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1. Description 
Design goals for a Cold Cathode Fluorescent Lamp (CCFL)
inverter for use in a notebook computer or other portable
applications include small size, high efficiency, and low cost.
The FAN7311 provides the necessary circuit blocks to
implement a highly efficient CCFL backlight power supply
in 20-SSOP and 20-SOIC packages. The FAN7311 typically
consumes less than 4mA of operating current, improving
overall system efficiency. External parts count is minimized
and system cost is reduced by the integration of features
including; feedback-controlled Pulse Width Modulation

(PWM) driver stage, soft start, open lamp regulation, and
Under Voltage Lockout protection (UVLO). The FAN7311
includes an internal shunt regulator that allows operation
with an input voltage from 5V to 25.5V. It supports analog
and burst dimming modes of operation. The FAN7311 pro-
vides open lamp regulation and protection. Open lamp regu-
lation protects the transformer from over-voltage during start
up or when an open lamp occurs. The transformer voltage is
regulated by reducing duty cycle when an over-voltage is
detected. Open lamp protection can be used to shut down an
IC when an open lamp condition continues longer than a
specified time.

Figure 1. Application Circuit
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2. Block Diagram and Basic Operation 

2.1 Block Diagram 

Figure 2. Block Diagram 
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2.2 Under Voltage Lockout (UVLO) 
The UVLO circuit guarantees stable operation of the IC’s
control circuit by stopping and starting it as a function of the
VIN value. The UVLO circuit turns on the control circuit
when VIN exceeds 5V. When VIN is lower than 5V, the IC’s
standby current is less than 200µA. 

2.3 ENA 
Applying voltage higher than 2V to ENA pin enables the
operation of the IC. Applying voltage lower than 0.7V to
ENA pin disables the operation of the inverter. 

Figure 3. Under Voltage Lockout and ENA Circuits 

Figure 4. Start Voltage and Operating Current 

2.4 Soft Start 
The soft-start function is provided by the S_S pin and is con-
nected through a capacitor to GND. A soft-start circuit
ensures a gradual increase in the input and output power. The
capacitor connected to S_S pin determines the rise rate of the
duty ratio. It is charged by a current source of 6µA. 

Figure 5. Soft Start During Initial Operation 

2.5 Oscillator 

2.5.1 Main Oscillator 

Timing capacitor CT is charged by the reference current
source. The source is formed by the timing resistor RT whose
voltage is regulated at 1.25V. The sawtooth waveform of the
main oscillator circuit charges up to 2V, then the capacitor
begins discharging down to 0.5V. The capacitor starts charg-
ing again and a new switching cycle begins. 

The main frequency can be programmed by adjusting the
values of RT and CT. The main frequency can be calculated
as shown below. 

Figure 6a. Main Oscillator Circuit

VIN

2.5VREF

ENA

UVLO 5V

+

-

+

-
UVLO

REF

1.4V

Voltage
Reference

&
Internal

Bias

VIN

VIN

Icc (mA)

4

2

0
5 10 15 20

(V)

Ich earg
3
4
--- 1.25

RT
----------= (2.1)

fop
19

32 RTCT
----------------------= (2.2)

2V
Icharge

20 x Icharge

0.5V

CT

+

-

+

-
Q

QSET

CLR

S

R



AN6016 APPLICATION NOTE
 

4 REV. 1.0.1 4/20/06

Figure 6b. Main Oscillator Waveform 

2.5.2 Burst Dimming Oscillator 

Burst dimming timing capacitor BCT is charged by the refer-
ence current source, formed by the timing resistor RT whose
voltage is regulated at 1.25V. The sawtooth waveform
charges up to 2V. Once reached, the capacitor begins dis-
charging down to 0.5V, then starts charging again and a new
switching cycle begins. 

The burst dimming frequency can be programmed by adjust-
ing the values of RT and BCT. The burst dimming frequency
can be calculated as below. 

The burst dimming frequency should be greater than 120Hz
to avoid visible flicker. To compare the input of BDIM pin
with the 0.5~2V triangular wave of burst oscillator makes
the PWM pulse for burst dimming. The PWM pulse controls
EA_OUT voltage by summing 85µA into the EA_IN pin.
Figure 7 shows burst dimming oscillator circuit and wave-
form. 

