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INTRODUCTION 
Jitter on analog-to-digital and digital-to-analog converter sam-
pling clocks presents a limit to the maximum signal-to-noise 
ratio that can be achieved (see Integrated Analog-to-Digital and 
Digital-to-Analog Converters by van de Plassche in the References 
section). In this application note, phase noise and jitter are defined. 
The power spectral density of phase noise and jitter is developed, 
time domain and frequency domain measurement techniques 
are described, limitations of laboratory equipment are explained, 
and correction factors to these techniques are provided. The 
theory presented is supported with experimental results applied 
to a real world problem. 

GENERAL DESCRIPTION 
There are numerous techniques for generating clocks used in 
electronic equipment. Circuits include R-C feedback circuits, 
timers, oscillators, and crystals and crystal oscillators. Depend-
ing on circuit requirements, less expensive sources with higher 
phase noise (jitter) may be acceptable. However, recent devices 
demand better clock performance and, consequently, more 
costly clock sources. Similar demands are placed on the spectral 
purity of signals sampled by converters, especially frequency 
synthesizers used as sources in the testing of current higher 
performance converters. In the following section, definitions  
of phase noise and jitter are presented. Then a mathematical 
derivation is developed relating phase noise and jitter to their 
frequency representation. The frequency domain representations, 
or power spectral densities, are shown to directly provide a 
measure of phase noise/jitter. The theory developed is associated 
with analog-to-digital and digital-to-analog converters. A 
spectrum analyzer and an oscilloscope are used to measure a 
variety of signals. Finally, theory is coupled with experimental 
results applied to an AD9235 analog-to-digital converter (ADC). 
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DEFINITIONS 
Phase noise and jitter have various interpretations. In the context 
of this application note, phase noise and jitter are defined as 
follows: 

Consider the sinusoidal signal, 

sin(ωt + A) (1) 

where: 
ω = 2πf. 
f is the desired frequency. 
A is a constant phase offset.  
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Figure 1. Normalized Sinusoidal Signal 

PHASE NOISE 
Phase noise is defined as an arbitrary function Φ(t) such that 
Equation 1 becomes 

sin(ωt + A + Φ(t)) (2) 
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Figure 2. Sinusoidal Signal with Phase Noise 

 

 

 

 

 

The function Φ(t) can be composed of frequency components 
not related to ωt, for example, thermal noise, shot noise, and 1/f 
noise (flicker noise). However, in most cases, it is modeled as 
Gaussian noise (see Frequency Synthesizers Theory and Design 
Third Edition by Manassewitsch in the References section). 

Similarly, a sample clock can be considered a periodic square 
wave with rising and falling edges repeating at a fixed time 
interval, τ, such that 

τ = 1/f (3) 
1.5

1.0

0.5

0

–0.5
0 0.5 1.0 1.5 2.0

PERIOD (   ) 08
93

2-
0

03

 
Figure 3. Sampling Clock 

JITTER 
Jitter can be defined as an additive time variation Δ(t) to the 
fixed interval τ, giving  

τ + Δ(t) = 1/f + Δ(t) (4) 
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Figure 4. Sampling Clock with Jitter 

Likewise, Δ(t), is typically characterized as Gaussian noise. 
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Figure 5. Single-Sideband Noise Spectrum of an Oscillator 

Noise analysis is straightforward above 5 kHz until the active 
devices are limited at high frequency. Noise below 5 kHz exceeds 
the shot noise and thermal noise. This noise varies inversely 
with frequency and is identified as 1/f noise. Figure 5 shows a 
typical noise spectrum of an oscillator (see Manassewitsch in 
the References section). 
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POWER SPECTRAL DENSITY  
Time domain signals have a direct relation to the frequency 
domain through the Fourier transform (see Discrete-Time Signal 
Processing by Oppenheim in the References section). The 
Fourier transform can be viewed as the magnitude and phase 
spectrum of a signal. A signal’s power can also be viewed in the 
frequency domain. The power spectrum or power spectral 
density is given by 

Syy(ω) = Y(ω) × Y’(ω) (5) 

where Y(ω) is the Fourier transform of y(t).  

