> How to Select the Frequency Foldback Product Option When Designing a Compact, High-Efficiency PFC Stage Using the NCP1602

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

APPLICATION NOTE

auxiliary power source. Its start-up level is lower than 11.25 V to allow the circuit to be powering from a $12-\mathrm{V}$ rail. Both versions feature a large V_{CC} operating range (9.5 V to 30 V).

- Fast Line / Load Transient Compensation (Dynamic Response Enhancer and Soft OVP):
Due to the slow loop response of traditional PFC stages, abrupt changes in the load or in the input voltage may cause significant over or under-shoots. This circuit drastically limits these possible deviations from the regulation point.
- Safety Protections:

NCP1602 features make the PFC stage extremely robust. Among them, we can mention the Brown-Out Detection block (see NOTE below) that stops operation when the ac line is too low and the 2 -level Current Sensing, that forces a low duty-ratio operation mode in the event that the current exceeds 150% of the current limit which may be caused by the inductor saturation or by a short of the bypass or boost diode.

NOTE: The voltage of the Brown-out detection block input pin (CS/ZCD) is also used to detect the line range and reduce the loop gain in high-line conditions ($2-$ step feed-forward)

- Eased Manufacturing and Safety Testing:

Elements of the PFC stage can be accidently shorted, badly soldered or damaged as a result of manufacturing or handling incidents, excessive operating stress or other troubles. In particular, adjacent pins of controllers can be shorted, a pin, grounded or badly connected. It is often required that such open/short situations do not cause fire, smoke nor loud noise. The NCP1602 integrates enhanced functions that help address requirement, for instance, in case of an improper pin connection (including GND) or of a short of the boost or bypass diode.

Figure 1. EVB Schematic with Power and Control Circuitry

Step 1: Define the Input Parameters Values

- $\left(\mathrm{V}_{\text {line,rms }}\right)_{\mathrm{LSL}}$: Lower operating line voltage. This is the minimum rms input voltage for which the PFC stage operates in nominal conditions.
- $\left(\mathrm{V}_{\text {line, rms }}\right)_{\text {USL }}$: Higher operating line voltage. This is the maximum input rms voltage for which the PFC stage operates in nominal conditions.
- $\mathrm{P}_{\text {eff }}$: Power efficiency defined by

$$
P_{\text {eff }}=\frac{P_{\text {out,avg }}}{P_{i n, a v g}}
$$

- $\left(\mathrm{P}_{\text {out,avg }}\right)_{\text {LSL }}$: Lower operating input power
- ($\left.\mathrm{P}_{\text {out,avg }}\right)_{\text {USL }}$: Higher operating input power
- $\left(\mathrm{P}_{\text {out,avg }}\right)_{\mathrm{FF}}$: Input power at which the CrM to DCM transition occurs
- L : Power inductor

Step 2: Calculate the Maximum Inductor Value

Average input power is related to line voltage power inductor value and $t_{\mathrm{ON}, \max }$ by the following and well known equation:

$$
\begin{equation*}
P_{\mathrm{in}, \mathrm{avg}}=\frac{\left(\mathrm{V}_{\mathrm{in}, \mathrm{rms}}\right)^{2}}{2 \cdot \mathrm{~L}} \cdot \mathrm{t}_{\mathrm{ON}, \max } \tag{eq.1}
\end{equation*}
$$

A more well known equation is the definition of power efficiency (eq.2)

$$
\begin{equation*}
P_{\text {eff }}=\frac{P_{\text {out, avg }}}{P_{i n, a v g}} \tag{eq.2}
\end{equation*}
$$

Now, if we want to chose an inductor value to be able to provide at least 50 percent more output power than the higher operating input power, it will be a maximum inductor value given by the following equation.

$$
\begin{equation*}
\mathrm{L}_{\max }=\frac{\left(\mathrm{V}_{\mathrm{in}, \mathrm{~ms}}\right)_{\mathrm{LSL}}^{2}}{2 \cdot \frac{\left(\mathrm{P}_{\text {out }, \text { avg }}\right)_{\mathrm{USL}}}{\left(\mathrm{P}_{\text {eff }}\right)_{\mathrm{USL}}} 1.5} \cdot \mathrm{t}_{\mathrm{ON}, \max } \tag{eq.3}
\end{equation*}
$$

$t_{\text {ON, max }}$ in the above equation will depend on High Line or Low Line condition.
Low Line/High Line condition is normally sensed by the controller when the resistor divider ratio of the pin CSZCD is equal to 138 so for example a 110 V line application will be sensed as Low Line (LL) and a 230 V line application will be sensed High Line (HL).
Low Line condition can also be forced by using a resistor divider ratio of the pin CSZCD equal to 2×138, at the expense of loosing OVP2 functionality and not being able to use a Brown-out option. Forcing Low Line means the controller will internally set Low Line condition even if the mains voltage is equal to 230 V .
Because Frequency Foldback options are set based on $\mathrm{t}_{\mathrm{ON}, \max }$ value and Low Line / High Line condition, the $\mathrm{L}_{\text {max }}$ value will be calculated using the $\mathrm{t}_{\mathrm{ON}, \max }$ values of Table 1.

