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An Improved Topology for Creating Split Rails from a Single Input Voltage 
by Kevin Tompsett 

INTRODUCTION 
Even with the widespread use of rail-to-rail single supply op 
amps, there is still often the requirement for dual rails (for 
example, ±15 V) to be generated from a single (positive) input 
power rail to power different parts of the analog signal chain. 
These are often low current (such as 10 mA to 500 mA) with 
relatively well-matched loads on the positive and negative 
supplies.  

One solution to this problem is to use two different converters; 
one to provide the positive rail and one to provide the negative 
rail. This can be expensive and, as this application note shows, 
unnecessary. Another solution is using a flyback; however, the 
supplies tend not to track each other very well with differential 
loading, it requires a large and expensive transformer, and it 
tends to be inefficient.  

A better solution is a SEPIC-Ćuk converter. This topology 
consists of an unregulated Ćuk converter tied to the same 
switching node as a regulated SEPIC converter. This 

combination results in two supplies that track each other  
very well under all but a 100% load mismatch.  

An analysis of the converter’s operation and implementation 
using the Analog Devices, Inc., ADP161x demonstrates the 
versatility of this topology. In addition, a revolutionary new 
design tool is introduced, providing a quick path to imple-
menting a SEPIC-Ćuk in user applications. 
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Figure 1. Schematic of the SEPIC-Ćuk Converter 
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DESCRIPTION OF TOPOLOGY 
Initially, the SEPIC-Ćuk appears to be a complicated converter 
with four different inductors and switches. Fortunately, it can be 
broken down into its two constituent converters, simplifying the 
analytical problem. For a SEPIC or Ćuk converter, the Q1 and 
Q2 switches operate in the opposite phase from one another. 
Figure 2 shows the current flow diagram for the two different 
switch states in a SEPIC converter. 
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Figure 2. Current Flow in a SEPIC Converter  

It is not immediately obvious, but the transfer capacitor  
(C1) voltage is approximately constant VIN (with  
small ripple).  

Figure 4 shows the idealized waveforms for a SEPIC converter. 
When Q1 is on, the voltage at SN2 is equal to −VIN. Thus, 
during the time that Q1 is on (Q2 is off), the voltage across  
both L1a and L1b is VIN and when Q1 is off (Q2 is on), then  
the voltage across both L1a and L1b is −VOUT. Applying the 
principles of inductor-volt second balance, the equilibrium dc 
conversion ratio as shown in Equation 1 can be calculated. D  
is the converter’s duty cycle (the fraction of the switching cycle 
that Q1 is on). 
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The Ćuk converter operates in a similar manner to the SEPIC 
converter, however, in this case, Switch Q2 is connected  
to ground rather than the output and the Inductor L2b is 
connected to the output instead of ground. Figure 3 shows a 
current flow diagram for the Ćuk converter during both switch 
positions. 

The Ćuk is a negative output converter, so current flowing out 
of the load is actually delivering power to the output.  
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Figure 3. Current Flow in a Ćuk Converter 

The idealized waveforms for a Ćuk converter are shown in 
Figure 4. Applying the principles of inductor-volt second 
balance and capacitor charge balance, the voltage across C2 is 
VIN + VOUT. Therefore, the SN2 switch node switches between 
GND, when Q2 is closed, and −(VIN + VOUT). The voltage across 
both L2a and L2b while Q1 is on (Q2 is off), is VIN and, while 
Q1 is off (Q2 is on), the voltage across both L2a and L2b  
is −VOUT.  

Comparing the waveforms in Figure 4 and Figure 5, note that 
the voltages across the inductors in a Ćuk are identical to those 
for the SEPIC. Thus, the duty cycle equation for a Ćuk is simply 
negative the duty cycle for the SEPIC,` as shown in Equation 2. 
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Figure 4. Idealized Waveforms SEPIC 
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Figure 5. Idealized Waveforms Ćuk 
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The fact that the duty cycles are equal and opposite, the switch 
node (SN1) voltages are identical, and the inductor currents  
are identical is what makes it possible to simply attach the two 
converters together at Node SN1. The combined converter is 
shown in Figure 1.  

Q2 and Q3 have been replaced by diodes because these supplies 
are generally lower power analog supplies where an asynchron-
ous controller makes good sense. In addition, two inductors 
(L1a and L2a) are in parallel. The reason for this is that L1a and 
L1b, and L2a and L2b, are coupled together using two separate 
coupled inductors. This has multiple advantages.  