As stated previously in the Definitions section, Φ(t) can be any 
arbitrary undesired signal. To simplify this analysis, Φ(t) is set 
to a single frequency. Consider the following: 

Φ(t) = θdsinωmt (6) 

Such that Equation 2 becomes 

y(t) = sin(ωct + θdsinωmt) (7) 

The result is a phase-modulated signal, y(t), with maximum 
phase deviation in radians, θd, at a frequency, fm, with ωm = 2πfm, 
and no offset, A = 0. 

The Jacobi-Anger expansion (see Concise Encyclopedia of 
Mathematics by Weisstein in the References section) states that 
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can be manipulated with the help of Euler’s identity to give  
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where the Jn(z) factors are Bessel functions of the first kind.  

Using trigonometric identities, Equation 7, Equation 10, and 
Equation 11 can be manipulated to give  

y(t) = J0(θd)sin(ωct) 
+ J1(θd)[sin(ωc+ ωm)t – sin(ωc − ωm)t] 
+ J2(θd)[sin(ωc+ 2ωm)t – sin(ωc − 2ωm)t] 
+ J3(θd)[sin(ωc+ 3ωm)t – sin(ωc − 3ωm)t] 
+ … (12) 

From Equation 12, it can be seen that y(t) has a first-order Bessel 
component at the carrier frequency, fc, and Bessel-weighted 
signals at multiples of the modulation frequency, fm, offset from 
the carrier.  

The power spectral density, Syy(ω), of the function y(t) for fc = 
32,768 Hz and fm = 1024 Hz with a phase deviation of 500 mrad 
(where mrad means milliradians) is shown in Figure 6. 
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Figure 6. Power Spectral Density, Syy(ω) 

Figure 6 is a plot of  

Syy(ω) = Y(ω) × Y’(ω) 

where Y(ω) is the Fourier Transform of y(t).  

Syy(ω) displays the magnitude of the power at the frequency, f. 
The power spectral density of the signal, y(t), modulated by a 
single frequency, fm, only has components at fc and fm with 
Bessel-squared magnitudes.  

The higher order Bessel coefficients attenuate very quickly. A 
log power scale provides better dynamic range, showing the 
higher order components in the same view as the large carrier 
component. The log of Syy(ω) is given by the following equation: 

Lpy(ω) = 10log10(Syy(ω)) (13) 

and is shown in Figure 7. 
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Figure 7. Log of Power Spectral Density, Syy(ω) 

Additional terms are now clearly visible. As the phase deviation 
increases, the magnitude at the carrier frequency decreases and 
the magnitude of the modulation terms increases. 500 mrad of 
phase deviation reduces the carrier power by ~12%.  

For small phase deviations, θd << 1 rad, J0(θd) ≈ 1, J1(θd) ≈ θd/2, 
and J2(θd) … Jn(θd) ≈ 0 (see Manassewitsch in the References 
section).  
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As the phase deviation approaches zero, the carrier power 
approaches 100%. Furthermore, small phase deviations have a 
smaller percentage of the carrier frequency power distributed 
among the modulation terms. This, in turn, results in a sum of 
modulation terms that approximate the power of Φ(t) more 
accurately.  

Bessel functions have the following property: 
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Taking advantage of the small phase deviation properties, the 
root mean square (rms) power of Φ(t) (for single-tone 
sinusoidal modulation) is approximately given by  

Prm ≈ 
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


1

2)(2
n

n βJ  (15) 

or  

Prms ≈ 1 − J0(β)2 (16) 

The phase deviation can also be expressed in terms of rms 
amplitude.  

Arms ≈ √Prms (17) 

EXAMPLE 1 
For a phase deviation, θd, of 100 mrad, 

Prms ≈ 1 − J0(0.1)2 
Prms ≈ 1 – 0.9950094 
Prms ≈ 1 – 0.0049906 
Arms ≈ 0.0706444 

Comparing this result with the power of a sinusoidal signal,  

e(t) = Asin(ωt) 
Pe = A2/2 

For A = 0.1, the rms power is Pe = 0.005 and Arms = A/√2 = 
0.0707107, which confirms that, for small phase deviations,  
the modulating terms sum to provide a good approximation  
of the rms power. 

