												REVIS	SIONS								
				L	TR				DESC	RIPTI	ON				D	ATE		ł	APPRO	OVED)
																			∎ #3	** *]
]
	in acc	cordanc	ce with	ASME Y	14.24												,	/endo	■	drawi	ing
REV	in acc	cordanc	ce with	ASME Y	14.24												Ň	/endo	■ 35 10 10 10 10 10 10 10 10 10 10	drawi	ing
REV PAGE	in acc	cordanc	ce with	ASME Y	14.24												,	/endo	Titem	drawi	ing
REV PAGE REV	in acc	cordanc	ce with	ASME Y	14.24													Vendo	r item	drawi	ing
REV PAGE REV	in acc	cordanc		ASME Y	14.24													Vendo	r item	drawi	ing
REV PAGE REV PAGE REV ST <i>F</i>	ATUS	cordanc	REV															/endo	r item	drawi	
REV PAGE REV PAGE REV ST <i>F</i>	ATUS	cordanc	REV		1	2	3	4	5	6	7	8	9	10	11	12	13	/endo	r item	drawi	ing
REV PAGE REV PAGE REV ST <i>A</i> OF PAGI	ATUS	cordanc	REV	E PREPAR	1 ED BY		3	4	5	6	7	8	D	LA L	AND		13 MAI	RITIN			ing
REV PAGE REV PAGE REV ST <i>A</i> OF PAGI	ATUS	cordanc	REV		1 ED BY		3	4	5	6	7		DI COL	LA L .UME	AND BUS,	AND OHIO	13 MAI D 43	RITIN 218-3	ЛЕ 3990		ing
REV PAGE PAGE REV STA OF PAGI PMIC N/A	ATUS		REV	E PREPAR RICK O	1 ED BY		3	4	5	6		ht	D	LA L .UME	AND BUS,	AND OHIO	13 MAI D 43	RITIN 218-3	ЛЕ 3990		ing
REV PAGE PAGE REV STA OF PAGI PMIC N/A	ATUS	drawir	REV	E PREPAR	1 ED BY	R	3	4	5	6	тіт	<u>ht</u> LE	DI COL ttp://\	LA L UME	AND BUS, <u>land</u>	AND OHIC andr	13 0 MAI 0 43 narit	RITIN 218-; ime.c	AE 3990 dla.m		ing
REV PAGE PAGE REV STA OF PAGI PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAGE	E PREPAR RICK OI CHECKE RAJESH	1 ED BY FFICEF	R ADIA	3	4	5	6	TITI	<u>ht</u> LE ROC	DI COL ttp://\	LA LA	AND BUS, <u>land</u>	AND OHIC andr	13 MAI D 43 marit	RITIN 218-3 ime.c	AE 3990 dla.m		
REV PAGE PAGE REV STA OF PAGI PMIC N/A	ATUS ES A	drawin	REV PAGE	PREPAR RICK OI	ED BY FFICEF	ADIA	I	4	5	6	TIT MIC INS	<u>ht</u> LE ROC	DI COL tp://\	LA LA	AND BUS, <u>land</u>	AND OHIC andr	13 MAI D 43 marit	RITIN 218-3 ime.c	AE 3990 dla.m		
REV PAGE PAGE REV STA OF PAGI PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAGE	E PREPAR RICK OI CHECKE RAJESH APPROV CHARLI	1 ED BY FFICEF D BY H PITH/ ES F. S	ADIA SAFFL	E		5	6	TIT MIC INS SILI	<u>ht</u> LE CROC TRUI	DI COL ttp://v CIRCU MEN	LA LA	AND BUS, <u>land</u>	AND OHIC andr	13 MAI D 43 marit	RITIN 218-3 ime.c	AE 3990 dla.m		
REV PAGE PAGE REV STA OF PAGI PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAGE	E PREPAR RICK OI CHECKE RAJESH APPROV CHARLI SIZE	1 ED BY FFICEF D BY H PITH/ ES F. S	ADIA	E INT. N	0.	5	6	TIT MIC INS SILI	<u>ht</u> LE ROC	DI COL ttp://v CIRCU MEN	JIT, L	AND BUS, Iand	AND OHIC andr AR, F	13 0 MAI 0 43 mariti PREC IFIEF	RITIN 218-3 ime.c	AE 3990 dla.m		
REV PAGE REV PAGE REV STA OF PAGI PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAGE	E PREPAR RICK OI CHECKE RAJESH APPROV CHARLI	1 ED BY FFICEF D BY H PITH/ ES F. S	ADIA SAFFL	E INT. N		5	6	TIT MIC INS SILI	<u>ht</u> LE CROC TRUI	DI COL ttp://v CIRCU MEN	JIT, L	AND BUS, Iand	AND OHIC andr AR, F	13 MAI D 43 marit	RITIN 218-3 ime.c	AE 3990 dla.m		

