
AN-799
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/461-3113 • www.analog.com

INTRODUCTION

This application note applies to ADV202 engineering
samples that are 0.2 (ES3) or higher, and are branded
as follows:

ADV202xxx

SURF®

xxxxxx 0.2 or RevE

This application note outlines a series of recommended
procedures and critical information to confi rm correct
hardware confi guration and initialization of the ADV202.
It provides test procedures for direct accesses and
indirect accesses, tests to confi rm correct DMA interface
and JDATA mode operation, and addresses common
problems the user may encounter. Performing these
specifi c register access tests facilitates debugging sys-
tems for hardware and software errors.

DIRECT REGISTER ACCESS FUNCTIONALITY/PLL

SETTINGS

Direct Register Access Functionality

Correct direct register access confi rms functionality and
correct timing on the following pins:

HDATA

ACK

RD or WR

CS

ADDR

Note that direct register timing is specifi ed differently
from indirect register accesses. Refer to Figure 3 and
Figure 4 in the ADV202 data sheet.

To perform direct register accesses:

• Properly connect the target system to the following
pins on the ADV202:

 ADDR<3:0> (up to 16 addresses).

 CS (Chip Select).

 WE (Write Enable).

 RD (Read Enable).

 ACK (Acknowledge).

ADV202 Test Modes

by Christine Bako

 HDATA<15:0> (read/write 16-bit data).

 HDATA<31:16> (optional extended data bus for 32-bit
accesses).

 CFG [2:1] are shared with DREQ0 and DREQ1. The
hardware boot mode as set by the state of the CFG
pins is ignored on present ADV202s. Refer to Figure 3
and Figure 4 in the ADV202 data sheet for correct tim-
ing specifi cations in normal host mode operation.

• IRQ

 Connecting IRQ to the host is recommended.

• DACK0 and DACK1 must be held high during
confi guration.

• MCLK must be supplied. The PLL registers and
MMODE and BUSMODE do not require a clock input
to be read or written to, but it is recommended to
power up with an MCLK running, otherwise the state
of the HDATA pins is in an unknown state and might
cause contention with other devices connected to
HDATA.

• The target system must hold the state of the input
pins (ADDR, CS, WE, RD, DACK , and HDATA for
writes) until the ADV202 asserts the ACK signal (goes
LOW). The access is not completed until the ACK is
asserted. Thus, for read operations, the HDATA
should not be sampled until after ACK is asserted.
This is necessary only for asynchronous reads of
the direct registers (normal host mode), and is not
needed for DMA accesses. Refer to Figure 3 and
Figure 4 in the ADV202 data sheet for normal host
mode timing.

PLL Settings

The internal PLL of the ADV202 is extremely fl exible, but
there are rules on what settings are allowed for JCLK
given the external MCLK frequency (for details see
Page 30 of the ADV202 data sheet). JCLK is the internal
frequency derived from the clock input on MCLK pin and
set by the PLL registers.

To ensure proper functionality for specifi c applications,
the internal JCLK frequency needs to be in a certain
range. The following table summarizes the proper PLL
settings for the target application.

REV. 0

http://www.analog.com

–2–

AN-799

For the tests described in this application note, the set-
tings in Table I can be used.

Once the PLL registers are programmed, a delay of
approximately 20 �s is needed after which the ADV202
should undergo a reboot procedure as described later
in this document.

Direct Register Read Test

Direct register access is required for all applications.
Use the following procedure to check for correct direct
register access:

1. Apply MCLK input.

2. Power up the ADV202.

3. Undergo a hard reset by asserting the RESET pin
(holding LOW) for several cycles while still applying
MCLK input.

4. Read the direct registers for their correct default value
using normal host mode access. (See Figure 3 in the
ADV202 data sheet.)

Direct Register Error States

Common problems encountered at this stage.

Problem: Direct register read does not come up with
correct default values.

Possible cause:

1. DACK0 or DACK1 is not held high, and therefore some
contention on the HDATA bus might occur.

2. Use MCLK input on power-up to prevent HDATA being
in an unknown state.

3. Check for the correct PLL settings.

Problem: ACK is never asserted.