This argument can be extended to more complex modulating 
signals. More complex modulation functions can be treated as a 
superposition of many frequency terms, each affecting the 
spectrum. The power spectral density has additional terms that 
sum to represent the rms power of the modulating signal. The 
rms power for an arbitrary function, Φ(t), with small amplitude, 
(θd << 1 rad), is given by 

Prms = ∫Syy(ω)dω – Syy(ω = ωc) (18) 

Equation 18 states that the rms power of a phase modulating 
signal is equal to the sum of all the components minus the 
power at the fundamental (or carrier frequency). 

For a sinusoidal signal, y(t), phase modulation produces a symme-
tric power spectral density, such that the rms power can also be 
given by 


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c

dSyyPrms )(2  (19) 

This is referred to as a single-sideband measurement technique 
and is usually taken per root Hz (see Manassewitsch in the 
References section). 

The rms modulation can be expressed in several ways. 

Arms ≈ √Prms in radians (shown in Equation 19) 

A0
rms ≈ 360 × √Prms/2π  (20) 

Equation 20 expresses the phase deviation in degrees. 

To relate phase noise to time jitter, use the following equation: 

At
rms ≈ τ × √Prms/2π (21) 

where τ = 1/fc expresses the phase deviation in time. 

EXAMPLE 2—PHASE NOISE 
Consider a noisy sinusoidal signal sampled with an ideal clock 

y(t) = sin(ωct + N(t)) 

where: 
ωc = 2π26,2144. 
N(t) is Gaussian noise with a standard deviation, σ = 10 mrad. 

The constructed signal is sampled at 4 million samples per 
second for 15 ms, acquiring 65,000 samples. The log of the 
power spectral density is normalized to 0 dB and is shown in 
Figure 8. 
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Figure 8. 260 kHz, 10 mrad Phase Noise 

The fundamental is at around 260 kHz, and there is noise across 
the spectrum. 

Using the discrete form of Equation 18, 

c

N

n
rms nnnSyyP  



2/

0
),(  (22) 

Sum the magnitude of the power at all frequencies from 0 to 
Nyquist, not including the power at the fundamental. The 
resulting noise power is 

Prms = 1.0017 × 10−4 

The rms amplitude is Arms = 0.010008 rad. 

Note that the 0.008 mrad discrepancy is several orders of 
magnitude smaller than the exact rms noise amplitude of 
10 mrad, giving a very good approximation. 
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The input signal at Time t0 with a phase deviation of Φ(t0) = 0 
has Amplitude A0. A noisy input signal with phase deviation 
Φ(t0) = ΔΦmrad at Time t0 has Amplitude AΦ. By the same 
token, the input signal sampled at a time deviation, t1 = t0 + Δt, 
has Amplitude Aτ. 
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Figure 9. Effects of Timing and Phase Deviation on Sinusoidal Signal 

Figure 9 shows that there exists a time deviation, Δt, and a phase 
deviation, ΔΦ, that produce the same amplitude, AΔ. For all intents 
and purposes, a phase deviation, ΔΦ, with rms amplitude equal 
to the jitter, Δt, rms time deviation produces identical results. 

EXAMPLE 3—JITTER 
In Example 2, the power spectral density of a signal with phase 
noise, N(t), has a Gaussian distribution and standard deviation 
of σ = 10 mrad. Now consider a signal sampled with a jittery 
clock having Gaussian noise, η(t). Equation 21 can be used to 
determine the rms jitter to produce the same effect as 10 mrad 
of phase noise. The resulting output is 

y(t) = sin(ωc(t + η(t))) 

where the carrier frequency is again 260 kHz and η(t) is 
Gaussian noise with a standard deviation of 6.0713 ns. 

The constructed signal is sampled at 4M samples per second for 
15 ms, acquiring 65k samples. The log of the power spectral 
density is normalized to 0 dB. 
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Figure 10. 65k FFT of a Phase Noise Modulated 260 kHz Tone  

Sampled at 4 MSPS 

Using Equation 22, sum the magnitude of the power at all 
frequencies from 0 to Nyquist, not including the power at the 
fundamental. The resulting noise power is 

Prms = 1.0031 × 10−4 

and the rms amplitude is 

Arms = 0.010016 rad 

Insert the results into Equation 21 to obtain 

At
rms = 4.86455 × 10−8s or At

rms ≈ 49 ns 

The results match those obtained in Example 2. 