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance precision instrumentation amplifier microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/16619</u>	-	<u>01</u>	Ť	Ę
Drawing number		Device type (See 1.2.1)	Case outline (See 1.2.2)	Lead finish (See 1.2.3)
1.2.1 Device type(s).				

Device type	Generic	Circuit function
01	AD8221-EP	Precision instrumentation amplifier

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	8	MO-187-AA	Micro small outline

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>
A B C D E Z	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Other

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _S)	±18 V
Internal power dissipation (P _D)	200 mW
Output short circuit current	Indefinite
Input voltage (common mode)	$\pm V_S$
Differential input voltage	$\pm V_S$
Storage temperature range (T _{STG})	-65°C to +150°C
Junction temperature range (T _J)	+150°C
Thermal resistance, junction to ambient (θ_{JA})	135°C/W

<u>1</u>/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 2

1.4 Recommended operating conditions. 2/

Supply voltage range (V _S)	±15 V
Operating free-air temperature range (T _A)	-55°C to +125°C

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at <u>http://www.jedec.org</u> or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201-2107).

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.

3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.

2/ Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 3

Test	Symbol	Conditions <u>2</u> /	Temperature, T _A	Device type	Lin	nits	Unit
					Min	Max	
Common mode rejection	ratio (CMR	R)					
CMRR DC to 60 Hz with 1 kΩ source		G = 1, V_{CM} = -10 V to +10 V	25°C	01	80		dB
imbalance		G = 10, V _{CM} = -10 V to +10 V			100		
		G = 100, V _{CM} = -10 V to +10 V			120		
		G = 1000, V _{CM} = -10 V to +10 V			130		
CMRR at 10 kHz		G = 1, V _{CM} = -10 V to +10 V	CM = -10 V to +10 V 25°C 01 80		dB		
		G = 10, V _{CM} = -10 V to +10 V			90		
		G = 100, V _{CM} = -10 V to +10 V	100				
		G = 1000, V _{CM} = -10 V to +10 V			100		1
Noise		RTI noise = $\sqrt{(e_{NI}^2 + (e_{NO}/G)^2)} \frac{3}{2}$					
Voltage noise, 1 kHz							
Input voltage noise	e _{NI}	V_{IN+} , V_{IN-} , $V_{REF} = 0$	25°C	01		8	nV / √Hz
Output voltage noise	e _{NO}	$V_{IN+}, V_{IN-}, V_{REF} = 0$	25°C	01		75	nV / √Hz
Referred to input (RTI)		G = 1, f = 0.1 Hz to 10 Hz	25°C	01	2 ty	pical	μVp-p
		G = 10, f = 0.1 Hz to 10 Hz			0.5 ty	/pical	
		G = 100 to 1000, f = 0.1 Hz to 10 Hz			0.25 t	ypical	
Current noise		f = 1 kHz	25°C	01	40 ty	vpical	fA / √Hz
		f = 0.1 Hz to 10 Hz			6 ty	pical	рАр-р

TABLE I. Electrical performance characteristics. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 4

Test	Symbol	Conditions 2/	Temperature, T _A	Device type	Lir	nits	Unit
			·A		Min	Max	
Voltage offset <u>4</u> /		1					
Input offset	V _{OSI}	$V_{S} = \pm 5 V \text{ to } \pm 15 V$	25°C	01		70	μV
			-55°C to +125°C			150	
Input offset average temperature coefficient	TC		-55°C to +125°C	01		0.9	μV/°C
Output offset	V_{OSO} $V_{S} = \pm 5 V \text{ to } \pm 15 V$ 25°C 01	600	μV				
			-55°C to +125°C			1.2	mV
Output offset average temperature coefficient	TC		-55°C to +125°C	01		9	μV/°C
Offset RTI versus		G = 1, V _S = ± 2.3 V to ± 18 V	25°C	01	90		dB
supply (PSR)					100 typical		-
		G = 10, V _S = ± 2.3 V to ± 18 V			100		
					120 t	ypical	
		G = 100, V _S = ± 2.3 V to ± 18 V			120		
					140 t	ypical	
		G = 1000, V _S = ± 2.3 V to ± 18 V			120		
					140 t	ypical	
Input current							
Input bias current	I _{IB}		25°C	01		2	nA
					0.5 t	ypical	
			-55°C to +125°C			3.75	
Input bias current average temperature coefficient	TC		-55°C to +125°C	01	11 ty	/pical	pA/°C

