Universal AC Input, 5 or 12 Volt Output, 15 to 24 Watt Power Supply

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1076/77 NCP431	Smart Meters, Electric Meters, White Goods	85 to 270 Vac	15 to 25 W	CCM Flyback	Isolated $(3 \mathrm{kV})$

	Output Specification
Output Voltage	5 Vdc or 12 Vdc
Ripple	$200 \mathrm{mV} \mathrm{p/p}$ @ full load
Nominal Current	$4 \mathrm{~A} / 1.75 \mathrm{~A} \mathrm{Amps}(5 \mathrm{~V} / 12 \mathrm{~V})$
Max Current	$4.5 / 2.0 \mathrm{Amps}$
Min Current	zero

PFC (Yes/No)	No (Pout < 25W)
Average Efficiency	80\% minimum typical at 50\% load
Inrush Limiting / Fuse	Inrush resistor (Optional - R1) \& Fuse
Operating Temp. Range	0 to $+50^{\circ} \mathrm{C}$
Cooling Method $/$ Supply Orientation	Convection
Signal Level Control	None

Circuit Description

This design note describes a simple, low power (25W or less), universal AC input, constant voltage power supply intended for powering utility electric meters or similar industrial equipment or white goods where isolation from the AC mains is required and low cost and high efficiency is essential.

The featured power supply is a simple CCM flyback topology utilizing ON Semiconductor's new NCP1076/1077 series of monolithic switchers in an SOT-223 package. This Design Note provides the complete circuit schematic details and transformer design for 5V/4A and $12 \mathrm{~V} / 1.75 \mathrm{~A}$ power supplies. Other output voltages from 3.3 Vdc up to 28 Vdc are easy to implement by modifying the values (or ratings) of a few of the secondary side output components and the flyback transformer's secondary winding (T1). The simple input EMI filter is adequate to pass Level B for FCC conducted EMI compliance and the NCP431
programmable zener plus optocoupler feedback scheme provides for excellent line and load regulation along with high input-to-output isolation.

Performance characteristics for efficiency, output ripple, internal MOSFET drain switching characteristics, and conducted EMI are shown in the figures and plots below.

Key Features

-Universal AC input range ($85-270 \mathrm{Vac}$).

- Input filter (pi-network) for conducted EMI attenuation and input transient protection.
-Very low standby (no load) power consumption.
- Frequency foldback under light load and/or overcurrent conditions.
- Secondary circuit easily configured for different output voltage/current combinations.
- Inherent over-current, over-voltage and over temperature protection.

12V Circuit Schematic

20 Watt NCP1077 Power Supply with Universal AC Input (Rev 4)

12 V Transformer Design

12V/2.0A, 65 kHz Version (Wurth Electronics \# 750313861 Rev 1)

Core: E25/10/6 (812E250)
Primary A: 55 turns of 0.25 mm mag wire
12V Secondary: 22 turns of 0.6 mm Triple Insulated Wire (11 TPL, 2 layers)
Aux/Vcc: 22 turns of 0.15 mm mag wire spiral wound over 1 layer
Primary B: 55 turns of 0.25 mm mag wire
Primary Inductance (Pri A and B in series): $2 \mathrm{mH}+/-10 \%$ (gap in center leg)
Leakage Inductance (12Vsec \& Aux shorted): 30 uH max
© 2013 ON Semiconductor.
Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Frank Cathell, e-mail: f.cathell@onsemi.com

5V Circuit Schematic

20 Watt NCP1077 Power Supply with Universal AC Input (Rev 4)

5 V Transformer Design

5V/4A, 65 kHz Version (Wurth Electronics \# 750313860 Rev 01)
Core: E25/10/6 (812E250)
Primary A: 55 turns of 0.25 mm mag wire
5V Secondary: 11 turns bifilar of 0.6 mm Triple Insulated Wire (2 layers)
Aux/Vcc: 25 turns of 0.15 mm mag wire spiral wound over 1 layer
Primary B: 55 turns of 0.25 mm mag wire
Primary Inductance (Pri A and B in series): $2 \mathrm{mH}+/-10 \%$ (gap in center leg) Leakage Inductance (5Vsec \& Aux shorted): 40 uH max