Figure 7a. Burst Oscillator Circuit 

Figure 7b. Burst Oscillator Waveform 

2.6 Analog Dimming 
For analog dimming, the lamp intensity is controlled with
the ADIM signal. A 2.5V on ADIM brings full brightness.
Analog dimming waveforms are shown in Figures 8 and 9. 

Figure 8. Analog Dimming at Maximum 

Figure 9. Analog Dimming at Minimum 
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2.6.1 Setting Lamp Current Sensing Resistors 

1) Positive Polarity Analog Dimming

Figure 10. Calculating Value of the 
Analog Dimming Circuit Parameter

Lamp current is sensed at Rsense and the sensed voltage is
divided by RCS1 and RCS2 and is averaged at Error Amp. by
RFB and CFB.                 

Equation (2.5) assumes that the error amplifier loop is
closed. The relationship between VCS and Vref is given in
equation (2.6).             

From these values, an approximate value of Rcs2 can be
derived. To get a more precise value for RCS2, use an itera-
tive calculation. Use Rsense to calculate RCS2, because the
Rsense_eq value is unknown. After finding the value of
Rsense_eq, use Rsense_eq to calculate RCS2. Calculate itera-
tively until the previous Rsense_eq value is almost equal to the
current Rsense_eq value. 

Rsense_effective 0.950148969kΩ = Rsense/(RCS1+RCS2)

2) Negative Polarity Analog Dimming 

Figure 11. Calculating Value of the Analog Dimming 
Inverting Circuit Parameter

Lamp current is sensed at Rsense and the sensed voltage is
divided by Rcs1 and Rcs2 and is averaged at Error Amp. by
RFB and CFB.                  

Equation (2.8) assumes the error amplifier loop is closed.
The relationship between VCS and VA (dimming control
voltage) is given in equation (2.9). 
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For example, suppose:

Vref 2.5V,  ILamp 6.5mA, Rsense 1kΩ Rcs1, 10kΩ= = = =

The data to input
The calculated data

VREF 2.5 
Ilamp 6.5 
Rsense 1 kΩ

Rsense_eff 0.95 kΩ
Diode drop voltage 0.3 V

Vsense 5.259453252 V 
RCS1/RCS2 1.103781301 

RCS1 10 kΩ
RCS2 9.059765727 kΩ
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VA RFB VCS RA⋅+⋅
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The relationship between dimming control voltage and lamp
current can be programmed for the application. For example,
suppose:        

Substituting for VA and VCS in equation (2.9) from equation
(2.10) results in: 

Substituting for VA and VCS in equation (2.9) from equation
(2.11) results in:    

Multiplying equation (2.13) by RFB + RA gives: 

Multiplying equation (2.14) by RFB + RA gives:    

Multiplying equation (2.15) by α gives: 

Subtracting equation (2.17) from equation (2.18) gives:   

Equation (2.20) can be rewritten as: 

RA is calculated by selecting RFB and solving equation
(2.21). Substituting for RA in equation (2.13) from equation
(2.21) and rewriting gives: 

                   
From these values, it is possible to obtain the value of RCS2.
To get more precise value of RCS2, use an iterative calcula-
tion. Use Rsense to calculate RCS2, because Rsense_eq is
unknown. After the first calculation, Rsense_eq can be
resolved. Calculate the RCS2 value using Rsense_eq. Calculate
iteratively until the previous Rsense_eq value becomes almost
equal to the current Rsense_eq value. 

Rsense_effective   1.386187316kΩ =Rsense//(RCS1+RCS2)

VAmin. 0, ILamp.max 7mA= = (2.10)

VAmax. 3.3, ILamp.min 3mA= = (2.11)

ILamp.min α ILamp.max⋅= (2.12)

VREF
VCSmax RA⋅

RFB RA+
-------------------------------= (2.13)

Vref
VAmax RFB VCSmin RA⋅+⋅

RFB RA+--------------------------------------------------------------------=

VAmax RFB α VCSmax RA⋅ ⋅+⋅
RFB RA+-----------------------------------------------------------------------------= (2.14)

Vref RFB Vref RA⋅+⋅ VCSmax RA⋅= (2.15)

Vref RFB Vref RA⋅+⋅ VAmax RFB α VCSmax RA⋅ ⋅+⋅= (2.16)

Vref VAmax–( ) RFB⋅ Vref+ RA⋅ α VCSmax RA⋅ ⋅= (2.17)

