thermal Resistance Case-to-Ambient)

The thermal resistance from the case of the component to ambient temperature can be

measured or calculated. The thermal path is considered a straight conductive path of
copper trace on FR4 to Ambient. Thermal resistance is calculated from the equation:

Res=(Distance to Ambient)/[(Cross Sectional Area)*(Thermal Conductivity of Material)]

The thermal path can be measured, but it requires a device mounted in the component’'s
position dissipating 1 Watt. The temperature difference is the thermal resistance. ltis
important that there is no thermal radiation during this test. This type of measurement is
usually made once the component is selected, and is done as a check of the previous
calculations.

3)I.=1.25A (Worse Case Steady-State Current)

At this point, the operating environment has been defined. Some general calculations can
now be done, and a component selected.

4) Tymax = 150°C (Load Switch Absolute Maximum Junction Temperature)

This maximum temperature limit must never be exceeded by the junction temperature
of the load switch.

5) TRISE = TJMAX - TA = 80°C. (MaXimUm Allowable TRISE)



The junction-to-case thermal resistance, Rg,c, for the SSOT-6 and SSOT-8 is as follows:
6) SSOT-6, Rgyc=60°C/Watt

7) SSOT-8, Reyc=40°C/Watt

The maximum power dissipation of these packages in this specific environment:

8) SSOT-6: Po=Trise /(ReyctRoca)=940mWatt (Maximum Power Dissipation Allowable)
9) SSOT-8: P,=80/(25+40)=1.23Watt (Maximum Power Dissipation Allowable)

10) The FDC6329L SSOT-6 will be used for evaluation.

The 25°C Rpg(on) value can be calculated from the Vpropratings in the data sheet.

Vi Logic Vbrop I Ros(on)(25°C)
(Vonrore)
5 1.5-8V 0.08v 1A 80mQ
2.5 1.5-8V 0.11VvV 1A 110mQ

The Rpsion)increases by 50% for a junction temperature of 150°C. The worse case power
dissipation is calculated using the worse case Rpg(on) at 150°C.

Vin Logic I Ros(on) Po 2RDS(ON))
(Vonvors) (150°C)

5 1.5-8V 1.25A 120mQ 188mWatt

2.5 1.5-8V 1.25A 165mQ 258mWatt

Recall that the maximum SSOT-6 power dissipation for this application is 940mWatt (step 8),
so this device will work. It is important to know the design margin, since there are always
assumptions being made in a thermal design.

Vi Logic I Po (IZRDS(ON)) TyPo*(ResctReca)+ Ta
(Voniore)
5 1.5-8V 1.25A 188mWatt 86°C
2.5 1.5-8V 1.25A 258mWatt 92°C

Inrush Current

Load switches turning on into capacitors with low ESR can create high inrush currents that
can be detrimental to the overall performance of the system. The ESR of the capacitor
combined with the Rpgon) Of the MOSFET will determine the peak current of the inrush. A
100 uF capacitor with an ESR of 75 mQ and an 80 mQ load switch will have a theoretical
peak inrush of 32A for a 5 Volt source. These peak currents stress the voltage source,
generate high peak powers, and will degrade the overall lifetime of the system. The
solution is to slowly turn on the PMOS device, charging the capacitor, and reducing the
overall voltage the MOSFET will eventually turn on.
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Figure 3. Inrush current

There are two simple ways to slow the turn on of the PMOS. If it is an integrated load switch,
add a resistor R; at the source of Q. If it is a hybrid load switch, add R, between the gate

of Q. and the drain of Q;. Another way to slow the turn on of the PMOS is to add a capacitor,
Ci, across Gate to Drain of Q2.

General Calculation

=1 *1ioss

I =

Loss —

R, tR,
Voror = Vour =Viy =1 X RDS(ON)QZ
Roson), IS @ function of -Vg —and
_ Ry
R, tR,

B VGSQ2 =V
During turn off, the fall time of Vy,; is primarily determined by C, and R, such
thatt 4 « R, XC,

Definitions:

In = Input current

I = Load current

ILoss= Current loss through R1 and R2 during turn on
Vout = Output voltage

R_ = Load resistor

VN = Input voltage

Vprop= Voltage drops between input and output voltages
Rosonyaz= On resistance of Q2

Vesa2= Gate-source voltage of Q2

T = Time constant for turn off

Co = Output capacitor

For a typical selection of the external components, please refer to the load switch datasheets.
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Conclusion

A MOSFET load switch is a simple way to reduce component count, lower cost and
increase the overall the reliability of a system. In order to assist users, load switch
SPICE models are available at the Fairchild Semiconductor web site:
www.fairchildsemi.com. Further design support is available by the authors at
john.bendel@fairchildsemi.com and alan.yi.c.li@fairchildsemi.com.
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Appendix A

Heat Flow Theory Applied to Power MOSFETs

When a Power MOSFET operates with an appreciable current, its junction temperature is el-
evated. It is important to quantify its thermal limits in order to achieve acceptable performance and
reliability. This limit is determined by summing the individual parts consisting of a series of
temperature rises from the semiconductor junction to the operating environment. A one dimen-
sional steady-state model of conduction heat transfer is demonstrated in figure 5. The heat gener-
ated at the device junction flows through the die to the die attach pad, through the lead frame to the
surrounding case material, to the printed circuit board, and eventually to the ambient environment.
There are also secondary heat paths. One is from the package to the ambient air. The other is
from the drain lead frame to the detached source and gate leads then to the printed circuit board.
These secondary heat paths are assumed to be negligible contributors to the heat flow in this
analysis.
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Figure 5: Cross-sectional view of a Power MOSFET mounted on a printed circuit board. Note that the
case temperature is measured at the point where the drain lead(s) contact with the mounting pad
surface.