Efficiency vs Load Curves

Typical Standby (no load) Input Power
120 Vac: 30 mW
230 Vac: 64 mW

Full Load Output Ripple @ 120 Vac Input

12Vout

5Vout

Note: The demo boards under test do not contain an output L/C ripple filter (see schematics above). The output ripple can be further reduced another half-order of magnitude if necessary by the addition of a 4.7 uH inductor followed by a 100 uF capacitor.

MOSFET Drain Voltage

Full Load - 120Vac Input

Light Load - 120 Vac Input

DN05049/D

EMI Profile - Quasi-peak (blue) and Average (red)

DN05049/D

Bill of Materials for 15W/20W NCP1076/1077 Flyback (Rev4)

ON Semiconductor
ON

Designator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free	Comments
D7 (12Vout)	1	Schottky diode	$3 \mathrm{~A}, 100 \mathrm{~V}$		SMC	ON Semi	MBRS3100	No		
D7 (5Vout)	1	Schottky diode	$8 \mathrm{~A}, 60 \mathrm{~V}$		DPak	ON Semi	SB80W06T or MBRD660CT	No		
D1, 2, 3, 4	4	Diode - 60 Hz ,	$1 \mathrm{~A}, 800 \mathrm{~V}$		SMA	ON Semi	MRA4007	No		
D5	1	Diode - fast recov	$1 \mathrm{~A}, 600 \mathrm{~V}$		axial lead	ON Semi	1N4937	No		
D6	1	Signal diode	100mA, 250V		SOD-123	ON Semi	MMSD103	No		
U3	1	Programmable zener	2.5 V		SOIC8 / SOT23	ON Semi	NCP431A	No		
U2	1	Optocoupler	CTR >/ $=0.5$		4-pin	Vishay or NEC	Digikey P/N = PS2561BL-1	Yes		
U1	1	Switcher IC - NCP1077/1076	65 kHz		SOT223	ON Semi	NCP1077ST65	No		
C1, C2	2	"X" cap, box type	100nF, X2		LS $=15 \mathrm{~mm}$	Rifa, Wima	Digi-Key P/N = 399-5426-ND	Yes		
C8	1	"Y1" cap, disc type	1nF, Y1		LS $=7.5 \mathrm{~mm}$	Rifa, Wima	$\begin{aligned} & \text { Digikey P/N = BC2374-ND, Mouser } \\ & \text { P/N = 75-WKP102MCPEJOKR } \end{aligned}$	Yes		
C4	1	Ceramic cap, disc	$1 \mathrm{nF}, 1 \mathrm{kV}$	5\%	LS $=7.5 \mathrm{~mm}$	Rifa, Wima	Digi-Key P/N = 478-4227-ND	Yes		
C7, C13	2	Ceramic cap, monolythic	$1 \mathrm{nF}, 100 \mathrm{~V}$	10\%	1206	AVX, Murata	TBD	Yes		
C10, 11, 12	3	Ceramic cap, monolythic	100nF, 50V	10\%	1206	AVX, Murata	Digi-Key P/N = 311-1179-1-ND	Yes		
C3	1	Electrolytic cap	22uF, 400/450V	10\%	LS=7.5mm, $\mathrm{D}=16 \mathrm{~mm}$	UCC, Panasonic	Digikey P/N = P5877-ND	Yes		
C6	1	Electrolytic cap	$4.7 \mathrm{uF}, 50 \mathrm{Vdc}$	10\%	$\mathrm{LS}=2.5 \mathrm{~mm}, \mathrm{D}=6.3 \mathrm{~mm}$	UCC, Panasonic	Digi-Key P/N = 565-1105-ND	Yes		
C5	1	Electrolytic cap	22uF, 25V	10\%	LS $=2.5 \mathrm{~mm}, \mathrm{D}=6.3 \mathrm{~mm}$	UCC, Panasonic	Digi-Key P/N = 565-1056-ND			
C9A, B (12V)	2	Electrolytic cap	1000uF, 16V	10\%	$\mathrm{LS}=5 \mathrm{~mm}, \mathrm{D}=12.5 \mathrm{~mm}$	UCC, Panasonic	Digi-Key P/N = 565-1664-ND	Yes		12 V version