α Vref RFB α Vref RA⋅ ⋅+⋅ ⋅ α VCSmax RA⋅ ⋅= (2.18)

VAmax Vref
α 1–( )+( ) RFB⋅ Vref

α 1–( )+ RA⋅ 0= (2.19)

VAmax Vref
α 1–( )+( ) RFB⋅ Vref

α 1–( ) RA⋅= (2.20)

RA
VAmax Vref

α 1–( )+( ) RFB⋅

Vref
α 1–( )

------------------------------------------------------------------ β RFB⋅= = (2.21)

The data to input

The calculated data

VREF VA Ilamp 

Min. – 0 4 

Typ. 2.5 - –

Max. – 3.2 6.7

α 0.597014925 6.7 

Ilamp_max/Ilamp_min

RFB 100 kΩ

RA 217.6296296 kΩ

b 2.176296296

VCSmax 3.64874064

Rsense 1.5 kΩ

Rsense_eff 1.3861

Diode drop voltage 0.3 V 

Avg_maxVsense 8.061120587 V 

RCS1/RCS2 1.209288459

RCS1 10 kΩ

RCS2 8.269325588 kΩ

VCSmax
Vref RFB RA+( )⋅

RA
-------------------------------------------

Vref 1 β+( ) RFB⋅ ⋅
β RFB⋅

----------------------------------------------= =

Vref 1 β+( )⋅
β

-------------------------------- Vref 1 1
β
---+⎝ ⎠

⎛ ⎞⋅= =

Vsense
Rcs2

Rcs1 Rcs2+----------------------------⋅=

2
π
--- 2 ILamp Rsense VDF–⋅ ⋅ ⋅⎝ ⎠

⎛ ⎞ Rcs2
Rcs1 Rcs2+----------------------------⋅= (2.22)

Rcs1
Rcs2
----------

Vsense

Vref 1 1
β
---+⎝ ⎠

⎛ ⎞
----------------------------- 1–= (2.23)

For example:

Vref 2.5V, Ilampmax 6.7mA, Ilampmin 4mA,= = =

RFB 100kΩ, Rsense 1.5kΩ , RCSI 10kΩ= = =
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2.7 Burst Dimming 
Lamp intensity is controlled with the BDIM signal. 0V on
BDIM commands full brightness. The duty cycle of the burst
dimming comparator determines the lamp brightness as a
percent of the rated lamp current. Burst dimming is imple-
mented by summing 85µA into the feedback node to turn
down the lamp. If there is sufficient voltage for the lamp to
strike, the feedback loop controls the lamp at the rated cur-
rent using a fixed current-sense resistor. When the voltage of
EA_IN is brought higher than Vref, EA_OUT becomes low
and the MOSFET stops switching. At this time, the resonant
tank voltage decays until the lamp extinguishes. CFB is
reduced, if possible, to speed up the lamp re-strike. Burst
dimming waveforms are shown in Figures 12, 13, and 14. 

Figure 12. Burst Dimming at 75%

Figure 13. Burst Dimming at 50%

Figure 14. Burst Dimming at 25%

2.8 Open Lamp Regulation and Open Lamp 
Protection 
Power stage operation must be suspended if an open lamp
occurs, because the power stage is at high gain. When a volt-
age higher than 2V is applied to the OLR (Open Lamp Regu-
lation) pin, the part enters the regulation mode and controls
EA_OUT voltage to limit the lamp voltage by adding 105µA
into the feedback node. The OLP (Open Lamp Protection)
capacitor, which is connected to the OLP pin, is charged by
the 1.4µA internal current source. 

2.8.1 Open Lamp at Initial Operation 

OLP voltage starts from 1V. After reaching 2.5V, the IC
shuts down when all the output are high. 

The relationship between the OLP capacitor and the time ΔT
before the IC shuts down is calculated using the approxima-
tion I = CΔV/ΔT, where I = 1.4μA, ΔV = 1.5V, resulting in
ΔT(s) = 1.1C(μF).

2.8.2 Normal Operation and Open Lamp 

OLP voltage starts at 0V. After reaching 1.5V, the IC shuts
down when all the outputs are high. 