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 5

Test	Test Symbol Conditions <u>2</u> / Tem		Temperature, T _A	Device type	Lir	nits	Unit
					Min	Max	
Input current – continued	ł.	·	·				
Input offset current	IIO		25°C	01		1	nA
					0.3 t	ypical	
			-55°C to +125°C			2.25	
Input offset current average temperature coefficient	TC		-55°C to +125°C	01	7 ty	pical	pA/∘C
Reference input			-				•
Input resistance	R _{IN}		25°C	01	20 ty	/pical	kΩ
Input current	I _{IN}	V _{IN+} , V _{IN-} , V _{REF} = 0	25°C	01		60	μA
					50 ty	/pical	
Voltage range			25°C	01	-Vs	+Vs	V
Gain to output			25°C	01		.0001 ical	V/V
Power supply	·	·	·				
Operating range		$V_{S} = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	25°C	01	±2.3	±18	V
Quiescent current	lQ		25°C	01		1	mA
					0.9 t	ypical	
			-55°C to +125°C			1.2	1
					1 ty	pical	1

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 6

Test	Symbol	Conditions <u>2</u> /	Temperature, T _A	Device type	Lir	nits	Unit
			Min	Max			
Dynamic response.							
Small signal –3 dB bandwidth	SSBW	G = 1	25°C	01	825 typical		kHz
bandwidth		G = 10			562 t	ypical	
		G = 100			100 t	ypical	
		G = 1000			14.7	typical	
Settling time 0.01%	ts	10 V step, G = 1 to 100	25°C	01	10 ty	/pical	μs
		10 V step, G = 1000			80 typical		
Settling time 0.001%	ts	10 V step, G = 1 to 100	25°C	01	13 typical		μs
		10 V step, G = 1000			110 t	ypical	
Slew rate	SR	G = 1	25°C	01	1.5		V/µs
					2 typical		
		G = 5 to 100			2		
					2.5 typical		
Gain		$G = 1 + (49.4 \text{ k}\Omega/\text{R}_{G})$					
Gain range			25°C	01	1	1000	V/V
Gain error		G = 1, V _{OUT} = ±10 V	25°C	01		0.1	%
		G = 10, V _{OUT} = ±10 V				0.3	
		G = 100, V _{OUT} = ±10 V				0.3	
		G = 1000, V _{OUT} = ±10 V				0.3	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 7

Test	Symbol	Conditions <u>2</u> /	Temperature, T _A	Device type	Lin	nits	Unit
			Min	Max			
Gain - continued.							
Gain nonlinearity		$G = 1$ to 10, $R_L = 10$ kΩ,	25°C	01		15	ppm
		V _{OUT} = -10 V to +10 V			5 ty	oical	
		G = 100, R _L = 10 kΩ,				20	
		V _{OUT} = -10 V to +10 V			7 ty	oical	
		G = 1000, R _L = 10 kΩ,				50	
		V _{OUT} = -10 V to +10 V			10 typical		
		G = 1 to 100, $R_L = 2 k\Omega$,			100		
		V _{OUT} = -10 V to +10 V			15 typical		
Gain versus temperature	G = 1	25°C	01	10		ppm/°C	
temperature					3 typical		
		G > 1 <u>3</u> /				-50	
Input							
Differential input impedance		<u>5</u> /	25°C	01	100 2	typical	GΩ∥pF
Common mode input impedance		<u>5</u> /	25°C	01	100 2	typical	GΩ∥pF
Input operating <u>6</u> / voltage range		V _S = ± 2.3 V to ± 5 V	25°C	01	-V _S + 1.9	+V _S - 1.1	V
			-55°C to +125°C		-V _S + 2.0	+V _S - 1.2	
Input operating voltage range		$V_{S} = \pm 5 V \text{ to } \pm 18 V$	25°C	01	-V _S + 1.9	+Vs - 1.2	V
			-55°C to +125°C		-V _S + 2.0	+Vs - 1.3	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/16619	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 8	