Broadband noise modulating the clock or input signal results in 
a power spectrum with distributed noise. Furthermore, noise 
modulating the input signal or clock produces symmetric noise 
about the carrier. The power spectral density can be used to deter-
mine the phase noise or jitter associated with specific frequency 
components or frequency ranges. Large symmetric terms may 
highlight specific frequencies that are modulating the signal 
and/or clock. The rms power associated with specific frequen-
cies can be extracted directly from the power spectral density. 
For ranges of frequencies, the following equation can be used: 
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Or for single sideband, 
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APPLICATION TO CONVERTERS  
Current high speed converters have sampling rates higher than 
100 MSPS at resolutions greater than 12 bits. Signal-to-noise ratios 
(SNR) better than 70 dBc are routinely achieved with a spurious-
free dynamic range (SFDR) better than 100 dBc. Digital-to-analog 
converter (DAC) performance is directly impacted by the sampling 
clock jitter. Tones produced by DACs sampled with a noisy 
clock can produce a signal with phase noise. ADCs are affected 
by noise on both the sampling clock and the input signal. The 
results derived in the Example 3—Jitter section can be applied 
to converters. 

Associating the results to an ADC, consider the configuration 
shown in Figure 11. 
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Figure 11. ADC Functional Block Diagram 

The ADC samples the input signal, Asin(ωt), at a time instant, t 
(having Period τ), producing a quantized output of N bits.  

Assuming the noise on the input signal and the noise on the 
sampling clock are independent, the total noise is given by the 
root-sum square (RSS). If the magnitude of the noise is large 
enough, the maximum performance of the converter is affected. 

The quantization noise is directly proportional to the number of 
bits. The maximum error a sample has within the ADC’s range 
is the least significant bit resolution, QN, divided by 2 (QN/2) (see 
van de Plassche, Oppenheim, and Delta-Sigma Data Converters 
Theory Design and Simulation by Norsworthy, Schreier, and Temes 
in the References section). The error is defined by the signal 
being sampled. For randomly changing signals, the quantization 
error is uncorrelated and consequently lies anywhere within 
±QN/2. If the error is statistically independent of the signal being 
sampled, it can be shown that the maximum SNR that can be 
achieved is given by  

SNR = 6.02N + 1.8 (25) 

For a 12-bit converter, the theoretical maximum SNR is ~74 dBc. 
A total quantization noise power of 74 dBc corresponds to 

Pqn ≈ 10−7.4 

Pqn ≈ 39.8107 × 10−9 

It is desirable to have a test setup that is 10 dB better than the 
converter being tested. To test a 12-bit converter, the desired 
test setup noise power is 84 dBc. 

Pqn ≈ 10−8.4  

Pqn ≈ 3.98107 × 10−9 

Using Equation 17, this noise power can be related to an rms 
phase deviation. 

Arms ≈ 0.0631 mrad 

For a 10 MHz input signal, this corresponds to jitter of  

At
rms ≈ τ × √Prms/2 

At
rms ≈ 100 × 10−9 (√3.98107 × 10−9)/2π 

At
rms ≈ 1.004 × 10−12 sec 

Table 1 lists converter SNR limits due to quantization noise and 
comparable phase noise rms amplitude.  

Table 1. Converter SNR Limits 

Bit 
No. 

Theoretical 
SNR Limit (dB) 

Corresponding 
Phase Noise (mrad) 

Test Setup 
10 dB 
(mrad) 

6 dB 
(mrad) 

8 49.96 3.177 1.005 1.592 
10 62 0.794 0.251 0.398 
12 74.04 0.199 0.063 0.1 
14 86.08 0.0497 0.016 0.025 
16 98.12 0.0124 0.004 0.006 

Table 1 also provides the phase noise rms amplitude for test 
setups at 10 dB and 6 dB better than the converter. In some 
cases, a test setup of 6 dB better than the converter is acceptable 
(especially when 10 dB is difficult to obtain). 

Equivalent jitter amplitude is easily obtained using Equation 21.  

