DN05018/D

Universal AC Input, 12 V Output, 10 W E-meter Power Supply

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
DESIGN NOTE

Table 1. DEVICE DETAILS

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1075, NCP431	Smart Meters, Electric Meters, White Goods	85 to 300 Vac	5 to 10 W	Flyback	Isolated $(3 \mathrm{kV})$

Characteristic	Output Specification
Output Voltage	12 Vdc
Ripple	$150 \mathrm{mV} \mathrm{p} / \mathrm{p} @$ Full Load
Nominal Current	800 mA
Max Current	1.0 A Maximum
Min Current	Zero

PFC (Yes/No)	No, (Pout < 25 W)
Efficiency	77% per Energy Star
Inrush Limiting/Fuse	Inrush Resistor (R1) \& Fuse
Operating Temp. Range	0 to $+50^{\circ} \mathrm{C}$
Cooling Method/Supply Orientation	Convection
Signal Level Control	None

Circuit Description

This design note describes a simple, low power (10 W or less), universal AC input, constant voltage power supply intended for powering utility electric meters or similar industrial equipment or white goods where isolation from the AC mains is required and low cost and high efficiency is essential.

The featured power supply is a simple flyback topology utilizing ON Semiconductor's new NCP1075 SOT-223 monolithic switcher. This Design Note provides the complete circuit schematic details and transformer design for a $12 \mathrm{~V}, 800 \mathrm{~mA} \mathrm{amp}$ power supply. Other output voltages from 3.3 Vdc up to 28 Vdc are easy to implement by modifying the values (or ratings) of a few of the secondary side output components and the flyback transformer's secondary winding (T1). The simple input EMI filter is adequate to pass Level B for FCC conducted EMI compliance and the NCP431 plus optocoupler feedback scheme provides for excellent line and load regulation along with high input-to-output isolation.

Performance characteristics for efficiency, output ripple, and internal MOSFET drain switching characteristics are shown in the figures and plots below. Enhanced input transient protection (lightning, etc.) can be accomplished with the addition of an appropriate TVS device across C2.

Key Features

- Universal AC Input Range (85-300 Vac).
- Input Filter (Pi-network) for Conducted EMI Attenuation and Input Transient Protection
- Very Low Standby (No Load) Power Consumption
- Frequency Foldback under Light Load and/or Over-current Conditions
- Secondary Circuit Easily Configured for Different Output Voltages
- Inherent Over-current, Over-voltage and Over-temperature Protection

10 W NCP1075 Power Supply with Universal AC Input

DN05018/D

12 V Transformer Design

Project/Customer: ON Semiconductor - NCP1075 10W PSU
Part Description: 10 W Flyback Transformer, 100 kHz, 12 V/0.8 A Out
Schematic ID: T1
Core Type: EF16 (E16/8/5); 3C90 Material or Similar
Core Gap: Gap for 1.7 to 2 mH Inductance across Primary (Pins 1-4)
Inductance: $1.85 \mathrm{mH} \pm 5 \%$
Bobbin Type: 8 Pin Horizontal Mount for EF16

Windings (in order):

Winding \#/Type
Primary (4-1)

12 V Secondary $(7,8-5,6) \quad 10$ turns of \#24 triple insulated wire over one layer. Self leads to pins per drawing. Insulate with a layer of Mylar tape.

Vcc/Boost $(3-2) \quad 10$ turns of \#35HN spiral wound over 1 layer with 2 mm end margins. Insulate with tape for 3 kV .

Varnish assembly

Hipot: 3 kV from Vcc/primary to secondary.

A 5 Vout version of this transformer is available on request.

DN05018/D

12 Vout Efficiency vs Load (NCP1075)

Average efficiency for both 120 Vac and 230 Vac was 77%.
Figure 1. Efficiency vs. Load Curves

Standby (No Load) Input Power
 120 Vac: 74 mW 230 Vac: 107 mW

Figure 2. Full Load Output Ripple @ 120 Vac Input

DN05018/D

Figure 3. MOSFET Drain Voltage (120 Vac Input, 12 V, 1 A Load on Output)

Figure 4. MOSFET Drain Voltage (120 Vac Input, 12 V, 250 mA Output)