Possible cause:

1. Incorrect timing. Refer to Figure 3 in the data sheet.

2. Check for the correct PLL settings.

Table I. PLL Settings

Video MCLK PLL_HI PLL_LO
Standard Frequency [address = 0xEh] [address = 0xFh]

NTSC/PAL 27 0x0008 0x0004
ITU.R.BT656

525p 27 0x0008 0x0004
SMPTE293M

625p 27 0x0008 0x0004
ITU.R.BT1358

1080i 25 0x0008 0x0006
SMPTE274M

1080i 74.25 0x0008 0x0084
SMPTE274M

1080i 37.125 0x0008 0x0004
SMPTE274M

Table II. Direct Register Reset Values

Direct Address Register Name Register Value Writeable

0x5 EIRQIE 0x0000 yes

0x6 EIRQFLG 0x000F no

0x8 BUSMODE 0x0005 yes

0x9 MMODE 0x0009 yes

0xA STAGE undef yes

0xB IADDR undef yes

0xC IDATA undef yes

0xE PLL_HI 0x0008 yes

0xF PLL_LO 0x0006 yes
 0x0003 [for ES3 samples]

REV. 0

–2–

AN-799

–3–

AN-799

Direct Register Read/Write and Indirect Register Read/
Write
Testing will verify correct functionality of the following:

• Correct direct register reset values

• Correct direct register write accesses

• Correct indirect memory read/write accesses using
indirect registers IDATA, IADDR, STAGE.

The following test procedure checks the reset values
of the direct registers, performs some direct register
writes, and performs some simple indirect register
accesses to verify that this interface is functioning prop-
erly. These processes are necessary to function correctly
before starting any application-specific configuration.

Register Test Procedure (32-bit)
Using HDATA [31:0] with a 32-bit host processor:

1. Write to PLL_HI and PLL_LO the values specified in
Table I.

2. Wait for 20 s to allow PLL to settle.

3. Initiate a reboot to no boot mode by writing 0x008A
to the BOOT register (address 0xD).

4. Check that the reset values from Registers 5, 6, 8, 9,
E, and F are correct.

5. Write 0x000A to BUSMODE (address 0x8) to enable
32-bit host interface.

6. Write 0x000A to MMODE (address 0x9) to enable
32-bit indirect access capability.

7. Write 0x001B0000 to IADDR (address 0xB) to set
indirect address to internal RAM.

8. Write 0x12345678 to IDATA (address 0xC) to write
data to address 0x001B0000.

9. Write 0x9ABCDEF0 to IDATA (address 0xC) to write
data to address 0x001B0004.

10. Write 0x0F0F0F0F to IDATA (address 0xC) to write
data to address 0x001B0008.

11. Write 0xF0F0F0F0 to IDATA (address 0xC) to write
data to address 0x001B000C.

12. Write 0x001B0000 to IADDR (address 0xB) to set
indirect address to internal RAM.

13. Read 0x12345678 from IDATA (address 0xC) to read
data from address 0x001B0000.

14. Read 0x9ABCDEF0 from IDATA (address 0xC) to
read data from address 0x001B0004.

15. Read 0x0F0F0F0F from IDATA (address 0xC) to read
data from address 0x001B0008.

16. Read 0xF0F0F0F0 from IDATA (address 0xC) to read
data from address 0x001B000C.

REGISTER TEST PROCEDURE (16-BIT)

Using HDATA [15:0] for Data Transfers
In this 16-bit mode, the data readback is half word
swapped. This is due to an auto-increment indirect read
anomaly on the ADV202. The data is written as expected
in big-endian half word order, however the sequence of
the read data is in little-endian half word order.

Another method around this anomaly is to always load
the IADDR register with the desired address before
reading from the IDATA register. Or, the STAGE register
could be used during the reads of the IDATA register.