Converter SNR performance is typically determined using the 
power spectral density. The sampling frequency and the num-
ber of data samples directly determine the frequency resolution. 
A 4k FFT for a converter sampling at 32 MHz accumulates enough 
data to resolve frequencies down to 8 kHz. Consequently, the 
power spectral density displays information in 8 kHz intervals. 
Each 8 kHz bin provides the sum of the power of the frequen-
cies within that interval and frequencies aliased into that interval. 
The magnitude of a component that is 1 kHz from the carrier 
cannot be determined under these circumstances. The frequency 
resolution is improved by taking larger FFTs. Low frequency 
phase noise, such as 1/f noise, can be resolved to 32 Hz by taking a 
1M FFT for a converter sampling at 32 MHz. 
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EXAMPLE 1 
For a 12-bit ADC sampling at 32M samples per second with 
20 ps of clock jitter, the input signal is at 4 MHz with a 2 kHz, 
1 mrad phase noise component and 0.5 mrad of Gaussian phase 
noise. Acquiring 4k samples using this configuration produces 
the power spectral density shown in Figure 12. 
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Figure 12. 4k FFT of a Modulated 4 MHz Tone Sampled at 32 MSPS 

Using Equation 22, calculate a noise power of 6.628−7 W. However, 
the theoretical value should be 5.677−7 W, which is the RSS of 
the jitter and phase noise and quantization noise. 
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Figure 13. Close-Up View of 4 MHz Fundamental Showing Skirting Due to 

Low Bin Resolution 

A close-up view (see Figure 13) shows skirting around the 
fundamental. The frequency resolution is 8 kHz, and the 2 kHz 
modulation terms have combined with the fundamental and the 
surrounding bins. 
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Figure 14. Higher Resolution FFT Showing Modulation Terms 

Using a 65k FFT, the frequency can be resolved to 500 Hz.  
Two new symmetric terms are discovered, implying a phase 
modulation. Once these terms are added into the integrated 
noise power, calculate a noise power of 5.696−7 W.  
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TEST EQUIPMENT  
Phase noise and jitter can be viewed as a time deviation using 
an oscilloscope or as a frequency spectrum using a spectrum 
analyzer.  

OSCILLOSCOPES 
Oscilloscopes fall into two categories: real-time and sampling 
(see XYZs of Oscilloscopes by Tektronix in the References 
section).  

Real-time oscilloscopes capture a stream of samples on a single 
trigger event. The cycle-to-cycle deviation is extracted from the 
data at a fixed threshold. This method is limited by the time inter-
val measurement accuracy of the oscilloscope and its internal 
jitter. The Tektronix TDS7404 specifies an accuracy of ±8.5 ps 
and a typical jitter noise floor of 1.5 ps rms. The Tektronix 
TDS694C has an accuracy of ±15 ps. Increased accuracy can  
be achieved with statistical methods by including the vertical 
resolution of the oscilloscope and large record lengths in the 
processing. Tektronix claims a 1.5 ps jitter measurement accu-
racy using the latter technique (see Analyzing Clock Jitter Using 
Excel and Understanding and Performing Precise Jitter Analysis 
by Tektronix in the References section). 

Sampling oscilloscopes accumulate input signal data with each 
trigger. To obtain a time deviation, the input signal is repeti-
tively sampled, acquiring a distribution of points at a horizontal 
cross-section. The horizontal and vertical scales are adjusted 
depending on the magnitude of the time deviation being meas-
ured. This method of time deviation measurement is mainly 
limited by the trigger jitter. Sampling oscilloscopes have a much 
better time interval accuracy and, more importantly, a sampling 
interval as low as 10 fs. The time interval accuracy of a Tektronix 
11801C is 1 ps + 0.0004% × (position) and the trigger jitter is 
typically 1.1 ps rms. The TDS8000B Tektronix sampling oscillos-
cope specifies a trigger jitter of 800 fs (see Automatic Measurement 
Algorithms and Methods for the 8000 Series Sampling Oscilloscopes 
by Tektronix in the References section). 

SPECTRUM ANALYZERS 
Spectrum analyzers display a signal in terms of its frequency 
content. The spectrum displays a series of measurements within 
the resolution bandwidth (RBW) settings. Spectrum analyzers 
display the voltage and/or power of a signal in a linear or log 
display. Viewing the power of a signal is analogous to the power 
spectral density plots obtained through Fourier analysis. 

