

AN-1452
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADuCM3027/ADuCM3029 Flash EEPROM Emulation

Rev. 0 | Page 1 of 8

INTRODUCTION
Nonvolatile data storage is a necessity in many embedded
systems. Data, such as bootup configuration, calibration
constants, and network related information, is normally stored
on an electronically erasable programmable read only memory
(EEPROM) device. The advantage of using the EEPROM to store
this data is that a single byte on an EEPROM device can be
rewritten or updated without affecting the contents in the other
locations.

The ADuCM3027/ADuCM3029 is an ultra low power
microcontroller unit (MCU) with integrated flash memory.
Emulation of the EEPROM on the integrated flash reduces the
BOM cost by omitting the EEPROM in the design. Therefore,
the software complexity is also reduced.

BACKGROUND
Flash memory is typically organized as an array of pages. A
single page in the ADuCM3027 is 2 kB. The contents of the
page must be erased before writing data. The erase operation is
universal to the page, whereas the read or write can be
performed on a single addressable location (byte or word).

The challenges of performing the read or write on a single
addressable location are as follows:

 Byte wide data read and write operations.
 The ability to erase or update data at any location while

retaining data at other locations because flash memory
erase operates on an entire page.

This application note describes the software using the
ADuCM3027/ADuCM3029 devices and the built in flash
memory to emulate EEPROM, as shown in Figure 1.

CORE

FLASH

EEPROM
ADuCM3027/
ADuCM3029

INTERFACE

15
61

8-
00

1

Figure 1. ADuCM3027/ADuCM3029 Internal Flash and EEPROM System Overview

USER CODE

write_eeprom8(addr, data) read_eeprom8(addr) erase_eeprom8()

pack_lower_data() find_current_sector() move2nextsector()

erase_flash(page_number)

read_flash(addr)write_flash(addr, data)

move2nextpage()pack_upper_data()

FLASH FUNCTIONS

EEPROM DRIVER

15
61

8-
00

2

Figure 2. ADuCM3027/ADuCM3029 Flash EEPROM Emulation Software Structure

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com

Application Note AN-1452

Rev. 0 | Page 2 of 8

TABLE OF CONTENTS
Introduction .. 1

Background ... 1

Revision History ... 2

Working Principle .. 3

EEPROM ..3

Flash ..5

Limitations ...6

Conclusion..7

REVISION HISTORY
3/2017—Revision 0: Initial Version

Application Note AN-1452

Rev. 0 | Page 3 of 8

WORKING PRINCIPLE
EEPROM emulation requires a dedicated portion of the flash
memory. Most EEPROMs can update one byte in one write
command. However, flash memory devices are equipped with
multibyte writing capability and update the data accordingly,
only if erase sequences are followed between two write
operations. To emulate a byte writable and readable EEPROM
in the flash memory, it is necessary to follow a read, modify,
write sequence, which is similar to EEPROM operation.

The procedure presented in this section uses two flash pages
that can be extended to more than two pages, which are then
divided into sectors consisting of sector tag. This sector tag
provides information about the current sector under process
and number of data bytes written onto that sector. Note that the
last location in every sector is reserved for the sector tag, which
has a size that is equal to data bus size of the flash memory. The
sector size and the number of sectors in a flash page depends on
the size of the emulated EEPROM.

EEPROM
EEPROM writing and reading functions involve the processing
of the application code input, such as EEPROM data and address
information. The EEPROM application programming interface
(API) handles processing and presenting the data and address
information per the requirements of the flash interface.

Write EEPROM

Figure 3 shows the EEPROM write operation flowchart. The
EEPROM write operation procedure is as follows:

1. Find the current sector by using the find_current_sector()
function call. This search is based on the sector tag and the
corresponding sector tag value; the value returned is the
current sector start address (which is a physical location on
the flash memory).

2. Convert the EEPROM address to the flash address with the
help of the current sector start address. Because the
ADuCM3027/ADuCM3029 flash memory has a 64-bit
wide data bus and the emulated EEPROM has an 8-bit
wide data bus, the software determines the number of
shifts required using the EEPROM address.

3. Read the data at the obtained flash address; if this data is equal
to 0xFF, least significant bit (LSB) and most significant bit
(MSB), 32-bit packets are created by masking the bits and
performing a left shift operation on the EEPROM data to
form a 64-bit wide data set to be written to the flash
memory.

4. Execute a write command on the flash controller by calling
the write_flash() function. The input parameters for this
function are the flash memory address and the LSB and
MSB data packets.

5. After a successful write operation to the flash memory, the
sector tag of the current sector is updated by calling the
update_tag() function.

If data is already present at the obtained flash address, the data
read function does not return 0xFF. In this case, the data before
and after the obtained flash address is moved to the next or
adjacent sector by calling the move2nextsector() function. The
EEPROM data, which is converted to LSB and MSB data
packets, is written at new flash address on the next sector. Thus,
every time a write is issued at an already written location of the
EEPROM, the data is moved to the next sector with the location
containing modified data.

