
© Semiconductor Components Industries, LLC, 2016

August, 2016 − Rev. 2
1 Publication Order Number:

AND9356/D

AND9359/D

AX5043 AXRadio V2 API

Software Manual

Introduction:
This document describes AXRadio. AXRadio is intended

to be an easy to use “driver” for AXSEM Radio Chips, such
as the AX5043 and AX5051, allowing the user to focus on
his product functionality and not the details of the radio link.

The API consists of a header file, axradio.h, providing
functions for transmitting and receiving packets, and
switching the radio into different modes.

Most of the transceiver configuration is computed by
AXRadioLab and stored in non-volatile memory; it will not
be changeable by the firmware. These items include:
• Radio PHY configuration (except for channel)

• Radio MAC (Frame Format) configuration (except
actual addresses)

Some items should be runtime configurable. Items
include:
• Channel Number

• Actual MAC Addresses

PREREQUISITIES

AXRadio V2 uses the Wakeup Timer facilities of LibMF
(libmfwtimer.h). These facilities are a superset of the timing
functions of AXRadio V1, but are much more flexible; they
provide:
• 2 Timers, a slow but persistently running timer for

events that need to survive sleep, and a fast but
switched off during sleep timer for short intervals

• Multiple events per timer are supported

• Not only usable for AXRadio – also supports user
events

• ·Mechanism for scheduling callbacks from interrupt
context which run in main context

• Less overhead (assembly implementation where C
compiler generated code was too inefficient)

In order for the LibMF Wakeup Timer to work properly,
the user should not use enter_sleep and enter_standby
directly, but should use wtimer_idle instead. Also, during
long running computations, wtimer_idle should be called
periodically to allow pending callbacks to run.

www.onsemi.com

APPLICATION NOTE

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
2

CONSTANTS

Operation Modes

Table 1.

Mode Description

AXRADIO_MODE_
OFF

The radio is off, but in a
configured state that allows it
to be switched quickly to any
other mode

AXRADIO_MODE_
DEEPSLEEP

The radio is in deep sleep
mode; this mode has the
lowest possible power
consumption, but may take
some time to leave

AXRADIO_MODE_
CW_TRANSMIT

The radio is setup for CW
(constant carrier wave)
transmit (used for basic tests)

AXRADIO_MODE_
ASYNC_TRANSMIT

The radio is set up for
asynchronous transmission.
After a call to
axradio_transmit, the
transmitter is switched on and
the packet is sent, afterwards
the transmitter is switched off
again.

AXRADIO_MODE_
WOR_TRANSMIT

Same as
AXRADIO_MODE_ASYNC_T
RANSMIT, but starts
transmission with a wakeup
preamble

AXRADIO_MODE_
ACK_TRANSMIT

The radio is set up for
asynchronous transmission.
After a call to
axradio_transmit, the
transmitter is switched on and
the packet is sent, afterwards
the radio waits for an
acknowledge from the slave. If
no acknowledge is received
within a configured timespan,
the packet is (optionally)
retransmitted.

AXRADIO_MODE_
WOR_ACK_TRANSMIT

Same as
AXRADIO_MODE_ACK_TRA
NSMIT, but starts transmission
with a wakeup preamble

AXRADIO_MODE_
ASYNC_RECEIVE

The radio is setup for
continuous asynchronous
receive.

AXRADIO_MODE_
WOR_RECEIVE

The radio is setup for
wake-on-radio receive.

AXRADIO_MODE_
ACK_RECEIVE

The radio is setup for
continuous asynchronous
receive. After a packet is
received, an acknowledge
packet is sent back.

AXRADIO_MODE_
WOR_ACK_RECEIVE

The radio is setup for
wake-on-radio receive. After a
packet is received, an
acknowledge packet is sent
back.

AXRADIO_MODE_
STREAM_TRANSMIT

The radio is setup for
streaming transmit (used for
basic tests)

AXRADIO_MODE_
STREAM_TRANSMIT_
UNENC

The radio is setup for
unencoded streaming transmit
(used for basic tests)

AXRADIO_MODE_STREAM_
TRANSMIT_SCRAM

The radio is setup for
scrambled streaming transmit
(used for basic tests)

AXRADIO_MODE_STREAM_
RECEIVE

The radio is setup for
streaming receive (used for
basic tests)

AXRADIO_MODE_STREAM_
RECEIVE_UNENC

The radio is setup for
unencoded streaming receive
(used for basic tests)

AXRADIO_MODE_STREAM_
RECEIVE_SCRAM

The radio is setup for
scrambled streaming receive
(used for basic tests)

AXRADIO_MODE_
SYNC_MASTER

The radio is setup as
synchronous master.

AXRADIO_MODE_
SYNC_ACK_MASTER

The radio is setup as
synchronous master. The
master expects an
acknowledge from the slave,
and reports the acknowledge
or the absence of an
acknowledge to the caller.