Random noise in electronics has a Gaussian distribution. There-
fore, samples within the RBW of the spectrum analyzer have a 
probability distribution; however, the samples are displayed as 
simple magnitudes. The spectrum analyzer actually measures 
with the in-phase (I) and quadrature (Q) components (see 
Spectrum Analyzer Measurements and Noise by Hewlett Packard 
in the References section). The I/Q components provide the 
magnitude and phase of the signal. Band-passed noise has a 
Gaussian distribution independently in both the I and Q 
components. 
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Figure 15. Spectrum Analyzer Envelope Detector Input Distribution 

The magnitude is obtained with an envelope detector and is 
given by 

22
QI vvv   (26) 

The noise magnitudes form concentric rings about the center of 
Figure 15. The count within each ring provides a distribution of 
the noise magnitude. The distribution function for the noise 
envelope is actually a Rayleigh distribution (see Probability, 
Random Variables, and Stochastic Processes by Papoulis in the 
References section).  

2

2

2
2)( 






v

env evvD  (27) 

Knowing the probability density function, the average of the 
voltage envelope can be determined using 

2
)(

0


 



dvvvDv env  (28) 

The average power is given by 

R
dvvD

R
vp env

2

0

2 2)( 
 



 (29) 

Calculating the power by squaring the average envelope voltage 
then dividing by R does not provide the same results as 
Equation 29. The result is 1.05 dB smaller. 
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log(10)log(10 2
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p
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)
4

log(10 
  

= −1.05 dB 
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Further considerations must be taken when using a spectrum 
analyzer in its logarithmic display mode. In the logarithmic display 
mode, the input signal passes through a log amplifier. This in 
turn results in a logged probability density function. Addition-
ally, the spectrum analyzer displays an average of the log. Log 
processing results in a response to noise that is 2.51 dB lower. 

PROOF 
Proof of 2.51 dB underestimation of noise follows.  

Plog = 10 log(v2) or 20 log(v) (30) 

Take the derivative of both sides, 

dv
v

dp 1
10ln

20
log   (31) 

20
log

10
P

v   (32) 

and 

log
20

20
10ln10

log

dpdv
p







  (33) 

Use Liebniz’s rule (see Weisstein in the References section) 

dy
dxxfyf xy )()(   (34) 

or per Papoulis (see the References section) 

}{at
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)( 1 yTx
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To obtain 
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 (36) 

The result is the probability distribution of log power of the 
input envelope. 

The average log power is then given by 






 logloglogloglog )( dppDpp  (37) 

From Liebniz’s rule (and Papoulis) 

fy(y)dy = fx(x)dx 

Therefore, 
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Let 
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To obtain 
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The first integral goes to 1 because this is simply the integral of 
the Rayleigh probability density. Let 

2


vu  (41) 

in the second integral, giving  

 



0

2
log ln

10ln
10)2log(10 dueup u  (42) 

The first term is the log of the average power; the second term 
is the negative of the Euler-Mascheroni constant (see Weisstein 
in the References section). The Euler-Mascheroni constant has 
been calculated to 7,000,000 digits and is denoted by Υ. Υ is 
approximately equal to 0.5772, making the last term equal to 
−2.5067. 

Most modern spectrum analyzers feature noise measurements 
that apply the necessary correction factors. 

In addition to known correction factors, which must be applied 
as necessary, spectrum analyzers must be configured correctly 
to provide accurate results. Smaller input signals are measured 
more accurately by lowering the reference level. However, lowering 
the reference level increases the gain of the input IF stage. Care 
must be taken so that the initial IF stage is not overloaded. 
Overloading the IF input sections may cause distortion products 
(see Fundamentals of Spectrum Analysis by Rauscher in the 
References section). Furthermore, finer frequency and ampli-
tude resolution measurements are obtained by enhancing the 
resolution bandwidth (RBW) and video bandwidth (VBW), 
respectively. However, enhanced resolution comes at a cost of 
longer sweep times. Fortunately, software is available that takes 
the desired measurements and applies the appropriate correction 
factors.  
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LAB RESULTS 
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Figure 16. Oscilloscope Setup 
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Figure 17. Spectrum Analyzer Setup 

A modulated signal generated by a Rohde & Schwarz SML-01 
was measured using a Tektronix CSA8000B and a Rohde & 
Schwarz FSIQ7. A second nonmodulated SML-01 set to the same 
frequency as the first SML-01 is used to trigger the CSA8000B. 
Phase noise due to large single-tone modulation, large Gaussian 
noise modulation, and small noise modulation was analyzed. In 
all cases, the source used is a Rohde & Schwarz SML-01. 