The relationship between the OLP capacitor and the time ΔT
before the IC shuts down is calculated using the approxima-
tion I = CΔV/ΔT, where I = 1.4μA, ΔV = 1.5V, resulting in
ΔT(s) = 1.1C(μF).
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2.8.3 OLP Operation

Figure 15. Operating OLP

In normal operation, the voltage of D3’s cathode is over 1V
and D3 is turned off; Q1 is on; and OLP remains low. When
open lamp occurs, the voltage of D3’s cathode is under 1V
and either D3 is turned on. Then Q1 is turned off and OLP
start charging by an internal current source of 1.4µA. If OLP
reaches 2V, the IC is shut down. The base current of Q1
should be more than 1.4µA/hfe. R6 is determined by this
condition. R4, R5, R7, and R8 are determined so that Q1 and
D4 are turned off in the open lamp condition. C1 and C2 are
determined so that the voltage of D3’s cathode is over 1V in
normal operation. 
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2.8.4 OLR Operation

Figure 16. Operating OLR

Figure 17. Open Lamp Regulation Circuit 

Figure 18. Open Lamp Protection Circuit

Figure 19. OLR Voltage During Striking Mode
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2.9 Output Driver 
The four output drives are designed so that the two pairs of
switches, pair A and B and pair C and D, never turn on
simultaneously. The OUTA-OUTB pair is intended to drive

one half-bridge in the external power stage. The OUTC-
OUTD pair drives the other half-bridge. The detailed timing
relationship is shown below. 

Figure 20. New Phase Shift Control Waveforms
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2.10 CCFL Striking Sequence 

Figure 21. CCFL Ignites

Figure 22. CCFL Does Not Ignite

 

Figure 23. Open Lamp
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2.11 PCB Layout Guideline 
1. Separating ground for analog and power portions of cir-

cuitry is one of the simplest and most effective methods
of noise suppression. This is shown in Figure 24. 

2. The traces between drive output and the MOSFET gates 
should be as short as possible and as wide as possible. 

3. The traces of RT, CT, and BCT should be kept away from 
high-current components and traces. 

Figure 24. PCB Layout
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3. Power Stage Design 

3.1 Resonant Circuit 

Figure 25. Resonant Circuit 
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Ideal transformer is neglected.

Assuming LM is infinite, IM is near zero.
LM is neglected.

Primary and secondary side leakage
inductances are combined.

DC blocking capacitor is neglected.

Transform the parallel resonant circuit
into the series resonant circuit.
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The resonant circuit (f) in Fig. 25 is a second-order low-pass
filter and can be described by the following normalized
parameters: 

• The corner frequency: 

• The characteristic impedance: 

• The loaded quality factor at the corner frequency fo: 

• The resonant frequency that forms the boundary between 
capacitive and inductive loads: 

• The loaded quality factor at the resonant frequency fr:

• The input impedance of the resonant circuit (f) in Fig. 25
is:   

• The resonant frequency, fr, is defined as a frequency at
which the phase shift is zero. The ratio of fr to the corner
frequency, fo, is: 

The loaded quality factors QL and Qr are related by:   

3.2 Voltage Transfer Function 

Figure 26. Input Voltage of the Resonant Circuit

As shown in Fig. 26, the input voltage of the resonant circuit 
v is a square wave of magnitude VIN, given by:             

The fundamental component of this voltage is:   

in which the amplitude of vi1 can be found from Fourier
analysis as: 

You can obtain the rms value of vi1: 

Which leads to the voltage transfer function from VIN to the
fundamental component at the input of the resonant circuit:  
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QL ω0CpRlamp
Rlamp
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--------------= = = (3.3)
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where,
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According to Fig. 25(f), the voltage transfer function of the
resonant circuit is:   

where, 

The maximum value of MVr is obtained by differentiating
the quantity under the square-root sign with respect to f/fo
and setting the result equal to zero. Hence, the normalized
peak frequency is:    

resulting in the maximum magnitude of the voltage transfer
function of the resonant circuit:    

The magnitude of the DC-to-AC voltage transfer function of
the LCD backlight inverter without losses is obtained from
(3.17) and (3.22):   

The maximum magnitude of the DC-to-AC voltage transfer
function of the LCD backlight inverter without losses is:     

3.2 Design Procedure 
A LCD monitor backlight circuit illustrates a design based
on the FAN7311. The inverter is designed to drive two
CCFLs with the following specifications. 