Table 1. NCP1602 FREQUENCY FOLDBACK OPTIONS

$\mathbf{N C P 1 6 0 2}$ Option	$\mathbf{V}_{\text {REF,DT }}(\mathbf{V})$	$\mathbf{t}_{\mathbf{O N}, \text { max,LL }} \mathbf{(s)}$	$\mathbf{t}_{\mathbf{O N}, \mathbf{m a x}, \mathrm{HL}}(\mathbf{s})$	$\mathbf{t}_{\mathbf{O N}, \mathrm{FF}, \mathrm{LL}}(\boldsymbol{\mu s})$	$\mathbf{t}_{\mathbf{O N}, \mathrm{FF}, \mathrm{HL}}(\boldsymbol{\mu s})$
A	0.27	25.00	8.33	1.97	0.658
B	0.45	25.00	8.33	3.29	1.100
C	0.68	25.00	8.33	4.97	1.660
D	0.54	12.50	4.17	1.97	0.658
E	0.90	12.50	4.17	3.29	1.100
F	1.35	12.50	4.17	4.93	1.640
G	0.82	8.33	2.78	2.00	0.666
H	1.35	8.33	2.78	3.29	1.100
I	2.00	8.33	2.78	4.87	1.620

For example for 207 V mains minimum operating voltage, $36 \mathrm{~W}\left(\mathrm{P}_{\text {out,avg }}\right)_{\text {USL }}=36 \mathrm{~W},\left(\mathrm{P}_{\text {eff }}\right)_{\text {USL }}=0.9$ and Option G the $\mathrm{L}_{\text {max }}$ value will be given for High Line and Low Line by:

$$
\begin{align*}
L_{\max , \mathrm{G}, \mathrm{HL}} & =\frac{207^{2}}{2 \cdot \frac{36}{0.9} 1.5} \cdot 2.78 \mathrm{e}-6=0.993 \mathrm{mH} \tag{eq.4}\\
L_{\max , \mathrm{G}, \mathrm{LL}} & =\frac{207^{2}}{2 \cdot \frac{36}{0.9} 1.5} \cdot 8.33 \mathrm{e}-6=2.98 \mathrm{mH}
\end{align*}
$$

(eq. 5)

Step 3: Select the Product Options Compatible with a Maximum Switching Frequency at Line Zero Crossing

If we start at maximum power and we reduce this power, the maximum switching frequency, which is obtained close to line zero crossing, increases because we are in CrM mode. The maximum of this maximum switching frequency is obtained just before the PFC controller enters into DCM mode. After entering the DCM mode the switching frequency starts to reduce (Frequency Foldback) because a VCTRL based dead time is added after the end of inductor demagnetization. The controller operates at constant ton, and the CrM-DCM border is reached for a ton value equal to $t_{\mathrm{ON}, \mathrm{FF}}$ which depends on product option depicted in Table 1 . Theoretically and using a very simple model not taking into account the ringing frequency of the drain voltage after the end of demagnetization, at line zero crossing the tofF is almost zero and the maximum switching frequency is given by:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sw}, \max }=\frac{1}{\mathrm{t}_{\mathrm{ON}}} \tag{eq.6}
\end{equation*}
$$

However $\mathrm{t}_{\mathrm{OFF}}$ is not equal to zero at line zero crossing but given by:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{OFF}, \mathrm{ZC}}=\pi \sqrt{\mathrm{L} \cdot \mathrm{C}_{\mathrm{drain}}} \tag{eq.7}
\end{equation*}
$$

Where L is the boost PFC inductor and $\mathrm{C}_{\text {drain }}$ the total capacitance between powermosfet drain node and ground.