An alternative oscilloscope setup uses a broadband resistive 
splitter to feed both the trigger and the sampling inputs. This 
method rejects low frequency noise, which may produce 
artificially low noise measurement results.  
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Figure 18. SML-01 at 10 MHz, Modulated 200 mrad at 101 kHz 
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Figure 19. Close-Up View of Rising Edge 

Taking a horizontal histogram at the rising edge cross-section 
displays a standard deviation in a time of 2.218 ns and a peak-
to-peak deviation of 6.6 ns. 
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Figure 20. Single-Frequency Phase-Modulated Frequency 

The spectrum analyzer clearly shows a spectrum due to single-
frequency phase modulation. The first term to the right of the 
carrier has a Bessel factor of J1(θd). Because J1(θd) ≈ θd/2, the 
modulation can be approximated at 200 mrad. 
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Figure 21. SML-01 at 10 MHz with 67 mrad RMS  

of Gaussian Noise Modulation 
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Figure 22. Close-Up View of Rising Edge 

A horizontal histogram at the rising edge cross-section displays 
a standard deviation in a time of 1.005 ns and a peak-to-peak 
deviation of 7.92 ns. The oscilloscope trigger input accuracy 
decreases at lower slew rates.  
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Figure 23. 10 MHz Signal with Noise Out to 1 MHz from Carrier 

Figure 23 shows a spectrum due to broadband noise out to 
1 MHz from the carrier. Using a single sideband phase noise 
measurement (see Equation 19), the calculated phase noise has 
an rms amplitude of 0.0676 radians, corresponding to about 
1.075 ns of time jitter. 
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Figure 24. SML-01 Set to Produce a Clean 1 GHz 

08
93

2-
02

5

CH1  1.000mV/0.0V MAIN 2.00000ps 20.302n

C1

–50mV

+50mV

2ps/DIV

 
Figure 25. Close-Up View of Rising Edge 

In this case, the deviation is so small that it is below the  trigger 
jitter of the oscilloscope. The result shows a standard deviation 
of 837.3 fs and a peak-to-peak deviation of 5.56 ps.  
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Figure 26. Full-Scale 1 GHz Signal with 1.6 mrad RMS of Phase Noise 

The spectrum analyzer is centered at 1 GHz and set to a span of 
2 MHz. The dynamic range can be enhanced by changing the 
frequency range so that the large carrier is outside the span. 
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Figure 27. Single Sideband 1 GHz Signal with 1.6 mrad RMS Phase Noise 

 

 



AN-1067 Application Note
 

Rev. 0 | Page 14 of 20 

With the range now starting 5 kHz from the carrier, Figure 27 
shows that there is broadband phase noise to 1 MHz from the 
carrier. A reference level that is too low causes the distortions 
appearing in Figure 27. To obtain accurate results, the measure-
ments must be made in smaller intervals. Measurements within 
10 kHz of the carrier must have a reference level that will not 
overload the input IF stage. 

With a single sideband measurement (see Equation 19), the 
phase noise is measured at 1.6 mrad. This corresponds to 255 fs, 
far below the trigger jitter resolution of the oscilloscope. 
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Figure 28. Single Sideband 1 GHz Signal with 1.6 mrad RMS Phase Noise and 

Nonoverloaded Input Stage 
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HIGH SPEED CONVERTER  
Phase noise and jitter were introduced to an AD9235 application. 
The results obtained were verified using a spectrum analyzer 
and correlated to the developed theory. The AD9235 is a high 
speed analog-to-digital converter that features a 65M sample 
clock and SNR around 70 dBc. The experiment was executed on 
a CTS5340 tester. Rohde & Schwarz SMGUs generated both the 
input tone and clock. The input frequency was set to 2.4 MHz, 
and the clock input was set to 259.995 MHz divided down to 
produce a sampling rate, fs ≈ 65 MSPS. The sampling rate was 
decimated to produce an effective sampling rate, fes ≈ fs/15. 