Coupling the inductors reduces current ripple in the inductors 
by a factor of two (see the Ćuk-Middlebrook paper cited in the 
References section). In addition, it significantly reduces the 
complexity of the small signal model and enables higher band-
width by eliminating the SEPIC and Ćuk resonances located 
according to Equation 3 and Equation 4. This enables the use of 
a wide variety of off-the-shelf parts since there are not many 
three winding 1:1:1 inductors available.  
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A six winding part, such as found in Coilcraft’s Hexapath line 
product line, or a custom three winding transformer could also 
be used.  

LIMITS TO THE COUPLING COEFFICIENT 
Even though coupling the inductors has distinct advantages, it 
is undesirable for the coupling to be tight enough for there to  
be significant energy transfer through the core. To avoid this 
situation, the designer must ensure that the magnitude of the 
complex impedance of C1 (and C2) at the switching frequency 
is less than a tenth that of the impedance of the leakage 
inductance (LLKG) plus the DCR of a single winding.  

This inequality is designated in Equation 5. The leakage 
inductance (Ll) can be calculated using Equation 6 and  
the coupling coefficient (K) generally found on coupled 
inductor data sheets. Lm is the measured self-inductance that 
appears in the data sheet. Note that in Equation 5, the x in Cx 
and Lx refers to either C1 or C2 or L1 or L2. 
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DIFFERENTIAL LOAD AND OUTPUT VOLTAGE 
TRACKING 
By nature, the Ćuk (negative) output of the SEPIC-Ćuk is 
unregulated; thus, there is some amount of load variation with 
changes in output current and, particularly with load mismatch, 
compared to the SEPIC (positive) output. Note that the tracking 
is much better than a similarly configured flyback converter, 
especially in the case of a transient or a load mismatch. This is 
because the coupling between channels is a direct connection 
rather than through the transformer with its inherent leakage 
inductance.  

Figure 6 shows a 30 mA transient applied to the Ćuk (−VOUT) 
output of a SEPIC-Ćuk converter, while a constant 100 mA 
remains on the SEPIC output. It shows that both outputs 
respond to the transient load. This is the worst-case transient 
because the Ćuk output is unregulated. Interestingly, most of 
the deviation shown on the −VOUT rail is actually dc regulation 
shift caused by the mismatch between the loads applied to the 
two rails (IOUT+, IOUT−). 
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Figure 6. Transient Response from a 30 mA Step Load Applied  

to the Negative (Ćuk) Output 

With an identical load on both supplies, at steady state, the  
most significant error terms are a mismatch in the DCR of the 
inductors and the forward voltage of the diodes, both of which 
can be made quite small relative to the output voltage.  

With substantial load mismatch, the error grows as shown in 
Figure 7. Therefore, in some applications it may be necessary to 
put a small dummy load on one or both of the channels to keep 
both supplies in their regulation window. Note that, in general, 
analog chips, like op amps, are largely insensitive to dc changes 
in their power supplies as long as there is sufficient head room 
available. 
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Figure 7. Relative Voltage Regulation Between Rails with  

Differential Loading 

SMALL-SIGNAL ANALYSIS AND LOOP 
COMPENSATION 
A complete small-signal analysis of the SEPIC-Ćuk converter  
is beyond the scope of this paper; however, the equations 
provided in this application note should allow the designer to 
correctly compensate their design. The ADP161x SEPIC-Ćuk 
design tool uses a more complete model which is more accurate, 
but much more complicated. The equations shown refer to the 

ADP161x part in SEPIC-Ćuk and may not be accurate for other 
parts made by Analog Devices or the company’s competitors. 

The small-signal model for a SEPIC-ĆUK looks very similar to 
a SEPIC converter with no attached Ćuk as long as a few design 
requirements are met. It is assumed that identical inductors are 
used on the SEPIC-Ćuk rails. This requirement makes sense 
because both outputs are designed for the same voltage and 
current.  

In their paper, Ćuk and Middlebrook (see the References 
section) show that a coupled inductor, from both a small signal 
and a large signal, behaves like an inductor with twice its  
single winding inductance value, without the SEPIC or Ćuk 
resonances. Therefore, analysis in this application note is shown 
using the effective inductance, that is, twice the single winding 
inductance value that appears on coupled inductor data sheets. 
The analysis assumes identical resistive loads, though the 
converter remains stable with significant load imbalance. The 
two transfer capacitances (C1 and C2) should be nearly the 
same value, erring on the side of having C2 slightly larger than 
C1. These are assumed to be ceramic capacitors and, thus, the 
designer needs to take into account the differences in their dc 
bias value when calculating their effective capacitances.  