If the new sector resides on the next page, a flash page erase
command is issued by calling erase_flash(page_number) to the
previous page after the data is moved. All the address registers
are updated by the move2nextpage() function.

See Table 1 for details regarding the write_eeprom(uint16_t
addr_eeprom, uint8_t data_eeprom) function.

Read EEPROM

Figure 4 shows the EEPROM read operation flowchart. The
EEPROM read operation procedure is as follows:

1. Read the EEPROM value stored at address location by
calling the read_eerprom(addr) function.

2. In an EEPROM read request from the application code, the
software first determines the current sector, which consists
of the latest data. A flash address is obtained using the
EEPROM address and current sector start address.

3. Execute a read command by calling the read_flash()
function with the obtained flash address.

4. Process the 64-bit wide data received from the flash
address; the bits of this address are then masked, right
shifted, and provided to the application code.

See Table 2 for details regarding the read_eeprom(uint16_t
addr_eeprom) function.

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf

Application Note AN-1452

Rev. 0 | Page 4 of 8

POWER-ON RESET

INITIALISE SYSTEM

READ THE CURRENT DATA
AT FLASH ADDRESS

CONVERT EERPOM
ADDRESS TO

FLASH ADDRESS

find_current_sector()

UPDATE THE DATA AT FLASH
ADDRESS IN THE NEXT SECTOR

write_flash()

ERASE PREVIOUS PAGE

move2nextpage()

update_tag() update_tag()

MOVE THE DATA FROM START
ADDRESS OF THE CURRENT

SECTOR TILL FLASH ADDRESS
TO THE NEXT SECTOR

MOVE THE REMAINING DATA
AFTER FLASH ADDRESS FROM

CURRENT SECTOR TO THE
NEXT SECTOR

pack_upper_data()

MOVE TO NEXT SECTOR
IN THE FLASHpack_lower_data()

write_eeprom(addr, data)

APPLICATION CODE

INITIALISE FLASH FOR
EEPROM EMULATION

IS DATA =
0xFF?

IS NEW
SECTOR
ON NEXT
PAGE?

YES NO

NO

YES

15
61

8-
00

3

Figure 3. EEPROM Write Operation

POWER-ON RESET

INITIALISE SYSTEM

read_eeprom(addr)

find_current_sector()

RETURN VALUE

CONVERT EEPROM ADDRESS
TO FLASH ADDRESS

READ THE CURRENT DATA
AT FLASH ADDRESS

PROCESS 64-BIT DATA TO GET
THE REQUIRED 8-BIT EEPROM DATA

APPLICATION CODE

INITIALISE FLASH
FOR EEPROM EMULATION

15
61

8-
00

4

Figure 4. EEPROM Read Operation

Application Note AN-1452

Rev. 0 | Page 5 of 8

Erase EEPROM

Figure 5 shows the EEPROM erase operation flowchart. The
EEPROM erase operation procedure is as follows:

1. Erase the entire EEPROM space allotted in the flash
memory by calling the erase_eeprom() function.

POWER-ON RESET

INITIALISE SYSTEM

erase_eeprom()

ERASE ALL THE PAGES IN THE
ALLOTED FLASH MEMORY

APPLICATION CODE

INITIALISE FLASH FOR
EEPROM EMULATION

15
61

8-
00

5

Figure 5. EEPROM Erase Operation

All the pages in the flash memory dedicated to EEPROM
emulation are erased. Therefore, exercise caution while using
this operation in the application code.

See Table 3 for details regarding the erase_eeprom() function.

FLASH
The ADuCM3027/ADuCM3029 processors include 128 kB and
256 kB of embedded flash memory, available for access through
the flash controller. The embedded flash memory has a 72 bit
wide data bus, providing two 32-bit words of data and one
corresponding 8-bit error correction code (ECC) byte per
access. The memory is organized in pages of 2 kB each, plus
256 bytes reserved for the ECC.

Flash Write

The flash memory operates by settings bits to 1 when erased,
and selectively clearing bits to 0 when writing (programming)
data. No write operation is capable of setting any bit to 1 from 0.
For this reason, generalized write accesses must be prefixed by
an erase operation.

A keyhole write is an indirect write operation in which the user
code programs memory mapped registers with target address
and data values, then commands the flash controller to perform a
write operation in the background. The flash controller supports
write access to the flash memory only through keyhole writes.
This constraint on write access enables the flash controller to
guarantee that writes occur properly as atomic double word
(64-bit) operations.

LSB and MSB data packets, which are created using EEPROM
data, are provided to keyhole data registers. After the assertion
of a write command, the flash controller initiates a 64-bit dual
word write to the given flash address.

Note that word (32-bit), half word (16-bit), and byte (8-bit)
writes are not supported.

See Table 4 for details regarding the write_flash(uint32_t addr,
uint32_t lower_data, uint32_t upper_data) function.

Flash Read

Flash memory is available to be read only after an automatic
initialization process. Reading the flash memory returns a 64-bit
double word.

Flash address information is provided to the flash controller,
which returns read data. This data is further processed by the
EEPROM interface to achieve the EEPROM value.