The application normally generates an SNR around 70 dBc.  
A typical power spectral density, using a 4k FFT with the 
fundamental aliased into Bin 1827, is shown in Figure 29. 

(d
B

)

0

–40

–80

–120
0 0.54 1.08 1.62 2.16

FREQUENCY (MHz) 0
89

32
-0

29

 
Figure 29. FFT of AD9235 ADC Application, Sample Rate Decimated to  

~65 MSPS/15 and Input Frequency Set to 2.4 MHz 

The signal Φ(t) = 0.01 sin2π10,000t was modulated onto the 
fundamental. The resulting power spectral density is shown in 
Figure 30. 
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Figure 30. FFT of AD9235 ADC Application with a  

10 kHz Tone Modulating the Fundamental 

Figure 30 shows symmetric peaks about the fundamental, 
indicating a modulation. The bin width for the FFT is ~1057 Hz. 
Counting bins, the main peaks are found in the ninth and 10th 
bins from the fundamental, implying a modulation between 
9.5 kHz and 10.5 kHz. The modulation term is spread out due 
to a sampling rate that is not a direct multiple of 10 kHz and a 
nonwindowed FFT. For small signal modulation (a safe assump-
tion because the modulation peaks are more than 50 dBc), the 
first modulation Bessel term, J1(θd), is approximately θd/2. Sum 
the power for eight highest peaks around the modulation term 
to obtain 

PJ1 ≈ 2.0324 × 10−5 

θd/2 = √PJ1 ≈ 0.0045 

θd = 0.009 

Even though the modulation terms are spread throughout the 
spectrum, most of the modulation energy is centered around  
fc ± fm. Summing eight terms results in an approximation within 
10% of the actual value.  

The power spectral density of a fundamental with added phase 
noise is shown in Figure 31. 
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Figure 31. FFT of AD9235 ADC Application with  

Phase Noise Modulating the Fundamental 

The CTS5340 tester sends a filtered signal to the application 
board. The equivalent noise bandwidth for the 2.4 MHz filter is 
approximately 300 kHz. The bandlimited noise is clearly seen 
around the fundamental, indicating phase modulated noise on the 
2.4 MHz input tone. The phase noise results in an SNR of 58 dBc.  

http://www.analog.com/ad9235�
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Figure 32. Single-Sideband Noise Spectrum of Fundamental  

with 1.5 mrad of Phase Noise 

A single sideband measurement of the input signal shows 
1.5 mrad of phase noise. 

Prms = A2 

Prms = 2.25 × 10−6 = −56.478 dB 

This matches the source phase noise with the application test 
results. 

The results of jitter added to the sampling clock are shown in 
Figure 33. 
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Figure 33. FFT of AD9235 ADC Application Sampled with Jitter Clock 

In this case, the power spectral density noise floor has been 
slightly raised, resulting in an SNR of 64 dBc. The clock source  
is a Rohde & Schwarz SML-01 set to 259.995 MHz. A single 
sideband measurement of the SML-01 clock source is shown in 
Figure 34. 
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Figure 34. Phase Noise 

The clock source has 66.9 mrad of phase noise. 

At
rms = 0.0669/(2π259.995 × 106) 

≈ 40.953 ps 

The phase noise on the sampling clock corresponds to about 
41 ps of clock time jitter. The jitter can be related to radians of 
phase noise on the 2.4 MHz input signal. 

At
rms = (40.953 × 10−12) × (2π2.4 × 106) 

≈ 0.618 mrad 

41 ps of clock jitter corresponds to 0.618 mrad of phase noise 
on the 2.4 MHz fundamental. 

Prms = A2
rms  

Prms = 3.814 × 10−7 = −64.187 dB 

The noise on the sampling clock matches the application test 
results. 
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CONCLUSION 
The theory presented in this application note provides a direct 
relationship between phase noise and jitter and their frequency 
domain representation. Analysis of phase noise and jitter in the 
frequency domain highlights the content of the noise signals. 
Furthermore, measurements in the frequency domain provide 
enhanced resolution at higher frequencies. 
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