The first step in compensating a SEPIC Ćuk is to choose an 
achievable target crossover frequency. Like most boost and 
buck-boost topologies, the SEPIC-Ćuk has a right half plane 
zero (RHP) located according to Equation 7. An RHP has the 
dual effect of adding gain, like a zero, and subtracting phase, 
like a pole. Therefore, the converter must be compensated for  
a crossover frequency a maximum of one fifth of the frequency 
of the RHP (fRHP).  

The SEPIC-Ćuk has an additional resonance caused by the 
leakage inductance (Llkg ) and transfer capacitance (C1) that 
occurs at Fres. This resonance is generally well damped by the 
DCR of the inductors, but can introduce significant phase lag; 
therefore, it is good to crossover at least a decade before it. In 
addition, a current mode controller with standard Type II 
compensation is used, thus, the maximum achievable crossover 
frequency is approximately one-tenth the switching frequency. 
Target fu should, therefore, be chosen as the minimum of these 
three constraints, as shown in Equation 9. 
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Figure 8. Block Diagram Showing Power Stage and  

Compensation Components 

The compensation values in Figure 8 can be calculated as 
follows. Since it is assumed ceramic output capacitors will be 
used, CC2 can be selected as 10 pf.  
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where: 
fp is the dominant pole for the current mode converter with 
some correction factors to account for ramp compensation and 
finite current gain. 
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Ac is the magnitude of the open-loop converter gain at the 
crossover frequency fu.  
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Mc and Fm are terms derived from Ridley’s thesis (see the 
References section) on current mode control. 
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Vramp and Acs are fixed constants within the chip. 

DP1613)(ADP1612/A 1.0RAMPV  (16) 

DP1613)(ADP1612/A 5.13csA  (17) 

POWER COMPONENT STRESS 
As is often the case, a 30% ripple in the inductors generally 
results in a reasonable value (see Equation 19). However, with 
large step down ratios it can be more optimal to increase this 
ripple percentage in the input inductor to 50% or 60%. 
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The currents in the FET Switch Q1 and the two diode switches, 
Q2 and Q3, are shown in Figure 9. The dc components of the 
switch current are also shown in Figure 9. Note that Q1 carries 
the current for both the SEPIC and the Ćuk rails. The peak 
currents depend on the ripple chosen in Equation 19. 
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Figure 9. Idealized Waveforms for SEPIC-Ćuk 

Calculating the switching loss in the primary Switch Q1 is 
beyond the scope of this application note. Note that, in many 
cases, the switching loss can be quite large since the voltage 
swing the switch sees is large (~VIN + VOUT) and so are the 
currents (see Figure 9).  

The ADP1612/ADP1613 work to reduce this loss by switching 
very quickly. The FET chosen must be rated to withstand at 
least VIN + VOUT and good engineering allows some margin for 
switch node ringing due to stray inductances, in addition to 
thermal stress from RDS on loss and switching losses.  

The peak-to-peak output voltage ripple on the SEPIC (positive) 
output is (ΔVripple SEPIC) and is approximated by 
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The value of the current through the capacitor (IRMS Cout SEPIC) is 
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The peak-to-peak output voltage ripple on the Ćuk (negative) 
output (ΔVripple Ćuk) is approximated by 
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The I rms value of the current into the COUT on the Ćuk 
(negative) output (ΔVrip Ćuk) is approximated by 
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The ripple on C1 and C2 should be chosen for around 5% of 
VIN. As stated earlier, they should have similar values despite the 
difference in dc voltage across them. 
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It is important to consider I rms ratings when choosing C1 and 
C2 since the current through them is quite large. 
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Since Q2 and Q3 are generally diodes, there are several things 
to consider when choosing a component. Vds max must be rated 
to at least VIN + VOUT. The continuous current should be at  
least 1/3 the peak current to be seen. Interestingly, because of 
the phase relationship between the output voltage ripple of the 
two supplies, the SEPIC diode actually receives the full switch 
for some amount of time before the current achieves a more 
even split. As expected though, the average current through 
both diodes is the same, IOUT. In addition, the package must  
be able to handle the IOUT in the thermal environment of the 
application. 