AXRADIO_MODE_
SYNC_SLAVE

The radio is setup as
synchronous slave.

AXRADIO_MODE_
SYNC_ACK_SLAVE

The radio is setup as
synchronous slave. The slave
sends an acknowledge
whenever a packet is
received.

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
3

Error Codes

Table 2.

Error Code Description

AXRADIO_ERR_
NOERROR

No error occurred, operation
completed successfully

AXRADIO_ERR_
NOTSUPPORTED

The operation is not supported

AXRADIO_ERR_BUSY The operation could not be
completed because the radio
was busy

AXRADIO_ERR_TIMEOUT The operation timed out (eg.
The maximum number of
retransmission exceeded)

AXRADIO_ERR_INVALID The operation failed because
of an invalid parameter.

AXRADIO_ERR_NOCHIP No radio chip was found

AXRADIO_ERR_RANGING The frequency could not be
ranged.

AXRADIO_ERR_LOCKLOST PLL lock was lost

AXRADIO_ERR_
RETRANSMISSION

This packet is a
retransmission (due to no
acknowledge received)

AXRADIO_ERR_RESYNC The synchronous slave
restarts resynchronization

AXRADIO_ERR_
RESYNCTIMEOUT

The synchronous slave
restarts resynchronization.

AXRADIO_ERR_
RECEIVESTART

The synchronous slave
powers up the receiver.

Status Change Codes

Table 3.

Status Change Code Description

AXRADIO_STAT_
RECEIVE

Receive Packet arrived

AXRADIO_STAT_
TRANSMITSTART

Transmitter start notification

AXRADIO_STAT_
TRANSMITDATA

Transmitter new data needed
notification for streaming transmit
modes

AXRADIO_STAT_
TRANSMITEND

Transmitter end notification

AXRADIO_STAT_
RECEIVESFD

Receiver SFD detected notification

AXRADIO_STAT_
CHANNELSTATE

Channel state update

In the acknowledge modes, at the start of transmission,
TRANSMITSTART is called either with NOERROR or
RETRANSMISSION, depending on whether it is the first or
subsequent transmission of a packet. At the end of the packet
transmission, TRANSMITEND is called with BUSY. When
an acknowledge is received, TRANSMITEND is called
again with NOERROR. If no acknowledge is received after
a timeout, and the number of retransmissions is used up,
TRANSMITEND is called with TIMEOUT.

The synchronous master first calls TRANSMITDATA
approximately 1ms before turning on the transmitter. This
call may be used to prepare the transmit packet and call
AXRadio_transmit.

FUNCTIONS

UINT8_T AXRADIO_INIT (VOID)

Initialize the driver and the chip. This routine must be
called before any other AXRadio routine is called. Returns
one of the following error codes:

Table 4.

Error Code Description

AXRADIO_ERR_
NOERROR

No error occurred.

AXRADIO_ERR_
NOCHIP

No radio chip was found

AXRADIO_ERR_
RANGING

The frequency could not be ranged

UINT8_T AXRADIO_CANSLEEP (VOID)

This function should be used as follows:
wtimer_runcallbacks();

uint8_t flags = WTFLAG_CANSTANDBY;

if (axradio_cansleep())

flags |= WTFLAG_CANSLEEP;

wtimer_idle(flags);

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
4

UINT8_T AXRADIO_SET_MODE(UINT8_T MODE)
This function sets the mode of the radio. Supply one of the

AXRADIO_MODE_* constants. Not all modes may be
supported, depending on the configuration set in
AXRadioLab.

It returns one of the following error codes:

Table 5.

Error Code Description

AXRADIO_ERR_
NOERROR

No error occurred, operation
completed successfully

AXRADIO_ERR_
NOTSUPPORTED

The operation is not supported

AXRADIO_ERR_
NOCHIP

No radio chip was found

AXRADIO_ERR_
RANGING

The frequency could not be ranged

UINT8_T AXRADIO_GET_MODE(VOID)
This function returns the current chip operating mode. See

the AXRADIO_MODE * constants.

UNIT8_T AXRADIO_SET_CHANNEL(UINT8_T CHNUM)
This function sets the channel number to be used. The

mapping between channel number and frequency is
configured in AXRadioLab. This function returns one of the
following error codes:

Table 6.

Error Code Description

AXRADIO_ERR_
NOERROR

No error occurred, operation
completed successfully

AXRADIO_ERR_
BUSY

The operation could not be
completed because the radio was
busy

AXRADIO_ERR_
INVALID

The operation failed because of an
invalid parameter

AXRADIO_ERR_
RANGING

The frequency could not be ranged

UINT8_T AXRADIO_GET_CHANNEL(VOID)
This function returns the currently used channel number.