1. Write to PLL_HI and PLL_LO the values specified in
Table I.

2. Wait for 20 s to allow PLL to settle.

3. Initiate a reboot to no boot mode by writing 0x008A
to the BOOT register (address 0xD).

4. Check that the reset values from Registers 5, 6, 8, 9,
E, and F are correct.

5. Write 0x0015 to BUSMODE (address 0x8) to enable
16-bit host interface (and JDATA).

6. Write 0x0005 to MMODE (address 0x9) to enable
16-bit indirect access capability.

7. Write 0x001B to STAGE (address 0xA).

8. Write 0x0000 to IADDR (address 0xB) to set indirect
address to internal RAM.

9. Write 0x1234 to IDATA (address 0xC) to write data
to address 0x001B0000.

10. Write 0x5678 to IDATA (address 0xC) to write data
to address 0x001B0002.

11. Write 0x9ABC to IDATA (address 0xC) to write data
to address 0x001B0004.

12. Write 0xDEF0 to IDATA (address 0xC) to write data
to address 0x001B0006.

13. Write 0x0F0F to IDATA (address 0xC) to write data
to address 0x001B0008.

14. Write 0x0F0F to IDATA (address 0xC) to write data
to address 0x001B000A.

15. Write 0xF0F0 to IDATA (address 0xC) to write data
to address 0x001B000C.

16. Write 0xF0F0 to IDATA (address 0xC) to write data
to address 0x001B000E.

17. Write 0x001B to STAGE (address 0xA).

18. Write 0x0000 to IADDR (address 0xB) to set indirect
address to RAM location.

19. Read 0x5678 from IDATA (address 0xC) to read data
from address 0x001B0002.

20. Read 0x1234 from IDATA (address 0xC) to read data
from address 0x001B0000.

REV. 0 REV. 0

–4–

AN-799

–5–

AN-799

21. Read 0xDEF0 from IDATA (address 0xC) to read data
from address 0x001B0006.

22. Read 0x9ABC from IDATA (address 0xC) to read
data from address 0x001B0004.

23. Read 0x0F0F from IDATA (address 0xC) to read data
from address 0x001B000A.

24. Read 0x0F0F from IDATA (address 0xC) to read data
from address 0x001B0008.

25. Read 0xF0F0 from IDATA (address 0xC) to read data
from address 0x001B000E.

26. Read 0xF0F0 from IDATA (address 0xC) to read data
from address 0x001B000C.

Common Errors
Problem: Random data or incorrect indirect register
reads or can not overwrite direct register values.

Possible cause:

1. Incorrect timing, check for ACK hold time specification.

2. DACK0 and DACK1 are not held high during the test.

3. Check for the correct PLL settings.

4. Supply MCLK input on power-up and after
ADV202 comes out of reset.

Problem: In 16-bit mode, half words are swapped. This
applies to indirect memory accesses only, not to direct
register accesses, when the ADV202 is set to MMODE =
0x0005.

In this case the readback value from indirect memory is
half word swapped.

This is due to an auto-increment anomaly on the
ADV202.

DMA AND JDATA TESTS
After successfully running these tests, the design is
functional in

• Direct register access.

• Indirect memory access.

• Firmware load.

• ADV202 external DMA interface.

• JDATA interface.

DREQ/DACK READ TEST

eval_edma_singlerd0_loop.sea
Application ID = 0xFF04

This test uses the ADV202 to generate a data pattern
which can be read using the External DMA Channel 0
(DREQ0 and DACK0 pins). It is important for the user
to maintain the DACK0 pin high, until the EDMA inter-
face has been enabled by the Host [as in (15)]. This
test should be performed prior to using the ADV202 in
DREQ/DACK DMA modes [EDMOD0 and DMMOD0 set
to 1, 2, 5, or 6].

The 64 word pattern is as follows:

00010203, 04050607, 08090A0B, 0C0D0E0F,

10111213, 14151617, 18191A1B, 1C1D1E1F, …

F0F1F2F3, F4F5F6F7, F8F9FAFB, FCFDFEFF

DREQ/DACK TEST PROCEDURE

1. Write to PLL_HI and PLL_LO the values specified in
Table I.

2. Wait for 20 s to allow PLL to settle.

3. Initiate a reboot to no boot host mode by writing
0x008A to the BOOT register (address 0xD). This
boot mode allows the firmware to be loaded over
the host interface.

4. Write 0x000A to BUSMODE (address 0x8) to enable
32-bit host interface and configure for 32-bit wide
HDATA bus.

5. Write 0x000A to MMODE (address 0x9) to enable
32-bit indirect register access capability.

6. Write 0x00050000 to IADDR (address 0xB) to set
indirect address to start of program memory.

7. For each 32-bit value in the firmware application file
[7.75 kB], write this value to IDATA (address 0xC) to
load the program.

 Firmware application file:

 eval_edma_singlerd0_loop.sea

8. Initiate a reboot by writing 0x008D to the BOOT
register (address 0xD).

9. Write 0x000A to BUSMODE (address 0x8) to
enable 32-bit host interface and configure 32-bit
wide HDATA bus after the SOFTRST in (8).

10. Write 0x0009 to MMODE (address 0x9) to enable
16-bit indirect access width and indirect address
increment enabled.

REV. 0 REV. 0

–4–

AN-799

–5–

AN-799

11. Initialize external DMA register while this register is
disabled:

 Write 0xFFFF1408 to IADDR (address 0xB).

 Write 0x0000300A to IDATA (address 0xC).

 DMA is thus configured for single DMA transfers
with DREQ0 pulse width configured to six JCLK
cycles. See Figure 9 in the ADV202 data sheet.

12. Initialize external interrupt and enable SWIRQ0:

 Write 0x00000400 to EIRQIE (address 0x5).

13. Wait for IRQ to be asserted or poll the software flag
register (address 0x7) for 0xFF04. This indicates ini-
tialization complete.

14. Clear interrupt flag:

 Write 0x00000400 to EIRQFLG (address 0x6). This
will cause the IRQ to go high and indicates the
ADV202 is ready to run the program.

15. Enable external DMA register:

 Write 0xFFFF1408 to IADDR (address 0xB).

 Write 0x0000300B to IDATA (address 0xC).

 DREQ0 should then be asserted within three MCLK
cycles.

16. Host can now perform reads with DREQ0, DACK0
handshake after first DREQ0 pulse is generated by
the ADV202. The internal ADV202 processor gen-
erates the 64-word pattern as mentioned earlier,
starting with 0x000010203.

DREQ/DACK READ/WRITE TEST USING BOTH DMA
CHANNELS

eval_edma_singlewrrd0_2chn_loop
Application ID = 0xFF06
This test can be used to verify DREQ/DACK write and
read transfers to/from the ADV202 and should be
performed prior to using the ADV202 in HIPI mode or
prior to using the ADV202 in DREQ/DACK DMA modes
[EDMOD0/1 set to 1, 2, 5, or 6].

It uses external DMA Channel 0 (DREQ0 /DACK0) for
writing and Channel 1 (DREQ1/DACK1) for reading. It is
important for the user to maintain the DACK0 and DACK1
pins high, until the EDMA interfaces have been enabled
by the host [as under (16)]. This test supports up to 1,024
word write transfers before the buffer must be read out
of DMA Channel 1.

Test Procedure

1. Write to PLL_HI and PLL_LO the values specified in
Table I.

2. Wait for 20 s to allow PLL to settle.

3. Initiate a reboot to no boot host mode by writing
0x008A to the BOOT register (address 0xD). This
boot mode allows the firmware to be loaded over
the host interface.

4. Write 0x000A to BUSMODE (address 0x8) to enable
32-bit host interface and configure for 32-bit wide
HDATA bus.

5. Write 0x000A to MMODE (address 0x9) to enable
32-bit indirect register access capability.

6. Write 0x00050000 to IADDR (address 0xB) to set
indirect address to start of program memory.

7. For each 32-bit value in the firmware application file
[7.75 kB], write this value to IDATA (address 0xC) to
load the program.