 LOUTINratingcurrentdiodeDC IIII 
3
2

___  (30) 

OUTPUT FILTER  
The SEPIC-Ćuk as a dual rail converter is typically used for 
analog power supplies, which often require very low output 
ripple. Low output ripple (down to 1 mV) is generally easily 
achieved on the Ćuk (negative) output rail simply by using 
ceramic output capacitors because the output current is 
continuous like the output current of a buck converter.  

On the SEPIC (positive) rail, the output current is discon-
tinuous like the input current of a buck converter. This results 
in a step change in the current into the output capacitors.  
These switching spikes are not well attenuated even by ceramic 
capacitors because of their inductance. Therefore, it is often 
necessary to put a small, damped output pi filter on the output 
of the SEPIC winding.  
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Figure 10. Schematic of the Output Filter 

Although this filter affects the small-signal model in new  
and interesting ways, this issue is not fully discussed in this 
application note. As long as the damping resistor is chosen 
according to the Equation 31 and Equation 32, and the 
converter is designed to crossover at a tenth of ωo or less,  
no instability should be caused by the pi filter.  

COUT1 should be chosen for around 2% output ripple and COUT2 
should be chosen to match the output capacitor of the Ćuk 
output using the equations in the power components stress 
section. A good value for Lfilt is generally 1 μH, and Qo should  
be set to 1.   

 
 21

21 2

OUTOUTfilt

OUTOUT
o C CL

CC 
  (31) 

 

 
 CL

Q
C CR

Q

L
C CLR

R

OUTfilt
oo

OUTOUTload

oo

filt
OUTOUTfiltload

filt

1
21

21



















 (32) 

 

 



Application Note AN-1106
 

Rev. A | Page 9 of 12 

ADP161X DESIGN TOOL  
The ADP161x SEPIC-Ćuk design tool is a fully integrated 
Excel®-based designer for the ADP161x chips in a SEPIC-Ćuk 
configuration. Once the user has enabled macros (which may 
require a change of the security settings in Excel), the Enter 
Inputs dialog box appears, or can be found by pressing the  
Find Solution button. In the dialog box, enter the voltages  
and currents required for the design and choose whether to 
optimize for cost, loss, or size.  

If the View Solution button is pressed, the design tool outputs  
a complete, optimized design. This includes a costed BOM with 
compensation values, an accurate, tested efficiency plot across load, 
a plot of power loss across load, a full load bode plot, performance 
parameters, component stresses, and power dissipation for every 
component. In addition, the Build Your Design tab provides the 
same BOM, but with the components arranged to fit on the blank 
demo board (ADP161x-BL3-EVZ) and any extra components 
required to configure the demo board . 
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Figure 11. Basic Inputs Dialog Box 

Additional customization tools are available in the Advanced 
Settings dialog box. Here the user can select parameter 
specifications for output voltage ripple, current, transient 
response, optional output filter usage, an external UVLO, and 
more. A more in-depth description of the functionality of these 
options is provided in the Program Details dialog box available 
by clicking the Program Details button found on the Enter 
Inputs dialog box. 
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Figure 12. Advanced inputs Dialog Box 

One of the most powerful features of this tool are the 
component buttons found on the User Interface tab. This 
functionality gives the user the ability to individually change 
each component to fully customize the design.  

Each of the components in the drop-down list have been 
preselected from a database of thousands of components to 
produce a functional design, and sorted according to the 
optimization chosen in the Enter Inputs dialog box. The 
components must be selected in order, from top to bottom, 
since there are dependencies between the different components. 
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LAB RESULTS  
To demonstrate the efficacy of the design tool, a design was 
done using the tool for 5 VIN, ±5 VOUT at 50 mA with the 
advanced specifications shown in Figure 11 and Figure 12.  
In addition, the diode was changed for slightly lower loss.  
The jagged efficiency line at around 10 mA is caused by the 
converter going into discontinuous mode. Once both the 
switches have turned off, the switch node rings causing zero 
voltage switching at specific load currents. A schematic for the 
circuit is shown in Figure 14. 
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Figure 13. Efficiency Verification 
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CONCLUSION 
In conclusion, the SEPIC-Ćuk provides an inexpensive and 
robust way to create dual rails using only one controller. The 
ADIsimPOWER™ design tool allows complete customization of 
the design and can be relied on to create robust SEPIC-Ćuk 
designs quickly. 
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Figure 14. Schematic of Test Circuit 
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