

DN05080/D

Design Note – DN05080/D

NCP1060, 12 Vout, 2W Off-line Buck Regulator

Device Input Voltage 1/0 Application Output Topology Power Isolation Smart Meters, Up to 2 W at Off-Line 100 kHz NCP1060 85 to 265 V Non-isolated **Electric Meters.** 12 Vout Buck White Goods **Output Specification** 4 to 16 Vdc depending on selected Z1 zener value **Output Voltage Output Ripple** Less than 1% **Typical Current** 100 to 150 mA for 12Vout Max Current 160 mA **Min Current** 0 mA PFC (Yes/No) No Efficiency See plots below Inrush Limiting / Fuse External fuse required **Operating Temp. Range** 0 to +50°C (dependent on IC1 cooling) Cooling Method / Convection Supply Orientation **Signal Level Control** None

Circuit Description

This design note describes a very simple, low power, constant voltage output buck power converter intended for powering electronics for power goods, electrical meters and industrial equipment where isolation from the AC mains is not required. The switching element in the converter is ON Semiconductor's NCP106x series of monolithic switchers. In this reference design, the NCP1060 is utilized with a 60 kHz switching frequency and a maximum output current of 150 mA.

This buck circuit utilizes a simple charge pump or "bootstrap" type of voltage sensing and regulation scheme composed of D2, C1. This simple sensing technique eliminates the use of an optocoupler in the feedback loop. Thanks an on chip voltage reference and error amplifier no external active components are necessary for regulation. Just simple resistor divider composed of R2, R5 and R6 to bring portion of external voltage to FB pin. This helps to achieve load regulation +/-5% over the loads 100% down to 1% of maximum rated load. Below 1% the output voltage will rise to the value of the overvoltage clamping zener diode D4 across the output. For a 12 V output a typical value for zener diode will be 15 V and at no load the output will be clamped at this level.

The sensed voltage produced on C5 is also used to power the NCP106x controller through D1 once converter has started. This auxiliary Vcc to run the chip improves the overall efficiency of the circuit and prevents the controller from running in DSS mode under normal load conditions.

Although this is low power output converter, full bridge rectifier is used, to lower input peak current. C4, L2 and C5 form a conducted EMI filter.

The 1.2 mH buck output inductor is available in several surface mount or through hole configurations from multiple vendor. This inductor should be designed to handle high voltage.

September 2015, Rev.0

DN05080/D **References:** ON Semiconductor Application Notes: AND8318, AND8328 ON Semiconductor Design Notes: DN05014, DN06011, DN06052, DN05058 ON Semiconductor NCP1060 High-Voltage Switcher for low Power offline SMPS. **PC Board:** 57.77 L Ν (\oplus) (\bigoplus) ÷ • Сб CЭ R3 \cap 32.69 ОНО R1 NCP106×SMD Buck ON Semiconductor CX1 ٥Ă 0 C2 +120 GND 👝 (\oplus) () Figure 5 - components position on PCB (top side) IC1 (\oplus) \oplus ٩P ٩P C7 A Œ D3 D1 🖸 6 R 2 R4 🗖

Figure 7 – PCB's bottom side

Table 1– Bill of materials

Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
C1	1	CAPACITOR	150 nF	10%	0805	Kemet	C0805C154K5RACTU
C2	1	ELECTROLYTIC CAPACITOR	220 μF / 35 V	20%	THROUGH HOLE	Koshin	KZH-35V221MG4
C3, C7	2	CAPACITOR	100 nF	10%	0805	Kemet	C0805C104K5RACTU
C4, C5	2	ELECTROLYTIC CAPACITOR	2.2 uF / 450 V	20%	THROUGH HOLE	United Chemi- Con	EKMG451ELL2R2MJC5S
C6	1	ELECTROLYTIC CAPACITOR	10 µF / 25 V	20%	THROUGH HOLE	Koshin	KLH025V100ME3
C8, C9	2	CAPACITOR	39 nF	10%	0805	Kemet	C0805C393K5RACTU
CX1	1	CAPACITOR X2	NU	-	THROUGH HOLE	-	-
D1	1	DIODE	MMSD4148	-	SOD123	ON Semiconductor	MMSD4148T1G
D2, D3	2	DIODE	MURA160	-	SMA	ON Semiconductor	MURA160T3G
D4	1	ZENER DIODE	MMSZ15	5%	SOD123	ON Semiconductor	MMSZ15T1G
D5, D6, D7, D8	4	DIODE	MRA4007	-	SMA	ON Semiconductor	MRA4007T3G
IC1	1	SWITCHER	NCP1060	-	SOIC10	ON Semiconductor	NCP1060AD060R2G
L1	1	INDUCTOR	1.2 mH	10%	SMD/SMT	Würth Elektronik	768775312
L2	1	INDUCTOR	1.0 mH	10%	THROUGH HOLE	Würth Elektronik	768772102
(L,N,+12V,GND)	4	TERMINAL PIN	1.0 mm	-	THROUGH HOLE	Ettinger	13.14.119
R1	1	VARISTOR	820572711	-	THROUGH HOLE	Würth Elektronik	820572711
R2	1	RESISTOR	33 kΩ	1%	0805	Rohm Semiconductor	MCR10ERTF3302
R3	1	RESISTOR	20 Ω	5%	0613	VIshay BC Components	AC03000002009JAC00
R4	1	RESISTOR	NU	-	0805	-	-
R5	1	RESISTOR	13 kΩ	1%	0805	Rohm Semiconductor	MCR10ERTF1302
R6	1	RESISTOR	220 kΩ	1%	0805	Rohm Semiconductor	MCR10ERTF2203

DN05080/D

Figure 8 – PCB's top side

Figure 9 – PCB's bottom side

© 2015 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Jaromír Uherek, e-mail: mailto: jaromir.uherek@onsemi.com