The increase of junction temperature above the surrounding environment is directly proportional to
dissipated power and the thermal resistance.

The steady-state junction-to-ambient thermal resistance, R, , is defined as
Ron =(T,-T,) /P

6JA’

where T, is the average temperature of the device junction. The term junction refers to the point of
thermal reference of the semiconductor device. T, is the average temperature of the ambient
environment. P is the power applied to the device which changes the junction temperature.

R,,, is afunction of the junction-to-case R, . and case-to-ambient R ., thermal resistance

R,,=R,.*+R

68JA 6JC 6CA
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where the case of a Power MOSFET is defined at the point of contact between the drain lead(s)
and the mounting pad surface. R, . can be controlled and measured by the component manufac-
turer independent of the application and mounting method and is therefore the best means of
comparing various suppliers component specifications for thermal performance. On the other hand,
itis difficult to quantify R, ., due to heavy dependence on the application. Before using the data
sheet thermal data, the user should always be aware of the test conditions and justify the compat-
ibility in the application.

Appendix B
Thermal Measurement

Prior to any thermal measurement, a K factor must be determined. It is a linear factor related to
the change of intrinsic diode voltage with respect to the change of junction temperature. From the
slope of the curve shown in figure 6, K factor can be determined. It is approximately 2.2mV/°C for
most Power MOSFET devices.
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Figure 6. K factors, slopes of a V, vs temperature curves, of a typical Power MOSFET

After the K factor calibration, the drain-source diode voltage of the device is measured prior to any
heating. A pulse is then applied to the device and the drain-source diode voltage is measured
30us following the end of the power pulse. From the change of the drain-source diode voltage, the
K factor, input power, and the reference temperature, the time dependent single pulsed junction-to-
reference thermal resistance can be calculated. From the single pulse curve on figure 7, duty
cycle curves can be determined. Note: a curve setin which R, is specified indicates that the part
was characterized using the ambient as the thermal reference. The board layout specified in the
data sheet notes will help determine the applicability of the curve set.
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Figure 7. Normalized Transient Thermal Resistance Curves
B.1 Junction-to-Ambient Thermal Resistance Measurement

Equipment and Setup:

e Tesec DV240 Thermal Tester

e 1 cubic foot still air environment

e Thermal Test Board with 16 layouts defined by the size of the copper mounting pad and their
relative surface placement. For layouts with copper on the top and bottom planes, there are
0.02 inch copper plated vias (heat pipes) connecting the two planes. See figure 2 and table 1
on the thermal application note for board layout and description. The conductivity of the FR-4
PCB used is 0.29 W/m-C. The length is 5.00 inches + 0.005; width 4.50 inches + 0.005; and
thickness 0.062 inches + 0.005. 20z copper clad PCB.

The junction-to-ambient thermal measurement was conducted in accordance with the require-
ments of MIL-STD-883 and MIL-STD-750 with the exception of using 2 Oz copper and measuring
diode current at 10mA.

Atest device is soldered on the thermal test board with minimum soldering. The copper mounting
pad reaches the remote connection points through fine traces. Jumpers are used to bridge to the
edge card connector. The fine traces and jumpers do not contribute significant thermal dissipation
but serve the purpose of electrical connections. Using the intrinsic diode voltage measurement
described above, the junction-to-ambient thermal resistance can be calculated.

B.2 Junction-to-Case Thermal Resistance Measurement

Equipment and Setup:

e Tesec DV240 Thermal Tester

e large aluminum heat sink

e type-K thermocouple with FLUKE 52 K/J Thermometer

The drain lead(s) is soldered on a 0.5 x 1.5 x 0.05 copper plate. The plate is mechanically clamped
to a heat sink which is large enough to be considered ideal. Thermal grease is applied in-between
the two planes to provide good thermal contact. Theoretically the case temperature should be held
constant regardless of the conditions. Thus a thermocouple is used and fixed at the point of
contact between the drain lead(s) and the copper plate surface, to account for any heatsink
temperature change. Using the intrinsic diode voltage measurement described earlier, the junc-
tion-to-case thermal resistance can be obtained. A plot of junction-to-case thermal resistance for



various packages is shown in figure 8. Note R, can vary with die size and the effect is more
prominentas R, decreases.
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Figure 8. Junction-to-case thermal resistance R, of various surface mount Power MOSFET
packages.
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