Test	Test Symbol Conditions <u>2</u> / Te		Temperature, T _A	Device type	Limits		Unit
					Min	Max	
Output		R _L = 10 kΩ					
Output swing		$V_{S} = \pm 2.3 V$ to $\pm 5 V$	25°C	01	-V _S + 1.1	+V _S - 1.2	V
			-55°C to +125°C		-V _S + 1.4	+V _S - 1.3	
Output swing		$V_{S} = \pm 5 V \text{ to } \pm 18 V$	25°C	01	-V _S + 1.2	+Vs - 1.4	V
			-55°C to +125°C		-V _S + 1.6	+V _S - 1.5	
Short circuit current	IOS		25°C	01	18 ty	pical	mA
Temperature range specified performance				01	-55	+125	°C

<u>1</u>/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

<u>2</u>/ Unless otherwise specified, $V_S = \pm 15$ V, $V_{REF} = 0$ V, G = 1, and $R_L = 2$ k Ω .

 $\underline{3}$ / Does not include the effects of external resistor R_G.

 $\underline{4}$ Total RTI V_{OS} = (V_{OSI}) + (V_{OSO}/G).

5/ The || symbolizes that the input impedance is being represented as the resistance value is in parallel with the capacitance.

 $\underline{6}$ One input grounded. G = 1.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 9

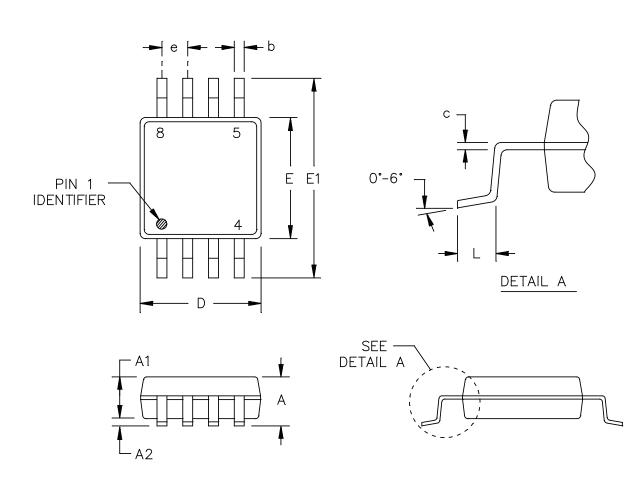


FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 10

Case X

	Dimensions					
Symbol		Inches			Millimeters	
	Minimum	Medium	Maximum	Minimum	Medium	Maximum
А			.043			1.10
A1	.029	.033	.037	0.75	0.85	0.95
A2	.001		0.006	0.05		0.15
b	.010		.015	0.25		0.40
С	.003		.009	0.09		0.23
D	.110	.118	.125	2.80	3.00	3.20
E	.110	.118	.125	2.80	3.00	3.20
E1	.183	.192	.202	4.65	4.90	5.15
е		0.026 BSC	C 0.65 BSC			
L	0.015	.021	.031	0.40	0.55	0.80

NOTES:1. Controlling dimensions are millimeter, inch dimensions are given for reference only.2. Falls with JEDEC MO-187-AA.

FIGURE 1. Case outline - Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 11

Case X

Device type	01			
Case outline	Х			
Terminal number	Terminal symbol	Description		
1	-IN	Negative input terminal.		
2	R _G	Gain settling terminal. Place resistor across the R _G pins to set the gain. G = 1 + (49.4 k Ω /R _G).		
3	R _G	Gain settling terminal. Place resistor across the R _G pins to set the gain. $G = 1 + (49.4 \text{ k}\Omega/\text{R}_{G})$.		
4	+IN	Positive input terminal.		
5	-Vs	Negative power supply terminal.		
6	REF	Reference voltage terminal. Drive this terminal with a low impedance voltage source to level shift the output.		
7	Vout	Output terminal.		
8	+V _S	Positive power supply terminal.		

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 12

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>http://www.landandmaritime.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Mode of transportation and quantity	Vendor part number
V62/16619-01XE	24355	Tray, 50 units	AD8221TRMZ-EP
V62/16619-01XE	24355	7 inch reel, 1000 units	AD8221TRMZ-EP-R7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices Route 1 Industrial Park P.O. Box 9106 Norwood, MA 02062 Point of contact: Raheen Business Park Limerick, Ireland

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/16619
		REV	PAGE 13