AND9328/D

AX8052 Oscillator Calibration

ON Semiconductor®

www.onsemi.com

APPLICATION NOTE

Introduction

The built-in Fast RC (FRC) and Low Power (LP) oscillators offer many benefits, such as low current consumption, and fast start-up and shut-down. After applying factory calibration, they offer a frequency accuracy in the order of 1-2%.

Accuracy may be improved by calibrating these oscillators against a crystal reference frequency source. All circuits involving a radio transceiver feature an accurate frequency reference. Furthermore, the built–in crystal or low power crystal oscillator may also be used as calibration frequency source.

The AX8052 contains circuitry that can calibrate the FRC and LP oscillators autonomously, without software intervention. These circuits work similarly to a digital phase locked loop (PLL). They slave the oscillators to the reference frequency, as long as calibration and the reference clock source is enabled.

This raises the question of when the calibration is "good enough". The example code of this application note compares measured oscillator periods against the reference periods, and signals end of calibration as soon as the measured period is no more than 0.2% for the FRC and 0.4% for the LP oscillator off for four consecutive measurements.

Code Overview

The code assumes an AX8052F143; however, it will work also on other Axsem SOC with straightforward code changes.

The function calibrate_oscillators implements the setup of oscillator calibration, and the monitoring of the terminating condition.

The variables fremaxerr and lpmaxerr hold the maximum allowed deviation of the measured period compared to the reference period in order to consider the oscillator calibrated. This is set to 0.2% for the FRC and 0.4% for the LP oscillator.

frecalent and lpcalent count the number of "good" periods and thus serve to implement the terminating condition.

ax5043_rclk_enable switches on the radio's crystal oscillator, enables clock routing from the radio to the

microprocessor, and sets the divider ratio to two to the power of its argument.

This application note's code requires the user to set the define XTALFREQ to the frequency of the radio's crystal (in Hz). The macro XTALDIV then selects a divider that ensures the resulting frequency (macro XTALFRQDIV) is no higher than 20 MHz.

To set up the AX8052 calibration logic registers, the code uses the macro setup_osc_calibration_const from the header file libmfosc.h. This macro should only be fed with constants; it compiles to very efficient code, with all register contents computed at compile time. If the frequencies are not known at compile time, the routine setup_osc_calibration may be used.

Calibration register set-up is followed by checking the revision of the AX8052, and possibly apply workarounds for silicon errata.

The main loop of the calibration routine checks the OSCCALIB register to see whether the frequency tuning word of the FRC or LP oscillator has been updated. If so, it reads the last measured period, and compares it to the limits determined above, and updates the counter accordingly. If the terminating condition is met, the loop is exited.

At the end, oscillators are switched off and the workarounds are cleaned up.

Defining USE_INTERRUPT implements the same algorithm using the clock management interrupt, instead of the in-line version.

Conclusion

This application note presented example code for calibrating the AX8052 FRC and LP oscillators against a reference frequency, specifically the radio's crystal oscillator.

The application code may be modified as follows:

- monitoring the termination of the calibration is only needed if this information is actually used by the application code
- FRCOSCKFILT and LPOSCKFILT may be reduced to reduce oscillator phase noise at the expense of calibration speed

AND9328/D

ON Semiconductor and the in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warrantly, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for reseale in any mann

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative