												I	REVIS	SIONS								
					LT	R				DESC	RIPTIC	ON				D	ATE		ļ	PPR	OVED)
Prepared	l in acc	cordan	ce with	ASM	E Y14	1.24												Ve	ndor it	em dr	rawing	I
Prepared	l in acc	cordan	ice with	ASMI	E Y14	4.24												Ve	ndor it	em dr	rawing	I
Prepared	l in acc	cordan	ce with	ASM	E Y14	4.24												Ve	ndor it	em dr	rawing	1
	in acc	cordan	ce with	ASME	E Y14	4.24												Ve	ndor it	em dr	rawing	
REV		cordan	ce with	ASM	E Y14	4.24												Ve	ndor it	em dr	rawing	
REV PAGE		cordan	ce with	ASME	E Y14	4.24												Ve	ndor it	em dr	rawing	
REV PAGE REV PAGE REV STA		cordan	ce with	ASM	E Y14	4.24												Ve	ndor it	em dr	rawing	
REV PAGE REV PAGE		cordan			E Y14	1.24	2	3	4	5	6	7	8	9	10	11	12	Ve	ndor it	em dr	rawing	
REV PAGE REV PAGE REV STA		cordan	REV			1 20 BY				5	6	7	8		DLA	LAND		13 MARI	14 TIME		rawing	
REV PAGE REV PAGE REV STA OF PAGE		cordan	REV			1 20 BY		3 Nguye		5	6	7	8	с	DLA OLUN	LAND IBUS,		13 MARI 0 432	14 TIME 18-399	0	rawing	
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A	drawin	REV		PARE	1 20 BY	'hu H.	Nguye	en	5	6	7		с	DLA OLUN	LAND IBUS,	AND	13 MARI 0 432	14 TIME 18-399	0	rawing	
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	drawi	REV PAGE	E PREP CHEC	PARE	1 20 BY P	'hu H. 'hu H.		en	5	6	TITI	LE	C http CIRCL	DLA OLUN ://ww	LAND IBUS, w.land	AND OHIC dandn	13 MARI 9 432 haritin	14 TIME 18-399 ne.dla	90 .mil/		
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A	drawi	REV PAGE	E PREP CHEC	PARE	1 D BY P D BY	'hu H. 'hu H.	Nguye	en	5	6	TITI MIC CH/	L E ROC	C <u>http</u> CIRCL	DLA OLUN ://www	LAND IBUS, w.land	AND OHIC	13 MARI 9 432 haritin	14 TIME 18-399 ne.dla	90 .mil/		
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	drawi	REV PAGE		PARE	1 20 BY P 20 BY P 20 BY Th	hu H.	Nguye Nguye M. He	en en ess	5	6	TITI MIC CH/ MO	L E ROC ANNE NOLI	C <u>http</u> CIRCL	DLA OLUN ://www	LAND IBUS, w.land	AND OHIC	13 MARI 9 432 haritin	14 TIME 18-399 ne.dla	90 .mil/		
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	drawi	REV PAGE		PARE	1 20 BY P 20 BY P 20 BY Th	hu H.	Nguye Nguye M. He	en en ess O.	5	6	TITI MIC CH/ MO	L E ROC	C <u>http</u> CIRCL	DLA OLUM ://ww JIT, 6-BIT, 5-BIT	LAND IBUS, w.land LINE 1MS CON	AND , OHIC <u>dandn</u> AR, SPS F	13 MARI 0 432 Daritin	14 TIME 18-399 ne.dla	90 .mil/		
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y MM	drawi	REV PAGE		PARE	1 20 BY P 20 BY P 20 BY Th	hu H.	Nguye Nguye M. He	en en ess	5	6	TITI MIC CH/ MO	L E ROC ANNE NOLI	C <u>http</u> CIRCL	DLA OLUM ://ww JIT, 6-BIT, 5-BIT	LAND IBUS, w.land LINE 1MS CON	AND OHIC	13 MARI 0 432 Daritin	14 TIME 18-399 ne.dla	90 .mil/		

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance low cost, 4-channel, 16-bit 1 MSPS PulSAR ADC microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

V62/14620 Drawing number	- <u>01</u> Device type (See 1.2.1)	Case outline (See 1.2.2)	Lead finish (See 1.2.3)
1.2.1 Device type(s).			
Device type	Generic	<u>Ci</u>	rcuit function
01	AD7655-EP	Low cost	, 4-channel, 16-bit 1 MSPS PulSAR ADC

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	48	JEDEC MO-220-VKKD-2	Lead Frame Chip Scale Package(LFCSP_VQ)

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A B C D E Z	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620
COLUMBUS, OHIO	A	16236	
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Analog input: INAx, INBx, REFx, INxN, REFGND	AVDD + 0.3 V to AGND – 0.3 V
Ground voltage differences: AGND, DGND, OGND	±0.3 V
Supply voltages:	
AVDD, DVDD, OVDD	-0.3 V to +7 V
AVDD to DVDD, AVDD to OVDD	. ±7 V
DVDD to OVDD	-0.3 V to +7 V
Digital inputs	-0.3 V to DVDD + 0.3 V
Internal power dissipation	
Junction temperature	150°C
Storage temperature range	-65°C to 150°C
Lead temperature range (Soldering 10 sec)	

2. APPLICABLE DOCUMENTS

JEDEC – SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 – Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201-2107).

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.

<u>2</u>/ Specification is for device in free air: case outline X, $\theta_{JA} = 26^{\circ}$ C/W.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14620
		REV	PAGE 3

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

3.5 Diagrams.

- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Terminal function description</u>. The terminal function description shall be as shown in figure 3.
- 3.5.4 <u>Functional block diagram</u>. The functional block diagram shall be as shown in figure 4.
- 3.5.5 <u>Load circuit for digital interface timing</u>. The load circuit for digital interface timing shall be as shown in figure 5.
- 3.5.6 <u>Voltage reference levels for timings</u>. The voltage reference levels for timings shall be as shown in figure 6.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620
COLUMBUS, OHIO	A	16236	
		REV	PAGE 4

Test	Test conditions		Limits			
	<u>2</u> /	Min	Тур	Max		
RESOLUTION		16			Bits	
ANALOG INPUT			•	•	•	
Voltage Range	$V_{INx} - V_{INxN}$	0		2 V _{REF}	V	
Common-Mode Input Voltage	V _{INxN}	-0.1		+0.5	V	
Analog Input CMRR	f _{IN} = 100 kHz		55		dB	
Input Current	1 MSPS throughput		45		μA	
Input Impedance						
THROUGHPUT SPEED						
Complete Cycle (2 Channels)	Normal mode			2	μs	
Throughput Rate	Normal mode	0		1	MSPS	
Complete Cycle (2 Channels)	Impulse mode			2.25	μs	
Throughput Rate	Impulse mode	0		888	kSPS	
DC ACCURACY						
Integral Linearity Error <u>3</u> /		-6		+6	LSB <u>4</u> /	
No Missing Codes		15			Bits	
Transition Noise			0.8		LSB	
Full-Scale Error	T _{MIN} to T _{MAX}		±0.25	±0.5	% of FSF	
Full-Scale Error Drift			±2		ppm/°C	
Unipolar Zero Error	T _{MIN} to T _{MAX}			±0.25	% of FSF	
Unipolar Zero Error Drift			±0.8		ppm/°C	
Power Supply Sensitivity	$AVDD = 5 V \pm 5\%$		±0.8		LSB	
AC ACCURACY						
Signal-to-Noise	f _{IN} = 100 kHz		86		dB <u>5</u> /	
Spurious-Free Dynamic Range	f _{IN} = 100 kHz		98		dB	
Total Harmonic Distortion	f _{IN} = 100 kHz		-96		dB	
Signal-to-Noise and Distortion	f _{IN} = 100 kHz		86		dB	
	f _{IN} = 100 kHz, −60 dB input		30		dB	
Channel-to-Channel Isolation	f _{IN} = 100 kHz		-92		dB	
-3 dB Input Bandwidth			10		MHz	
SAMPLING DYNAMICS						
Aperture Delay			2		ns	
Aperture Delay Matching			30		ps	
Aperture Jitter			5		ps rms	
Transient Response	Full-scale step			250	ns	
REFERENCE				-		
External Reference Voltage Range		2.3	2.5	AVDD/2	V	
External Reference Current Drain	1 MSPS throughput		180		μA	

TABLE I. <u>Electrical performance characteristics</u>. <u>1</u>/

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14620
		REV	PAGE 5

Test	Symbol	Test conditions		Limits		Unit
		<u>2</u> /	Min	Тур	Max	
DIGITAL INPUTS						
Logic Levels						
V _{IL}			-0.3		+0.8	V
V _{IH}			+2.0		DVDD + 0.3	V
l _{IL}			-1		+1	μΑ
I _{IH}			-1		+1	μA
DIGITAL OUTPUTS					1	
Data Format <u>6</u> /						
Pipeline Delay <u>7</u> /						
V _{OL}		$I_{SINK} = 1.6 \text{ mA}$			0.4	V
V _{OH}		I _{SOURCE} = −500 μA	OVDD – 0.2			V
POWER SUPPLIES						
Specified performance		1	1		1	
AVDD			4.75	5	5.25	V
DVDD			4.75	5	5.25	V
OVDD			2.7		5.25 <u>8</u> /	V
Operating current <u>9</u> /						
AVDD		1 MSPS throughput		15.5		mA
DVDD				8.5		mA
OVDD				100		μA
		1 MSPS throughput <u>9</u> /		120	135	mW
Power Dissipation		20 kSPS throughput 10/		2.6		mW
		888 kSPS throughput 10/		114	125	mW
TEMPERATURE RANGE <u>11</u> /						
Specified Performance		T _{MIN} to T _{MAX}	-55		+125	°C
	TI	MING SPECIFICATIONS				
CONVERSION AND RESET						
Convert Pulse Width	t ₁		5			ns
Time Between Conversions	t ₂		2/2.25			μs
(Normal Mode/Impulse Mode)						
CNVST Low to BUSY High Delay	t ₃				32	ns
BUSY High All Modes Except in Master	t ₄				1.75/2	μs
Serial Read After Convert Mode						
(Normal Mode/Impulse Mode)						
Aperture Delay	t ₅			2		ns
End of Conversions to BUSY Low Delay	t ₆		10			ns

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14620
		REV	PAGE 6

TABLE I.	Electrical performance characteristics - Continued.	<u>1</u> /
----------	---	------------

Test	Symbol	Test conditions		Limits		Unit
	<u>2</u> /		Min	Тур	Max	
TII	MING SPEC	IFICATIONS				
CONVERSION AND RESET – Continued.						
Conversion Time	t7				1.75/2	μs
(Normal Mode/Impulse Mode)				_		
Acquisition Time	t ₈		250			ns
RESET Pulse Width	t ₉		10			ns
CNVST Low to EOC high delay	t ₁₀				30	ns
EOC high for channel A conversion	t ₁₁				1/1.25	μs
(Normal Mode/Impulse Mode)						
EOC low after Channel A Conversion	t ₁₂		45			ns
EOC high for channel A conversion	t ₁₃				0.75	μs
Channel Selection Setup Time	t ₁₄		250			ns
Channel Selection Hold Time	t ₁₅				30	ns
PARALLEL INTERFACE MODES						
CNVST Low to DATA Valid Delay	t ₁₆				1.75/2	μs
DATA Valid to BUSY Low Delay	t ₁₇		14			ns
Bus Access Request to DATA Valid	t ₁₈				40	ns
Bus Relinquish Time	t ₁₉		5		15	ns
A/\overline{B} Low to Data Valid Delay	t ₂₀				40	ns
MASTER SERIAL INTERFACE MODES						
CS Low to SYNC Valid Delay	t ₂₁				10	ns
CS Low to Internal SCLK Valid Delay 12/	t ₂₂				10	ns
CS Low to SDOUT Delay	t ₂₃				10	ns
CNVST Low to SYNC Delay, Read During Convert	t ₂₄			250/500		ns
(Normal Mode/Impulse Mode)						
SYNC Asserted to SCLK First Edge Delay	t ₂₅		3			ns
Internal SCK Period 13/	t ₂₆		23		40	ns
Internal SCLK High <u>13</u> /	t ₂₇		12			ns
Internal SCLK Low <u>13</u> /	t ₂₈		7			ns
SDOUT Valid Setup Time <u>13</u> /	t ₂₉		4			ns
SDOUT Valid Hold Time <u>13</u> /	t ₃₀		2			ns
SCLK Last Edge to SYNC Delay <u>13</u> /	t ₃₁		1			ns
CS High to SYNC High-Z	t ₃₂				10	ns
CS High to Internal SCLK High-Z	t ₃₃				10	ns
CS High to SDOUT High-Z	t ₃₄				10	ns
BUSY High in Master Serial Read after Convert $\underline{13}/$	t ₃₅			14/	-	ns
CNVST Low to SYNC Asserted Delay	t ₃₆			0.75/1		μs
(Normal Mode/Impulse Mode)	-00					
SYNC Deasserted to BUSY Low Delay	t ₃₇			25		ns

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620
COLUMBUS, OHIO	A	16236	
		REV	PAGE 7

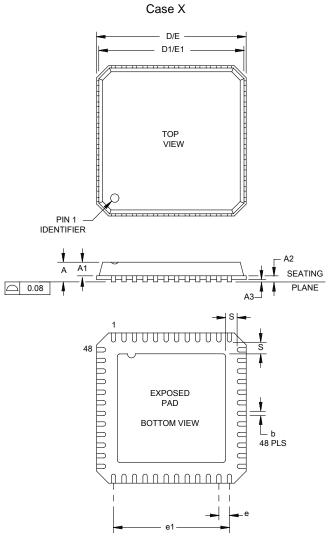
TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Test conditions	Limits			Unit
		<u>2</u> /	Min	Тур	Max	
TIM	ING SPECIFICAT	IONS – Continued.	<u>.</u>			
SLAVE SERIAL INTERFACE MODES						_
External SCLK Setup Time	t ₃₈		5			ns
External SCLK Active Edge to SDOUT Delay	t ₃₉		3		18	ns
SDIN Setup Time	t ₄₀		5			ns
SDIN Hold Time	t ₄₁		5			ns
External SCLK Period	t ₄₂		25			ns
External SCLK High	t ₄₃		10			ns
External SCLK Low	t44		10			ns
 / Testing and other quality control techniques are specified temperature range. Product may not r necessarily be tested. In the absence of specific design. / AVDD = DVDD = 5 V, OVDD = 2.7 V to 5.25 V; / Linearity is tested using endpoints, not best fit. / LSB means least significant bit. With the 0 V to All specifications in dB are referred to as full-sca 	necessarily be test c parametric testin VREF = 2.5 V; all 5 V input range, 1	ed across the full temper g, product performance specifications T_{MIN} to T_{I} LSB is 76.294 µV.	erature range is assured b _{MAX} , unless o	e and all par by character therwise no	rameters ma rization and oted.	ay not /or
specified.						
 Parallel or serial 16 bit. Conversion results are available immediately aff The maximum should be the minimum of 5.25 V In normal mode: tested in parallel reading mode 	ter completed con	version				
The maximum should be the minimum of 5.25 V						
In normal mode: tested in parallel reading mode						

In normal mode; tested in parallel reading mode

In impulse mode; tested in parallel reading mode.

Consult sales for extended temperature range.


<u>9</u>/ <u>10</u>/ <u>11</u>/ <u>12</u>/ In serial interface modes, the SYNC, SCLK, and SDOUT timings are defined with a maximum load CL of 10 pF; otherwise CL is 60 pF maximum.

<u>13</u>/ In serial master read during convert mode. See <u>14</u>/ for serial master read after convert mode.

14/ Serial Clock Timings in Master Read After Convert.