So the maximum of the maximum switching frequency at line zero crossing is given by:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sw}, \text { max }, F F, \mathrm{i}}=\frac{1}{\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{i}}+\pi \sqrt{\mathrm{L} \cdot \mathrm{C}_{\text {drain }}}} \tag{eq.8}
\end{equation*}
$$

The maximum of $\mathrm{F}_{\mathrm{Sw}, \text { max }}$ named $\mathrm{F}_{\mathrm{sw}, \text { max, } \mathrm{FF}, \mathrm{i}}$ is given by the $t_{O N}$ value at CrM-DCM border $\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{LL}, \mathrm{i}}$ or $\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{HL}, \mathrm{i}}$ and depends on NCP1602 option i shown in Table 1.
For example, using option E, Max(Fsw,max) is given by:

$$
\begin{equation*}
F_{\mathrm{sw}, \text { max }, \mathrm{FF}, \mathrm{E}}=\frac{1}{\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{LL}, \mathrm{E}}+\pi \sqrt{\mathrm{L} \cdot \mathrm{C}_{\mathrm{drain}}}} \tag{eq.9}
\end{equation*}
$$

with $\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{LL}, \mathrm{E}}=3.29 \mu \mathrm{~s} @$ Low Line

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sw}, \text { max }, F F, \mathrm{E}}=\frac{1}{\mathrm{t}_{\mathrm{ON}, F F, H L, E}+\pi \sqrt{\mathrm{L} \cdot \mathrm{C}_{\mathrm{drain}}}} \tag{eq.10}
\end{equation*}
$$

with $\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{HL}, \mathrm{E}}=1.10 \mu \mathrm{~s} @$ High Line
Assuming Low Line can be forced, there are $2 \mathrm{x} 9=18$ $t_{\mathrm{ON}, \mathrm{FF}}$ values corresponding to the product options of Table 1 so 18 cases will have to be check with respect to line zero crossing frequency criteria. Only a certain number of product option will be acceptable.

Step 4: Select the Product Options Compatible with the Input Power at which the Switching Transitions from CrM to DCM

The input power at which the transition from CrM to DCM mode occurs (see Figure 2) is given by:

$$
\begin{equation*}
P_{\mathrm{in}, \mathrm{avg}, \mathrm{FF}, \mathrm{i}}=\frac{\left(\mathrm{V}_{\text {line,rms }}\right)^{2}}{2 \mathrm{~L}} \mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{i}} \tag{eq.11}
\end{equation*}
$$

It can be clearly seen that for a given line voltage and inductor value, the product option i, through the parameter $t_{O N, F F}$, controls the $P_{i n, a v g, F F}$ value.

Figure 2. Line Zero Crossing Frequency versus Input Power

NOTE: The saw tooth shape of $\mathrm{F}_{\mathrm{sw}, \max }$ versus $\mathrm{P}_{\text {in,avg }}$ in DCM is due to the number of valleys

Step 5: Check if Minimum Frequency at Maximum Line Voltage Fulfils Requirements

We have been checking so far for the maximum of line zero crossing frequency, but there is also the minimum
switching frequency $\mathrm{F}_{\mathrm{sw}, \min }$ which appears at maximum line voltage (see Figure 3) and as it carries more power is worth to check.

Figure 3. Switching Frequency versus Line Voltage versus Time

In CrM the minimum swiching frequency Fsw,min is given by:

$$
\begin{equation*}
F_{\mathrm{sw}, \min }=\left(1-\frac{\mathrm{V}_{\text {line,rms }} \sqrt{2}}{\mathrm{~V}_{\mathrm{out}}}\right) \cdot \frac{1}{\mathrm{t}_{\mathrm{ON}}} \tag{eq.12}
\end{equation*}
$$

The maximum of $\mathrm{F}_{\mathrm{sw}, \min }$ is reached at the CrM-DCM boundary and is given by:

$$
\begin{equation*}
F_{\mathrm{sw}, \min , \mathrm{FF}, \mathrm{i}}=\left(1-\frac{\mathrm{V}_{\text {line,rms }} \sqrt{2}}{\mathrm{~V}_{\mathrm{out}}}\right) \cdot \frac{1}{\mathrm{t}_{\mathrm{ON}, \mathrm{FF}, \mathrm{i}}} \tag{eq.13}
\end{equation*}
$$

Step 5: Using the Excel Spreadsheet

A special Excel Spreadsheet named AN1602_FFB_OPTIONS.xlsx has been written for helping choosing the inductor value and product option, for a given application. It contains all the formulas given in this document.

Figure 4. Screenshot of the Excel Spreadsheet for Low Line State

Figure 5. Screenshot of the Excel Spreadsheet for High Line State

ON Semiconductor and the (4iN) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitabiity of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