See Table 6 for details regarding the read_flash(uint32_t addr)
function.

Flash Erase

When there is a page change during an EEPROM write, a page
erase command is asserted on the previous page by calling the
erase_flash(page) function. Before a page erase, data movement
occurs as explained previously.

See Table 5 for details regarding the erase_flash(uint8_t PAGE)
function.

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf

Application Note AN-1452

Rev. 0 | Page 6 of 8

LIMITATIONS
In real EEPROMs, if one location is updated, only one erase
cycle is counted, followed by a write operation to that particular
address while other locations remains unchanged.

In this emulated EEPROM, updating one location causes
movement of data from the current sector to the next sector
that consumes the EEPROM size number of write cycles.
Therefore, every time a location is updated, data is moved to
next sector and, if that sector resides on the next page, a page
erase occurs. This behavior decreases the effective endurance of
the flash memory.

To overcome these limitations,

 Use caution when selecting the EEPROM size for
emulation. A small EEPROM size decreases the write
cycles during data movement, which indirectly increases
the endurance of the flash memory.

 Avoid unnecessary writes to the EEPROM. By doing so, the
effective endurance increases. For example, the system must
issue writes only during a power fail sequence. A RAM
buffer can be used for storing the data during normal
operations. Note that the software handles some of the
unnecessary writes to the emulated EEPROM. For example,
if the data to be written is 0xFF and the current data at that
particular location is 0xFF, no write is issued to the flash
memory.

Application Note AN-1452

Rev. 0 | Page 7 of 8

CONCLUSION
The application note intends to match the physical difference
between the EEPROM and the flash memory using the
ADuCM3027/ADuCM3029. This emulated EEPROM is similar
to a real EEPROM that overcomes the problems related to
silicon area, input/output bus resources, manufacturing costs,
and so on.

This application note provides the user with a large EEPROM
size (from 64 bytes to 1024 bytes) for emulation. Because there
is a trade-off between the size of the emulated EEPROM and
the endurance of the flash memory, the user is advised to select
the appropriate size to enhance the hardware efficiency. In
addition to this approach, the software handles some of the
unnecessary writes to the ADuCM3027/ADuCM3029 flash
device, which effectively increases the endurance.

Table 1. Write EEPROM Function Description
write_eeprom(uint16_t addr_eeprom, uint8_t data_eeprom)1

Parameter Description Return Value
addr_eeprom Logical address in the EEPROM space where data is to be written No error; write was successful
data_eeprom Data to be written to the EEPROM space, pointed by

addr_eeprom
Error; the given address is out of the available EEPROM
memory space

1 This function writes data to the EEPROM.

Table 2. Read EEPROM Function Description
read_eeprom(uint16_t addr_eeprom)1

Parameter Description Return Value
addr_eeprom Logical address in the EEPROM space where data is to be read Value; the 8-bit data is returned to the application code
 Error; the given address is out of available EEPROM memory space

1 This function reads data from the EEPROM.

Table 3. Erase EEPROM Function Description
erase_eeprom()1

Parameter Return Value
Not applicable No error; erase was successful
 Error; the flash controller is busy and cannot perform the erase action

1 This function erases the EEPROM memory space. Note that all the data is lost if this function is called.

Table 4. Write Flash Function Description
write_flash(uint32_t addr, uint32_t lower_data, uint32_t upper_data)1

Parameter Description Return Value
addr The address in the flash memory space allotted for the

EEPROM emulation
No error; write was successful

lower_data The lower 32 bits of the double word Error; the given address is out of the available EEPROM
memory space

upper_data The highest 32 bits of the double word

1 This function receives the translated EEPROM address and data from the write_eeprom() function and issues a write command to the flash controller.

http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf
http://www.analog.com/ADuCM3027?doc=AN-1452.pdf
http://www.analog.com/ADuCM3029?doc=AN-1452.pdf

Application Note AN-1452

Rev. 0 | Page 8 of 8

Table 5. Erase Flash Function Description
erase_flash(uint8_t PAGE)1

Parameter Return Value
Page; the page number of the allotted flash memory space No error; page wise erase was successful
 Error; the given page value is out of the allotted flash memory space

1 This function performs a page wise erase in the allotted flash memory space.

Table 6. Read Flash Function Description
read_flash(uint32_t addr)1

Parameter Description Return Value
addr The address in the flash memory space allotted

for EEPROM emulation
Read data; the 64-bit data is returned for masking and is sent as the return
value to the read_eeprom() function

 Error; the translated address is out of the allotted flash memory space

1 This function receives the translated EEPROM address from the read_eeprom() function and issues a read command to the flash controller.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN15618-0-3/17(0)

http://www.analog.com

	INTRODUCTION
	BACKGROUND
	TABLE OF CONTENTS
	REVISION HISTORY
	WORKING PRINCIPLE
	EEPROM
	Write EEPROM
	Read EEPROM
	Erase EEPROM

	FLASH
	Flash Write
	Flash Read
	Flash Erase

	LIMITATIONS
	CONCLUSION