UINT8_T AXRADIO_GET_PLLRANGE(VOID)
UINT8_T AXRADIO_GET_PLLRANGE_TX(VOID)

These functions return the current PLL ranges for the
currently set frequency. This is mainly for debugging.

VOID AXRADIO_SET_LOCAL_ADDRESS(CONSTRUCT
AXRADIO_ADDRESS_MASK ADDR)

This function sets the MAC address of the local radio
node. The length of a MAC address is configured by
AXRadioLab.

The AXRadio_address_mask structure has the following
definition:

struct axradio_address_mask {

uint8_t addr[4];

uint8_t mask[4];

};

VOID AXRADIO_GET_LOCAL_ADDRESS(STRUCT
AXRADIO_ADDRESS_MASK ADDR)

This function returns the currently configured local radio
node MAC address. A pointer to a memory space where the
address can be stored into must be provided.

UINT8_T AXRADIO_SET_PREQOFFSET(INT32_T
OFFS)

AXRadio allows the user to shift the transceiver
somewhat from the channel center frequency. This can be
useful in a master-slave setup, where the slaves adjust their
frequency upon reception from the master (AXRadio
measures the frequency offset of every packet received), to
compensate for drifting crystals.

This routine sets the frequency offset from the channel
center frequency that should be used. The offset remains
when channels are switched.

The unit is a driver internal one. It can be converted to and
from Hz using the axradio_conv_freq_* routines.

INT32_T AXRADIO_GET_FREQOFFSET(VOID)
This routine returns the current frequency offset.

INT32_T AXRADIO_CONV_FREQ_TOHZ(INT32_T F)
This routine converts internal unit frequency offsets to Hz.

INT32_T AXRADIO_CONV_FREQ_FROMHZ(INT32_T F)
This routine converts frequency offsets in Hz into internal

units for frequency offset.

INT32_T AXRADIO_CONV_TIMEINTERVAL_TOTIMER0
(INT32_T DT)

This function converts a time interval, such as a difference
of two status callback st −> time values, into wakeup timer
0 units.

UINT32_T AXRADIO_CONV_TIME_TOTIMER0
(UINT32_T DT)

This function converts an absolute time, such as a status
callback st −> time value, from internal units to wakeup
timer 0 units. Note that status callback st −> time values are
generally only valid during the status callback, as the
relationship between the internal timer and the wakeup timer
0 may change, for example when the radio chip is powered
down.

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
5

UINT8_T AXRADIO_TRANSMIT(CONST STRUCT
AXRADIO_ADDRESS *ADDR, CONST UINT8_T *PKT,
UINT16_T LEN)

Calling this function transfers the user packet data pointed
to by pkt and having length len to AXRadio for transmission.
Only one packet may be in the process of being transmitted
at any time. If a second packet transmission is attempted, a
busy error is returned.

The semantics of this routine slightly differs depending on
whether the driver is in an asynchronous or a synchronous
mode.

In an asynchronous mode, calling this routine queues the
packet and immediately starts transmission.

In a synchronous mode, the data is stored for transmission
in the next time slot. If this routine is called a second time
before the next time slot, the old data is replaced by the data
passed in the second call. This may be used to record default
data early in the cycle, and possibly update the data if
something happens.

The addr argument specifies the address of the remote
station this packet is destined to.

The axradio_address structure has the following
definition:

struct axradio_address {

uint8_t addr[4];

};

UINT8_T AXRADIO_AGC_FREEZE(VOID)
UINT8_T AXRADIO_AGC_THAW(VOID)

axradio_agc_freeze/axradio_agc_thaw may be used
during the streaming receive modes to freeze or thaw the
automatic gain control

VOID AXRADIO_STATUSCHANGE (CONST XDATA
STRUCT AXRADIO *ST)

This function must be provided by the user code. It is
called by AXRadio whenever an event that needs to be
notified happens.

struct axradio_status {

uint8_t status;// one of the AXRADIO_STAT_* constants

uint8_t error; // one of the AXRADIO_ERR_* constants

uint32_t time; // timestamp of the event

//

union {

// status = = AXRADIO_STAT_
RECEIVE

struct {

 struct {

int8_t rssi; // RSSI, dBm

int32_t offset; //frequency offset,internal units

} phy;

struct {

 uint8_t remoteaddr[4];

 uint8_t localaddr[4];

 const __xdata uint8_t *raw;

} mac;

const __xdata uint8_t *pktdata;

uint16_t pktlen;

} rx;

// status == AXRADIO_STAT_CHANNELSTATE

struct {

 int8_t rssi; // RSSI, dBm

 uint8_t busy; // 1=over the LBT threshold

} cs;

} u;

};

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
6

STATIC CONFIGURATION ITEMS

These static configuration constants are computed by
AXRadioLab

EXTERN CONST _CODE UINT8_T AXRADIO_MACLEN;
This constant contains the length of the MAC header in

front of the user packet data.