 Firmware application file:

 eval_edma_singlewrrd0_2chn_loop.sea

8. Initiate a reboot by writing 0x008D to the BOOT
register (address 0xD).

9. Write 0x000A to BUSMODE (address 0x8) to enable
32-bit host interface and configure for 32-bit wide
HDATA bus after the SOFTRST in (8).

10. Write 0x0009 to MMODE (address 0x9) to enable
16-bit indirect access width and indirect address
increment enabled.

11. Initialize external DMA Registers 0 and 1 while this
register is disabled:

 Write 0xFFFF1408 to IADDR (address 0xB).

 Write 0x0000300A to IDATA (address 0xC).

 Write 0x0000300C to IDATA (address 0xC).

12. Initialize FIFO mode register in order to set the data
flow direction for input and output data:

 Write 0xFFFF1418 to IADDR (address 0xB).

 Write 0x00000010 to IDATA (address 0xC).

13. Initialize external interrupt and enable SWIRQ0:

 Write 0x00000400 to EIRQIE (address 0x5).

14. Wait for IRQ to be asserted or poll the software flag
register (address 0x7) for 0xFF06. This indicates ini-
tialization complete.

REV. 0 REV. 0

–6–

AN-799

–7–

AN-799

15. Clear interrupt flag:

 Write 0x00000400 to EIRQFLG (address 0x6). This
will cause the IRQ to go high and indicates the
ADV202 is ready to run the program.

16. Enable external DMA registers:

 Write 0xFFFF1408 to IADDR (address 0xB).

 Write 0x0000300B to IDATA (address 0xC).

 Write 0x0000300D to IDATA (address 0xC).

 Both DMA channels are configured for single DMA
transfers with DREQ0 pulse width configured to
six JCLK cycles. See Figure 9 in the ADV202 data
sheet. DREQ0 should then be asserted within
three MCLK cycles.

17. Host can now perform a write access with a DREQ0 /
DACK0 handshake after the first DREQ0 pulse is
generated by the ADV202. After data is written to
the ADV202, DREQ1 will be asserted, indicating that
data can be read out. In this loop-back test, the data
read out is the same as the data which was written
into Channel 0. There is a 1,000 word buffer, so the
host may write up to 1,000 words before doing the
first read. The test will run continuously in an infi-
nite loop.

JDATA READ TEST

eval_edma_jdatard0_loop
Application ID = 0xFF05
This test uses the ADV202 to generate a byte stream
that can be read via the JDATA port which includes
JDATA[7:0], VALID (DREQ0 pin), and HOLD (DACK0
pin). It is important for the user to maintain the HOLD
(DACK0) pin high, until the JDATA interface has been
enabled by the ADV202. The data pattern is a sequen-
tial stream of byte values from 0x00 to 0xFF. This test
should be used prior to using the ADV202 in a JDATA
mode application.

1. Write to PLL_HI and PLL_LO the values specified in
Table I.

2. Wait for 20 s to allow PLL to settle.

3. Initiate a reboot to no boot host mode by writing
0x008A to the BOOT register (address 0xD). This
boot mode allows the firmware to be loaded over
the host interface.

4. Write 0x000A to BUSMODE (address 0x8) to enable
32-bit host interface and configure for 32-bit wide
HDATA bus.

5. Write 0x000A to MMODE (address 0x9) to enable
32-bit indirect register access capability.

6. Write 0x00050000 to IADDR (address 0xB) to set
indirect address to start of program memory.

7. For each 32-bit value in the firmware application file
[7.75 kB], write this value to IDATA (address 0xC) to
load the program.

8. Firmware application file:

 eval_edma_jdatard0_loop.sea

9. Initiate a reboot by writing 0x008D to the BOOT
register (address 0xD).

10. Write 0x0015 to BUSMODE (address 0x8) to enable
16-bit host and JDATA port.

11. Write 0x0009 to MMODE (address 0x9) to enable
16-bit indirect access width and indirect address
increment enabled.

12. Initialize external interrupt and enable SWIRQ0:

 Write 0x00000400 to EIRQIE (address 0x5).