DIVSCLK[1]	Symbol	0	0	1	1	Units
DIVSCLK[0]		0	1	0	1	
SYNC to SCLK First Edge Delay Minimum	t ₂₅	3	17	17	17	ns
Internal SCLK Period Minimum	t ₂₆	25	50	100	200	ns
Internal SCLK Period Typical	t ₂₆	40	70	140	280	ns
Internal SCLK High Minimum	t ₂₇	12	22	50	100	ns
Internal SCLK Low Minimum	t ₂₈	7	21	49	99	ns
SDOUT Valid Setup Time Minimum	t ₂₉	4	18	18	18	ns
SDOUT Valid Hold Time Minimum	t ₃₀	2	4	30	80	ns
SCLK Last Edge to SYNC Delay Minimum	t ₃₁	1	3	30	80	ns
Busy High Width Maximum (Normal)	t ₃₅	3.25	4.25	6.25	10.75	μs
Busy High Width Maximum (Impulse)	t ₃₅	3.5	4.5	6.5	11	μs

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 8	

Dimensions							
Symbol	Millimeters		Symbol	Millim	neters		
	Min	Max		Min	Max		
А	0.80	1.00	D/E	7.00	BSC		
A1		0.80	D1/E1	6.75	BSC		
A2	0.20	REF	е	0.50 BSC			
A3		0.05	e1	5.50	REF		
b	0.18	0.30	S	0.25			

NOTES:

- 1. All linear dimensions are in millimeters.
- 2. Falls within JEDEC MO-15-AB3.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14620
		REV	PAGE 9

	Case outline X							
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	AGND	13	D4/EXT/INT	25	D12	37	REF	
2	AVDD	14	D5/INVSYNC	26	D13	38	REFGND	
3	A0	15	D6/INVSCLK	27	D14	39	INB1	
4	BYTESWAP	16	D7/RDC/SDIN	28	D15	40	INBN	
5	A/\overline{B}	17	OGND	29	BUSY	41	INB2	
6	DGND	18	OVDD	30	EOC	42	REFB	
7	IMPULSE	19	DVDD	31	RD	43	REFAA	
8	SER/PAR	20	DGND	32	\overline{CS}	44	INA2	
9	D0	21	D8/SDOUT	33	RESET	45	INAN	
10	D1	22	D9/SCLK	34	PD	46	INA1	
11	D2/DIVSCLK[0]	23	D10/SYNC	35	CNVST	47	AGND	
12	D3/DIVSCLK[1]	24	D11/RDERROR	36	DVDD	48	AGND	

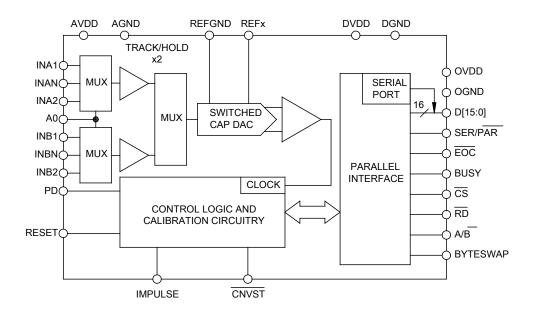
FIGURE 2.	Terminal	connections.
-----------	----------	--------------

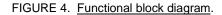
Pin No.	Mnemonic	Type <u>1</u> /	Description
1, 47, 48	AGND	Р	Analog Power Ground Pin.
2	AVDD	Р	Input Analog Power Pin. Nominally 5 V.
3	A0	DI	Multiplexer Select. When LOW, the analog inputs INA1 and INB1 are sampled simultaneously, then converted. When HIGH, the analog inputs INA2 and INB2 are sampled simultaneously, then converted.
4	BYTESWAP	DI	Parallel Mode Selection (8 Bit, 16 Bit). When LOW, the LSB is output on D[7:0] and the MSB is output on D[15:8]. When HIGH, the LSB is output on D[15:8] and the MSB is output on D[7:0].
5	A/B	DI	Data Channel Selection. In parallel mode, when LOW, the data from Channel B is read. When HIGH, the data from Channel A is read. In serial mode, when HIGH, Channel A is output first followed by Channel B. When LOW, Channel B is output first followed by Channel A.
6, 20	DGND	Р	Digital Power Ground
7	IMPULSE	DI	Mode Selection. When HIGH, this input selects a reduced power mode. In this mode, the power dissipation is approximately proportional to the sampling rate.
8	SER/PAR	DI	Serial/Parallel Selection Input. When LOW, the parallel port is selected; when HIGH, the serial interface mode is selected and some bits of the DATA bus are used as a serial port.
9, 10	D[0:1]	DO	Bit 0 and Bit 1 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, these outputs are in high impedance.
11, 12	D[2:3] or DIVSCLK[0:1]	DI/O	When SER/PAR is LOW, these outputs are used as Bit 2 and Bit 3 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, EXT/INT is LOW, and RDC/SDIN is LOW, which is the serial master read after convert mode. These inputs, part of the serial port, are used to slow down the internal serial clock that clocks the data output. In the other serial modes, these inputs are not used.