C9A,B (5V)	2	Electrolytic cap	2200 or 3300uF, 6.3 V	10\%	LS $=5 \mathrm{~mm}, \mathrm{D}=12.5 \mathrm{~mm}$	UCC, Panasonic	TBD			
R1	1	Resistor, 3W, Wire wound	Use jumper wire	10\%	LS=7.5mm, D=7mm	Ohmite, Dale	Digi-Key P/N = 4.7AECT-ND	Yes		
R3	1	Resistor, 0.5W, metal film	68K, 0.5W	10\%	Axial lead; LS=12.5mm	Ohmite, Dale	Mouser = 71-FP01/268K0G5605EK	Yes		
R2A,R2B		Resistor, 1/4W SMD	3.3 Meg	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-3.30MFCT-ND	Yes		
R10	1	Resistor, 1/4W SMD	21.5K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-21.5KFCT-ND			
R11	1	Resistor, 1/4W SMD	47 ohms	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-47.0FCT-ND			
R5	1	Resistor, 1/4W SMD	10 ohms	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-10.0FCT-ND	Yes		
R4	1	Resistor, 1/4W SMD	2.7 K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-2.70KFCT-ND			
R7, R9	2	Resistor, 1/4W SMD	10K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-10.0KFCT-ND	Yes		
R12, R13		Resistor, 1/4W SMD	5.62K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-5.62KFCT-ND			
R6 (12Vout)	1	Resistor, 1/4W SMD	1K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-1.00KFCT-ND	Yes		
R6 (5Vout)	1	Resistor, 1/4W SMD	240 ohms	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-240FCT-ND	Yes		
R8 (12Vout)	1	Resistor, 1/4W SMD	38.3 K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-38.3KFCT-ND	Yes		
R8 (5Vout)	1	Resistor, 1/4W SMD	10K	1\%	SMD 1206	AVX, Vishay, Dale	Digi-Key P/N = 541-10.0KFCT-ND	Yes		
F1	1	Fuse, TR-5 style	1.5A		TR-5, LS=5mm	Minifuse	Digi-Key P/N = WK4253BK-ND	Yes		
L1A/B	1	Inductor (EMI choke)	$1 \mathrm{mH}, 500 \mathrm{~mA}$		See Wurth Drawing	LS=5mm, $\mathrm{D}=8 \mathrm{~mm}$	7447728102	Yes		
T1 (12Vout)	1	Transformer	E25/10/6 core		See Mag Drawing	Wurth Magnetics	750313861 Rev 1	Yes		
T1 (5Vout)	1	Transformer	E25/10/6 core		See Mag Drawing	Wurth Magnetics	750313860 Rev 1			
J1, J2	2	Screw Terminal			LS = 0.2"	DigiKey	\# 281-1435-ND	Yes		

Blue indicates part change with Vout change

References

ON Semiconductor data sheet for NCP1076/1077 monolithic switcher.
ON Semiconductor Design Notes DN05018, DN05043, DN05048
ON Semiconductor Application Note AND8489/D
ON Semiconductor Flyback Transformer Design Tool:
(http://www.onsemi.com/PowerSolutions/supportDoc.do?type=tools\&rpn=NCP1075)

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Frank Cathell, e-mail: f.cathell@onsemi.com