13. Wait for IRQ to be asserted or poll the software flag
register (address 0x7) for 0xFF05. This indicates ini-
tialization complete.

14. Clear interrupt flag:

 Write 0x00000400 to EIRQFLG (address 0x6).

 This will cause the IRQ to go high and indicates the
ADV202 is ready to run the program.

15. Host can initiate JDATA reads by driving HOLD to
the low state. VALID will go to high state in the fol-
lowing MCLK cycle and data transfers will begin on
the JDATA port if HOLD and VALID are set to active
high polarity. The data pattern is 0x00, 0x01, 0x02,
...0xFF, 0x00, 0x01, and so on.

JDATA READ/WRITE TEST

eval_edma_jdatawrrd0_loop
Application ID = 0xFF07
This test can be used to verify JDATA writes and reads
to and from the ADV202. The host sets up the number
of words (number of bytes times four) to be written,
enables the JDATA interface, and begins writing data.
When the programmed number of words is reached,
the ADV202 disables the JDATA interface direction, and
JDATA can be read from the part after the JDATA inter-
face has been re-enabled by the host. This continues in
an infinite loop. This assumes a 16-bit host interface in
JDATA mode. This test should be used prior to using the
ADV202 in a JDATA mode application.

1. Write to PLL_HI and PLL_LO the values specified in
Table I.

2. Wait for 20 s to allow PLL to settle.

3. Initiate a reboot to no boot host mode by writing
0x008A to the BOOT register (address 0xD). This
boot mode allows the firmware to be loaded over
the host interface.

REV. 0 REV. 0

–7–

AN-799

4. Write 0x000A to BUSMODE (address 0x8) to enable
32-bit host interface and confi gure for 32-bit wide
HDATA bus.

5. Write 0x000A to MMODE (address 0x9) to enable
32-bit indirect register access capability.

6. Write 0x00050000 to IADDR (address 0xB) to set
indirect address to start of program memory.

7. For each 32-bit value in the fi rmware application fi le
[7.75 kB], write this value to IDATA (address 0xC) to
load the program.

 Firmware application fi le:

 eval_edma_jdatawrdd0_loop.sea

8. Initiate a reboot by writing 0x008D to the BOOT
register (address 0xD).

9. Write 0x0015 to BUSMODE (address 0x8) to enable
16-bit host and JDATA port.

10. Write 0x0009 to MMODE (address 0x9) to enable
16-bit indirect access width and indirect address
increment enabled.

11. Initialize external interrupt and enable SWIRQ0:

 Write 0x00000400 to EIRQIE (address 0x5).

12. Confi gure the external DMA register:

 Write 0xFFFF to STAGE (address 0xA).

 Write 0x1408 to IADDR (address 0xB).

13. Wait for IRQ to be asserted or poll the software fl ag
register (address 0x7) for 0xFF07.

14. Clear interrupt fl ag:

 Write 0x00000400 to EIRQFLG (address 0x6).

 Initialization is now complete and the host can enter
the number of words to be written.

15. Use COMMAND FIFO to initialize number of words
to be written:

 Write 0x4144 to COMMAND (address 0x4).

 Write 0x5632 to COMMAND (address 0x4).

 Write 0x0000 to COMMAND (address 0x4).

 Write 0x0001 to COMMAND (address 0x4).

 Write 0x0000 to COMMAND (address 0x4).

 Write 0xXXXX to COMMAND (address 0x4).

 The value of the last write is the number of 32-bit
words to be written through the JDATA port. Since
JDATA port width is eight bits, this value is four
times the number of JDATA transfers. A small num-
ber such as 0x80 should be used initially until it’s
confi rmed that the test is running properly.

16. Wait for IRQ to go low again or poll SWFLG for
0x5555.

 This indicates that the part is ready to accept data
after the host enables the DMA interface. This is
done now by writing the value 0x061B to the IDATA
register (address 0xC). It is important to note that
the data value is written to the EDMOD0 register.