FIGURE 3. Terminal function description.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 10	

Pin No.	Mnemonic	Type <u>1</u> /	Description
13	D[4]	DI/O	When SER/PAR is LOW, this output is used as Bit 4 of the Parallel Port Data Output Bus.
	or EXT/INT		When SER/PAR is HIGH, this input, part of the serial port, is used as a digital select input for choosing the internal or an external data clock called, respectively, master and slave mode. With EXT/INT tied LOW, the internal clock is selected on SCLK output. With EXT/INT set to a logic HIGH, output data is synchronized to an external clock signal connected to the SCLK input.
14	D[5]	DI/O	When SER/PAR is LOW, this output is used as Bit 5 of the Parallel Port Data Output Bus.
	or INVSYNC		When SER/PAR is HIGH, this input, part of the serial port, is used to select the active state of the SYNC signal in Master modes. When LOW, SYNC is active HIGH. When HIGH, SYNC is active LOW
15	D[6] or INVSCLK	DI/O	When SER/PAR is LOW, this output is used as Bit 6 of the parallel port data output bus. When SER/PAR is HIGH, this input, part of the serial port, is used to invert the SCLK signal. It is active in both master and slave modes
16	D[7]	DI/O	When SER/PAR is LOW, this output is used as Bit 7 of the Parallel Port Data Output Bus.
	or RDC/SDIN		When SER/PAR is HIGH, this input, part of the serial port, is used as either an external data input or a read mode selection input, depending on the state of EXT/INT.
			When EXT/INT is HIGH, RDC/SDIN can be used as a data input to daisy-chain the conversion results from two or more ADCs onto a single SDOUT line. The digital data level on SDIN is output on SDOUT with a delay of 32 SCLK periods after the initiation of the read sequence. When EXT/INT is LOW, RDC/SDIN is used to select the read mode. When RDC/SDIN is HIGH, the previous data is output on SDOUT during conversion. When RDC/SDIN is LOW, the data can be output on SDOUT only when the conversion is complete.
17	OGND	Р	Input/Output Interface Digital Power Ground.
18	OVDD	Р	Input/Output Interface Digital Power. Nominally at the same supply as the supply of the host interface (5 V or 3 V).
19, 36	DVDD	Р	Digital Power. Nominally at 5 V.
21	D[8]	DO	When SER/PAR is LOW, this output is used as Bit 8 of the Parallel Port Data Output Bus.
	or SDOUT		When SER/PAR is HIGH, this output, part of the serial port, is used as a serial data output synchronized to SCLK. Conversion results are stored in a 32-bit on-chip register. The AD7655-EP provides the two conversion results, MSB first, from its internal shift register. The order of channel outputs is controlled by A/B. In serial mode, when EXT/INT is LOW, SDOUT is valid on both edges of SCLK. In serial mode, when EXT/INT is HIGH: If INVSCLK is LOW, SDOUT is updated on the SCLK rising edge and valid on the next falling edge.
			If INVSCLK is HIGH, SDOUT is updated on the SCLK falling edge and valid on the next rising edge.
22	D[9] or SCLK	DI/O	When SER/PAR is LOW, this output is used as Bit 9 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, this pin, part of the serial port, is used as a serial data clock input or output, depends upon the logic state of the EXT/INT pin. The active edge where the data SDOUT is updated depends on the logic state of the INVSCLK pin.


FIGURE 3. <u>Terminal function description</u> - Continued.


DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620
COLUMBUS, OHIO	A	16236	
		REV	PAGE 11

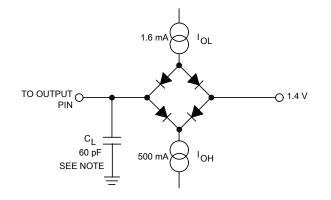

Pin No.	Mnemonic	Type <u>1</u> /	Description	
23	D[10] or SYNC	DO	When SER/PAR is LOW, this output is used as Bit 10 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, this output, part of the serial port, is used as a digital output frame synchronization for use with the internal data clock (EXT/INT = Logic LOW). When a read sequence is initiated and INVSYNC is LOW, SYNC is driven HIGH and frames SDOUT. After the first channel is output, SYNC is pulsed LOW. When a read sequence is initiated and INVSYNC is driven LOW and remains LOW while SDOUT output is valid. After the first channel is output, SYNC is pulsed HIGH.	
24	D[11] or RDERROR	DO	When SER/PAR is LOW, this output is used as Bit 11 of the Parallel Port Data Output Bus. When SER/PAR is HIGH and EXT/INT is HIGH, this output, part of the serial port, is used as an incomplete read error flag. In slave mode, when a data read is started but not complete when the following conversion is complete, the current data is lost and RDERROR is pulsed HIGH.	
25 to 28	D[12:15	DO	Bit 12 to Bit 15 of the parallel port data output bus. When SER/PAR is HIGH, these outputs are in high impedance.	
29	BUSY	DO	Busy Output. Transitions HIGH when a conversion is started and remains HIGH until the two conversions are complete and the data is latched into the on-chip shift register. The falling edge of BUSY can be used as a data ready clock signal.	
30	EOC	DO	End of Convert Output. Goes LOW at each channel conversion.	
31	RD	DI	Read Data. When \overline{CS} and \overline{RD} are both LOW, the interface parallel or serial output bus is enabled.	
32	CS	DI	Chip Select. When \overline{CS} and \overline{RD} are both LOW, the interface parallel or serial output bus is enabled. \overline{CS} is also used to gate the external serial clock.	
33	RESET	DI	Reset Input. When set to a logic HIGH, reset the AD7655-EP. Current conversion, if any, is aborted. If not used, this pin could be tied to DGND	
34	PD	DI	Power-Down Input. When set to a logic HIGH, power consumption is reduced and conversions are inhibited after the current conversion is completed.	
35	CNVST	DI	Start Conversion. A falling edge on $\overline{\text{CNVST}}$ puts the internal sample-and-hold into the hold state and initiates a conversion. In impulse mode (IMPULSE = HIGH), if $\overline{\text{CNVST}}$ is held LOW when the acquisition phase (t8) is complete, the internal sample-and-hold is put into the hold state and a conversion is immediately started	
37	REF	AI	This input pin is used to provide a reference to the converter.	
38	REFGND	AI	Reference Input Analog Ground.	
39, 41	INB ₁ , INB ₂	AI	Channel B Analog Inputs.	
40, 45	INBN, INAN	AI	Analog Inputs Ground Senses. Allow to sense each channel ground independently.	
42, 43	REFB, REFA	AI	These inputs are the references applied to Channel A and Channel B, respectively.	
44,46	INA2, INA1	AI	Channel A Analog Inputs.	

FIGURE 3. Terminal function description - Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/14620
COLUMBUS, OHIO	A	16236	
		REV	PAGE 12

NOTES:

1. "In serial interface modes, the SYNC, SCLK and SDOUT timing are defined with a maximum load CL of 10 pF; otherwise, the load is 60 pF maximum.

FIGURE 5. Load circuit for digital interface timing.

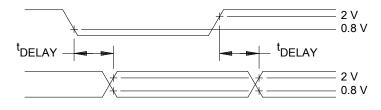


FIGURE 6. Voltage reference levels for timings.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14620
		REV	PAGE 13

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>http://www.landandmaritime.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/14620-01XB	24355	AD7655SCP-EP-RL

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices 1 Technology Way P.O. Box 9106 Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14620
		REV	PAGE 14