EXTERN CONST __CODE UINT8_T
AXRADIO_ADDRLEN;

This constant contains the length of a MAC address, and
may be in the range of 1−4.

EXAMPLE USAGE CODE

This section lists simplified code to illustrate the usage of
the API

SIMPLE ASYNCHRONOUS
This example shows the skeleton for the simplest possible

asynchronous transmitter to receiver case.

TRANSMITTER

#include ”ax8052.h”

#include ”libmftypes.h”

#include ”libmfwtimer.h”

#include ”libmfflash.h”

#include ”libmfradio.h”

#include ”axradio.h”

static const __code struct axradio_address_mask localaddr = {

{ 0x12, 0x34, 0x56, 0x78 },

{ 0xFF, 0xFF, 0xFF, 0xFF }

};

static const __code struct axradio_address remoteaddr = {

{ 0xCA, 0xFE, 0xBA, 0xBE }

};

void axradio_statuschange(const __xdata struct axradio_status *st)

{

}

uint8_t _sdcc_external_startup(void)

{

// initialize GPIO, peripherals

if (PCON & 0x40)

return 1;

return 0;

}

#if defined(SDCC)

extern uint8_t _start__stack[];

#endif

void main (void)

{

#if !defined(SDCC)

_sdcc_external_startup();

#else

__asm

G$_start__stack$0$0 = __start__stack

globl G$_start__stack$0$0

__endasm;

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
7

#endif

flash_apply_calibration(); // check for non-existing calibration

CLKCON = 0x00;

wtimer_init(CLKSRC_LPOSC, 1, CLKSRC_FRCOSC, 7);

EA = 1;

if (!(PCON & 0x40)) {

axradio_init(); // check for error

axradio_set_local_addr(&localaddr);

} else {

AX5051_commsleepexit();

}

for (;;) {

 uint8_t flg;

 if (key is pressed) {

__xdata uint8_t userpkt[..];

// fill userpkt

axradio_transmit(&remoteaddr, userpkt, sizeof(userpkt));

 }

 wtimer_runcallbacks();

 flg = WTFLAG_CANSTANDBY;

 if (axradio_cansleep())

 flg |= WTFLAG_CANSLEEP;

 wtimer_idle(flg);

}

}

RECEIVER

#include ”ax8052.h”

#include ”libmftypes.h”

#include ”libmfwtimer.h”

#include ”libmfflash.h”

#include ”libmfradio.h”

#include ”axradio.h”

static const __code struct axradio_address_mask localaddr = {

 { 0xCA, 0xFE, 0xBA, 0xBE },

 { 0xFF, 0xFF, 0xFF, 0xFF }

};

void axradio_statuschange(const __xdata struct axradio_status *st)

{

switch (st−>status) {

case AXRADIO_STAT_RECEIVE:

// check st−>error

// display st−>u.rx.pktdata / st−>u.rx.pktlen

break;

default:

break;

}

}

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
8

uint8_t _sdcc_external_startup(void)

{

// initialize GPIO, peripherals

if (PCON & 0x40)

return 1;

return 0;

}

#if defined(SDCC)

extern uint8_t _start__stack[];

#endif

void main (void)

{

#if !defined(SDCC)

_sdcc_external_startup();

#else

__asm

G$_start__stack$0$0 = __start__stack

.globl G$_start__stack$0$0

__endasm;

#endif

flash_apply_calibration(); // check for non-existing calibration

CLKCON = 0x00;

wtimer_init(CLKSRC_LPOSC, 1, CLKSRC_FRCOSC, 7);

EA = 1;

if (!(PCON & 0x40)) {

axradio_init(); // check for error

axradio_set_local_addr(&localaddr);

} else {

AX5051_commsleepexit();

}

for (;;) {

 uint8_t flg;

 wtimer_runcallbacks();

 flg = WTFLAG_CANSTANDBY;

 if (axradio_cansleep())

 flg |= WTFLAG_CANSLEEP;

 wtimer_idle(flg);

}

}

 http://www.onsemi.com/

AND9359/D

www.onsemi.com
9

FILES

This section lists the files that need to be included in an
AXRadio project and what their purpose is.

Table 7.

File Description

axradio.h AXRadio API declaration

easyax5043.h AXRadio AX5043 private
header–AX5043 only

easyax5043.c AXRadio AX5043 main
code–AX5043 only

easyax5051.h AXRadio AX5051 private
header–AX5051 only

easyax5051.c AXRadio AX5051 main
code–AX5051 only

config.c Parameters generated by
AXRadioLab

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5817−1050

AND9359/D

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

 http://www.onsemi.com/
www.onsemi.com/site/pdf/Patent-Marking.pdf