 This example sets VALID/HOLD to be both active
high. This means that data will be transferred
when DREQ0 is high and DACK0 is low. If opposite
polarities are desired, the value written should be
0x001B. When polarities are changed, it is safer
to fi rst write the register with EDMA_En bit set to
zero, then drive the HOLD pin to the active state (to
suppress unwanted transfers) and then enable the
EDMA interface.

17. Clear interrupt fl ag (EIRQFLG:Addr 0x6) and begin
JDATA write. Write hex value 0x0400 to Direct
Address 0x6. This will cause the IRQ signal to go to
high (inactive) state. JDATA writes can now begin.
The number of bytes written should correspond
to the number of words (� 4) programmed in
Step 7. Once the programmed number of words is
accepted by the ADV202, it will disable the JDATA
port and reinitialize the confi guration for JDATA
reading (to check the written data). This will be
indicated by an IRQn low transition (or by polling
for 0xaaaa in SWFLG).

18. Wait for IRQ transition low (or poll SWFLG for
value 0xaaaa). This indicates that the part is ready
to provide data after the host has enabled the
EDMA interface. This is done by writing the value
0x061B to the IDATA register (Addr:0xc). This is
similar to Step 8, however, in this case it enables the
EDMOD0 for reading. Again, data is transferred
when DREQ0 is high and DACK0 is low. For opposite
polarities, please follow the procedure described
in Step 8.

19. Clear interrupt fl ag (EIRQFLG:Addr 0x6) and begin
JDATA reads. Write hex value 0x0400 to Direct
Address 0x6. This will cause the IRQ signal to go to
high (inactive) state. JDATA reads can now begin.
The number of bytes read should correspond to the
number of words (� 4) programmed in Step 7. Once
the programmed number of words is read from the
ADV202, it will disable the JDATA port and reinitial-
ize the confi guration for JDATA writing (loops back
to Step 8). This will be indicated by an IRQ low tran-
sition (or by polling for 0x5555 in SWFLG).

REV. 0

A
N

05
56

8–
0–

7/
05

(0
)

–8–
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

AN-799

Common Errors in JDATA Mode
Common test errors and their remedies:

Problem: Incorrect register values in JDATA mode.

For ES3 samples it is required to gate pins RD and CS,
so that the RD connected to the ADV202 only goes low
when CS is low as well. This will ensure that RD only
goes low when the ADV202 is being accessed and no
bus contention will occur.

Problem: No initial assertion of VALID.

Under normal operations, initially the VALID will be
asserted as soon as data is available in the CODE FIFO
and should be followed by a HOLD deassert to start data
transmission. On ES3 samples it is required to deassert
HOLD first, regardless of the state of the CODE FIFO.

This is an ES3 bug and has been fixed on RevE or ES5
samples.

After successfully performing these tests, the ADV202 is
ready to be used for specific applications.

REV. 0

	INTRODUCTION
	DIRECT REGISTER ACCESS FUNCTIONALITY/PLL SETTINGS
	Direct Register Access Functionality
	PLL Settings
	Direct Register Read Test
	Direct Register Error States
	Direct Register Read/Write and Indirect Register Read/Write
	Register Test Procedure (32-bit)

	REGISTER TEST PROCEDURE (16-BIT)
	Using HDATA [15:0] for Data Transfers
	Common Errors

	DMA AND JDATA TESTS
	DREQ/DACK READ TEST
	eval_edma_singlerd0_loop.sea Application ID = 0xFF04

	DREQ/DACK TEST PROCEDURE
	DREQ/DACK READ/WRITE TEST USING BOTH DMA CHANNELS
	eval_edma_singlewrrd0_2chn_loop Application ID = 0xFF06
	Test Procedure

	JDATA READ TEST
	eval_edma_jdatard0_loop Application ID = 0xFF05

	JDATA READ/WRITE TEST
	eval_edma_jdatawrrd0_loop Application ID = 0xFF07
	Common Errors in JDATA Mode