Figure 5. EMI Profile

Table 2. BILL OF MATERIALS FOR 12 Vout, 10 W NCP1075 FLYBACK

Designator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed
$\begin{gathered} \text { D7 } \\ (12 \text { Vout }) \end{gathered}$	1	Schottky Diode	$2 \mathrm{~A}, 60 \mathrm{~V}$		SMB	ON Semiconductor	MBRS260T3	No
D7 (5 Vout)	1	Schottky Diode	$3 \mathrm{~A}, 40 \mathrm{~V}$		SMB	ON Semiconductor	MBRS2040L	No
$\begin{gathered} \text { D1, D2, D3, } \\ \text { D4 } \\ \hline \end{gathered}$	4	Diode - 60 Hz	$1 \mathrm{~A}, 800 \mathrm{~V}$		SMA	ON Semiconductor	MRA4007	No
D5	1	Diode - Fast Recov.	$1 \mathrm{~A}, 600 \mathrm{~V}$		Axial Lead	ON Semiconductor	1N4937	No
D6	1	Signal Diode	$100 \mathrm{~mA}, 100 \mathrm{~V}$		SOD-123	ON Semiconductor	MMSD4148A	No
U3	1	Programmable Zener	2.5 V		$\begin{aligned} & \text { SOIC8/ } \\ & \text { SOT23 } \end{aligned}$	ON Semiconductor	NCP431A	No
U2	1	Optocoupler	CTR $>1=0.5$		4-pin	Vishay or NEC	$\begin{aligned} & \text { SFH6156A-4 or } \\ & \text { PS2561L-1 } \end{aligned}$	Yes
U1	1	Switcher IC NCP1075	100 kHz		SOT223	ON Semiconductor	NCP1075ST100	No
C1, C2	2	"X" Cap, Box Type	$100 \mathrm{nF}, \mathrm{X} 2$		$\mathrm{LS}=15 \mathrm{~mm}$	Rifa, Wima	TBD	Yes
C8	1	"Y1" Cap, Disc Type	$1 \mathrm{nF}, \mathrm{Y} 1$		$\mathrm{LS}=7.5 \mathrm{~mm}$	Rifa, Wima	TBD	Yes
C4	1	Ceramic Cap, Disc	$1 \mathrm{nF}, 1 \mathrm{kV}$	5\%	$\mathrm{LS}=7.5 \mathrm{~mm}$	Rifa, Wima	TBD	Yes
C7	1	Ceramic Cap, Monolythic	$1 \mathrm{nF}, 50 \mathrm{~V}$	10\%	1206	AVX, Murata	TBD	Yes
$\begin{gathered} \text { C10, C11, } \\ \text { C12 } \end{gathered}$	3	Ceramic Cap, Monolythic	$100 \mathrm{nF}, 50 \mathrm{~V}$	10\%	1206	AVX, Murata	TBD	Yes
C3	1	Electrolytic Cap	$\begin{gathered} 22 \mu \mathrm{~F}, \\ 400 / 450 \mathrm{~V} \end{gathered}$	10\%	$\begin{aligned} \mathrm{LS} & =7.5 \mathrm{~mm} \\ \mathrm{D} & =16 \mathrm{~mm} \end{aligned}$	UCC, Panasonic	TBD	Yes
C6	1	Electrolytic Cap	$4.7 \mu \mathrm{~F}, 50 \mathrm{Vdc}$	10\%	$\begin{aligned} \mathrm{LS} & =2.5 \mathrm{~mm} \\ \mathrm{D} & =6.3 \mathrm{~mm} \end{aligned}$	UCC, Panasonic	TBD	Yes
C5	1	Electrolytic Cap	$22 \mu \mathrm{~F}, 25 \mathrm{~V}$	10\%	$\begin{aligned} \mathrm{LS} & =2.5 \mathrm{~mm}, \\ \mathrm{D} & =6.3 \mathrm{~mm} \end{aligned}$	UCC, Panasonic	TBD	Yes
C9A, C9B	2	Electrolytic Cap	$1000 \mu \mathrm{~F}, 16 \mathrm{~V}$	10\%	$\begin{aligned} & \mathrm{LS}=5 \mathrm{~mm} \\ & \mathrm{D}=12.5 \mathrm{~mm} \end{aligned}$	UCC, Panasonic	TBD	Yes
R1	1	Resistor, 3 W, Wire Wound	4.7 ת, 3 W	10\%	$\begin{aligned} \mathrm{LS} & =7.5 \mathrm{~mm} \\ \mathrm{D} & =7 \mathrm{~mm} \end{aligned}$	Ohmite, Dale	TBD	Yes
R3	1	Resistor, 0.5 W , Metal Film	$68 \mathrm{k} \Omega, 0.5 \mathrm{~W}$	10\%	Axial Lead; $\mathrm{LS}=12.5 \mathrm{~mm}$	Ohmite, Dale	TBD	Yes
R2A, R2B	2	Resistor, 1/4 W SMD	$3.3 \mathrm{M} \Omega$	5\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
R5	1	Resistor, 1/4 W SMD	10Ω	5\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
R4	1	Resistor, 1/4 W SMD	$1 \mathrm{k} \Omega$	5\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
R9, R10	2	Resistor, 1/4 W SMD	$10 \mathrm{k} \Omega$	1\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
R7	1	Resistor, 1/4 W SMD	$1 \mathrm{k} \Omega$	1\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
$\begin{gathered} \text { R6 } \\ \text { (12 Vout) } \end{gathered}$	1	Resistor, 1/4 W SMD	$1 \mathrm{k} \Omega$	1\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
R6 (5 Vout)	1	Resistor, 1/4 W SMD	240Ω	1\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
$\begin{gathered} \text { R8 } \\ \text { (12 Vout) } \end{gathered}$	1	Resistor, 1/4 W SMD	$39 \mathrm{k} \Omega$	5\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
R8 (5 Vout)	1	Resistor, 1/4 W SMD	$10 \mathrm{k} \Omega$	1\%	SMD 1206	AVX, Vishay, Dale	TBD	Yes
F1	1	Fuse, TR-5 Style	1.5 A		$\begin{gathered} \text { TR-5, } \\ \mathrm{LS}=5 \mathrm{~mm} \end{gathered}$	Minifuse		Yes
L1A/B	2	Inductor (EMI Choke)	$1 \mathrm{mH}, 500 \mathrm{~mA}$		See Wurth Drawing	$\begin{aligned} \mathrm{LS} & =5 \mathrm{~mm}, \\ \mathrm{D} & =8 \mathrm{~mm} \end{aligned}$	7447728102	Yes
$\begin{gathered} \mathrm{T} 1 \\ (12 \text { Vout }) \end{gathered}$	1	Transformer	E20/10/6 Core		See Mag Drawing	Wurth Magnetics		Yes
J1, J2	2	Screw Terminal			$L S=0.2^{\prime \prime}$	DigiKey	\# 281-1435-ND	Yes

NOTE: Grey indicates part change with Vout change.

REFERENCES

[1] ON Semiconductor Data Sheet for NCP1251/D

Controller in TSOP6 Package.

[2] ON Semiconductor Design Notes DN05012/D, DN05014/D, DN05017/D.

> ON Semiconductor and the ©iN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guaranter regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and speceifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "yppical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILCC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Europe, Middie East and
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