1) Select Transformer’s Primary Turns 

The number of primary turns is determined by Faraday’s
law. Np,min is fixed by the minimum voltage across the pri-
mary and the maximum on time. 

  where Np,min = Minimum number of primary turns
VIN,min = Minimum input voltage (Volts) 

ΔB = Core magnetic flux density change (Tesla) 
Δtmax = Maximum overlap on-time of diagonal

MOSFET switches (us)
Ae = Core cross-sectional area (mm2) 

A transformer used in a full-bridge topology operates in two
quadrants of the B-H curve such that the maximum magnetic
flux density is Bmax = 0.5ΔB. For most cores, saturation
magnetic flux density is about 400mT. Margin considered,
determine that the maximum magnetic flux density Bmax =
0.5 Bsat, so the maximum magnetic flux density is Bmax =
200mT. In an example with a minimum voltage of 9V, oper-
ating frequency 50KHz, maximum on time of diagonal
MOSFET switches of 10µs and a core cross-sectional area
(EPC17, EPC19, EFD1820) of 22mm2, the minimum num-
ber of primary turns required is: 
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Panel Model LM151X2(LG.PHILIPS LCD) 

Input Voltage 9 ~ 15V 

Striking Voltage 880Vrms 

Operating Voltage 585Vrms (Typ.) 

Operating Current 8mArms (Typ.) 

Operating Frequency 50kHz (Typ.) 

Rated Power 4.68W/CCFL 

Efficiency 85% (Typ.) 
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π 1 1
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2) Select QL and Operation Frequency to Determine the 
Turns Ratio 

Select a value of 1 for QL. Assume that fop = fpk = 50kHz
based on the LCD panel specification. From (3.21), the cor-
ner frequency is: 

From (3.11), the resonant frequency that forms the boundary
between capacitive and inductive loads is: 

Therefore, zero-voltage switching (ZVS) can be achieved at
any operating frequency. For the reference design, the
required secondary lamp voltage is 585V and the minimum
voltage is 9V. Therefore, from (3.23), the minimum number
of the turns ratio is:   

3) Determine the Required Output Capacitance 

Using the above specifications, the equivalent resistance of a
CCFL is: 

The corner frequency is 70.7kHz. Assume a parasitic capaci-
tance per lamp of 10pF. Each parasitic capacitance is effec-
tively in parallel with each of the output capacitors. 

The output capacitor is:    

Using (3.3), the value of the leakage inductance is: 

Note: Considering minimum primary turns, minimum turns
ratio, and leakage inductance, determine primary turns, turns
ratio, and the gap of core to get the required leakage induc-
tance. For the sample design, the number of primary turns is
30Ts and that of the secondary turns is 2200Ts. Turns ratio is
66.7. 

4) Select the Proper Wire Gauges for the Primary and
Secondary Transformer Windings 

The approximate primary winding rms current Ip and
approximate secondary winding rms current Is are deter-
mined by the following equations.      
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Values that must be known or selected initially: 

Values that are calculated: 

Values that must be selected with more than minimum turn ratio. 

The values that are calculated:

Parameter Description Typical Value Units 

Vlamp Nominal lamp operating voltage 585 V 

Ilamp Nominal lamp operating current 8 mA 

fop Operating frequency 50 kHz 

fpk Peak frequency 50 kHz 

Vin Input voltage 9 V 

D Duty ratio at input voltage 50 % 

QL Loaded factor at the corner frequency 1 

Cpara Parasitic capacitance 10 pF 

Ae Core cross-sectional area 22 mm2 

Bsat Saturation magnetic flux density 0.4 T 

ALleakage AL value of leakage inductance 22 nH/N2 

Bmax Maximum magnetic flux density 0.2 T 

ΔB Core magnetic flux density change 0.4 T 

Δtmax Maximum overlap on-time of diagonal switches 10 µs 

fo Corner frequency 70.71067812 kHz 

fr Resonant frequency 0 kHz 

Rlamp Equivalent resistance of a CCFL 73.125 k¾

Np,min The minimum number of transformer’s primary turns 10 Turns 

nmin The minimum number of the turns ratio 62.5 

Cout The output capacitor 20.78 pF 

Ll The leakage inductance of the transformer 164.59 mH 

Np The number of transformer’s primary turns 31 Turns 

n The number of the turns ratio 62.5

Ns The number of transformer’s secondary turns 1934.1 Turns
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